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 Bacterial infections in healthcare settings are a frequent accompaniment to both routine 

procedures such as catheterization and surgical site interventions. Their impact is becoming even 

more marked as the numbers of medical devices that are used to manage chronic health 

conditions and improve quality of life increases. The resistance of pathogens to multiple 

antibiotics is also increasing, adding an additional layer of complexity to the problems of 

employing safe and effective medical procedures. One approach to reducing the rate of infections 

associated with implanted and indwelling medical devices is the use of polymers that resist the 

formation of bacterial biofilms. To significantly accelerate the discovery of such materials, we 

show how state of the art machine learning methods can generate quantitative predictions for the 

attachment of multiple pathogens to a large library of polymers in a single model for the first 

time. Such models facilitate design of polymers with very low pathogen attachment across 

different bacterial species that will be candidate materials for implantable or indwelling medical 

devices such as urinary catheters, cochlear implants and pacemakers.  
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Bacterial infections are a large and re emerging global healthcare issue because of ageing 

populations, the evolution of multi  and pan  antibiotic resistant pathogens, increasing numbers 

of immunocompromised patients, and developments in and use of medical devices. Immune 

responses abate with ageing, and concurrent medical conditions mean that hospitalizations are 

increasing and nosocomial infections more prevalent.1 2 Antibiotic resistance is a major global 

healthcare challenge, and the increased use of implantable and indwelling medical devices is 

hampered by the risk of bacterial infections, especially by multi antibiotic resistant pathogens.3 4 

Additionally, wound infections, traumatic burns, suppressed immune responses due to HIV 

infection or organ transplantation, and increased survival of patients with chronic serious 

conditions such as cystic fibrosis and diabetes add to the overall burden of infection.  

Health care associated infections affect around 4.1 million per year in Europe and around 1.7 

million patients in the USA, according to World Health Organization.5  Bacterial colonization of, 

and subsequent biofilm formation on, medical devices are particularly problematic given the 

rapidly growing number of patients requiring for example, catheterization, stents, cochlear 

implants, pacemakers and other major and minor surgical interventions.1, 3 4 New materials are 

needed for medical device applications that prevent infection by broadly resisting attachment and 

subsequent formation of antibiotic tolerant biofilms by diverse pathogens. These materials have 

advantages over those that incorporate antibiotics including: efficacy against strains resistant to 

incorporated antibiotics; low antibiotic resistance pressure; enduring performance because the 

active components cannot leach away.  Consequently, a substantial amount of research and 

development is now being conducted into identifying new types of materials, chiefly polymers, 

that prevent bacterial colonization and hence biofilm development. The current status has been 



 4

summarized in recent reviews.6 12 In spite of some promising outcomes, given the immense size 

of materials space, it is essential that automated and high throughput materials synthesis and 

assessment methods be adopted to identify suitable materials quickly and allow their use in 

medical devices.13 

Clearly it would be ideal if we fully understood the diverse sensing and signaling mechanisms 

that bacteria employ to determine whether they are near or on a surface, and whether that surface 

is suitable for attachment and biofilm formation. Such knowledge would allow the direct, 

rational design of surfaces that do not support bacterial colonization. As recent articles on this 

topic indicate, 14 15 mechanistic information is still far from complete. Pathogens use 

sophisticated, diverse strategies to colonize a surface are that involve multiple surface 

appendages and macromolecules including pili, flagellar, proteins and exopolysaccharides.14, 16 18 

Attachment can be reversible or irreversible and mature biofilms disperse, releasing bacterial 

cells to search for new attachment sites.19 Pathogen interactions are modulated by surface 

physicochemical interactions,20 and involve substantial changes in gene expression through an 

integrated network of bacterial sensing and signalling systems that operate at transcriptional and 

post transcriptional levels and involve e.g. multiple two component sensor regulators,  

mechanosensors, quorum sensing systems, riboregulatory networks and second messenger 

molecules (e.g. cyclic diguanylate).14 18, 21 Consequently, we are not yet at the point where 

sufficient information is available to permit the rational design of low attachment surfaces as an 

effective and reliable strategy for new materials discovery. High throughput experimentation is a 

practical alternative to rational design in the majority of situations where the primary aim is to 

discover translatable materials to solve real clinical problems. However, high throughput 
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synthesis and assessment of materials is not sufficient to guarantee discovery of the best 

materials. 

An experimental  high throughput materials discovery campaign was undertaken to identify 

new acrylate polymers with reduced attachment and biofilm formation, initially using a single 

strain belonging to each of three major pathogen species, but subsequently using multiple clinical 

isolates.22  (PA),  (SA), and uropathogenic

 (UPEC) attachment was compared with existing commercial medical device 

materials such as silicone rubber and silver containing hydrogel coatings. Acrylate polymers 

presented in a microarray format (see Figure 1) were screened to identify promising materials 

that minimized bacterial attachment and biofilm formation  and in an  foreign body 

infection model. 22 23 Some of these materials are now undergoing regulatory approval for use as 

urinary catheter coatings.  

Data driven computational modelling methods that extract useful information from large data 

sets are an important adjunct to accelerated synthesis and testing technologies. The experiments 

generated large, information rich data sets derived from many hundreds of polymers and more 

than 20,000 assays. These data were used in the current work to extract useful information on 

relationships between polymer surface chemistry and bacterial attachment, and to predict 

attachment of multiple pathogens on materials not used to generate the models. We previously 

employed a sparse feature selection and a Bayesian Regularized Artificial Neural Network 

(BRANN) approach to generate quantitative and predictive models of the attachment of each of 

the three pathogens to diverse acrylate materials.24 These has important advantages over other 

modelling techniques. They are very resistant overtraining and overfitting, as they automatically 

generate sparse models and select sparse sets of relevant molecular features with optimum 
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predictive capabilities. Although linear models of the relationships between surface chemistry 

and bacterial attachment reported by Hook et al. showed some predictive abilities for pathogen 

attachment, nonlinear neural network based models are often significantly more robust and 

predictive and were used in the current study. Sanni et al.25 also results of reported a study that 

used the highest performing (lowest bacterial attachment) subset of the monomers reported in the 

Hook et al. study and used here, correlating bacterial cell attachment with a composite parameter 

composed of contributions from the lipophilicity and molecular flexibility of the monomer units.  

There is often a lack of clarity, even within the QSPR modelling community, on the two main 

purposes of machine learning and other statistical methods that model the relationships between 

the properties of molecules or materials and their biological effects. One aim is to understand the 

details of the molecular interactions and mechanisms underlying the biological phenomena being 

modelled. The other aim, now dominant in drug discovery and materials design, is to be able to 

predict the biological response of materials yet to be synthesized, allowing very large virtual 

libraries of synthetically feasible materials to be prioritized for subsequent synthesis and testing 

and discovering useful materials more quickly.  This aim is driven by the need to translate into 

real medical applications novel materials with hitherto inaccessible properties. It is this aim that 

our current research is pursuing. These disparate but synergistic uses of models have been 

elucidated recently by Winkler and Fujita.26 QSPR models can also be used fitness functions in 

evolutionary processes that allow materials to be evolved towards one of more desirable 

properties.27  

Given our previous success in generating computational models capable of making 

quantitative predictions of attachment of single pathogen to a polymer library, here we report for 

the first time a single computational model that can predict the polymer attachment of multiple 
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pathogens  It should be noted that these experiments and models predict the 

attachment of single pathogen strains to polymers not mixtures of different pathogens. The 

approach we have taken is similar to multitask networks28 29, which have proven to be successful 

in predicting the biological activities of small molecules against several targets. Multitask 

models potentially have wide applicability in materials science and medicine as they can identify 

materials with low attachment for a range of important pathogens and strains, rather than for a 

single pathogen strain. We compare the performance of the multi pathogen model to that of the 

three, single pathogen strain computational models. Such models may also lead to general rules 

that relate low attachment to specific types of surface chemistry of polymers. A similar 

computational approach is used in small molecule drug discovery to find alternative drug 

targets.30 

Data for pathogen attachment to a polymer library containing 496 acrylate copolymers and 

homopolymers were obtained from Hook et al.23 Acrylate polymers was used because of the 

robustness and reliability of this type of polymer when used in the microarray format in our 

hands.23 24, 31 33 Homo  and copolymers were generated by combinatorial reaction of different 

ratios of each monomer prior to UV initiated polymerization. The nomenclature adopted for the 

copolymers is as follows: 1A(30%) means the polymer is composed of 70% of monomer 1 and 

30% of monomer A by volume. 

The bacterial attachment was measured using the fluorescence of bacteria transformed with 

green fluorescent protein. The brightness of the green fluorescence was proportional to the 

number of bacteria on the spot. As some polymers show a degree of autofluorescence, we 
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removed the background signal from an equivalent microarray immersed in fresh uninoculated 

media  

F = Fpolymer + bacteria – Fpolymer         (1) 

As the fluorescence spanned several orders of magnitude, we modelled the logarithm of the 

fluorescence, logF.  

Two additional new polymer arrays were used to validate blind predictions of the models, the 

gold standard for assessing the utility of computational models.34 These arrays were constructed 

as described previously by Hook et al. using the monomers and proportions shown in Figures S6 

and S7 and Tables S6 and S7. Measurements of pathogen attachment were obtained using the 

same bacterial strains, but transformed to express mCherry protein instead of GFP.  This change 

in protocol was made to minimize problems with autofluorescence of polymers and to improve 

the signal to noise ratio and lower detection limits. However, this meant that a direct quantitative 

comparison between the bacterial attachment predictions of the models for GFP transformed 

bacteria and those with bacteria expressing mCherry could not be made. For these validation 

experiments the following screening protocol was adopted. The fluorescently tagged bacteria 

were grown for 12 h in LB (Luria Bertani, Oxoid, UK) and used to inoculate RPMI 1640 

defined medium (OD600 = 0.01) containing the microarray slides. These were incubated at 37 °C 

with shaking at 60 rpm for 72 h, the slides were removed and washed with phosphate buffered 

saline (PBS, 15 mL) at room temperature three times for 5 min each, then rinsed with distilled 

H2O and air dried. Fluorescence was measured with GenePix Autoloader 4200AL scanner, using 

red laser 635nm and red emission filter. The data were screened as described above before 

modelling and are summarized in Supplementary tables S6 and S7.  
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Polymer microarrays may contain errors due to monomer carry over between spots despite 

washing procedures, other types of printing errors, and cell attachment may be heterogeneous 

due to poor presentation on the slide. We identified likely problematic replicates in the arrays 

using modified Thomson’s tau. This identifies suspect measurements using the variance between 

of data point replicates.  

 = 
ta/2 * (n 1)

√  ∗ n 2+ta/2

     (2) 

where n = sample size, ta/2 = critical student’s t test value at  with sample size n 2. We chose a 

= 0.05, viz. statistical significance at 95% level. Data points were omitted if >  ∗  where S 

is standard deviation of the sample, δ is the absolute difference of a data point and the sample 

mean. Replicates identified by this process were discarded, and values of the remaining 

replicates were averaged for the modelling studies.  

The analyses also required the removal of polymers having logF values below 5.6, the 

detection limit of the pathogen attachment assay, as we did not have information on what their 

actual fluorescence/attachment values were. It was also necessary to remove a few model 

outliers, a process that must be done carefully and objectively. Polymers with low fluorescence 

values that were <2.5σ of the background fluorescence were removed. These two steps 

eliminated 89 polymers from the PA data set, 18 from the SA data set and 409 from the UPEC 

data set. Four additional outliers were identified from the models. Polymers 1A(30%), 5F(15%), 

9D(15%) for the PA attachment model, and 5D(10%) for the SA attachment model had 

fluorescence values inconsistent with fluorescence of copolymers with similar compositions and 

were poorly predicted by the models.  

The acrylate monomer library used to screen the three pathogens is shown in Supplementary 

Figure 1, and a schematic of the screening and modelling process is provided in Figure 1. The 
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identities and structures of the monomers used to generate the additional smaller and larger 

polymer arrays used to valid model predictions are summarized in Supplementary Figure S2 and 

S3. 

 

.  Schematic of the processes employed in the micro array fabrication, pathogen 

screening, modelling of data, and prediction of pathogen attachment for new polymers. 

Data sets were partitioned into training and test sets containing 80% and 20% of data points 

respectively. The splitting was done by using k means clustering (generating k clusters related by 

descriptor similarity and choosing the cluster mean for the test set). This ensures that the test set 

spans the same range of descriptors and attachment levels as the training set so that predictions 

outside of the domain of the models do not occur. It also ensures reproducibility of results for 

others wishing to replicate our work. The PA attachment data set contained 404 polymers after 

removal of data points below the detection threshold and outliers. The data was divided into a 

training set of 323 polymers and a test set of 81 polymers. The SA attachment data set consisted 

of 477 points for modelling (after statistical assessment), split into 382 polymers in the training 
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set and 95 points in the test set. The protocol for measuring attachment of UPEC was different to 

that for the other two pathogens, as artificial urine was added to the culturing protocol to 

simulated the service environments that urinary catheters will encounter. This increased the 

variance in the measured bacterial fluorescence and resulted in a lower degree of attachment of 

UPEC to the polymers compared to that for SA and PA. UPEC also forms weaker adhering 

biofilms compared to PA and SA. Consequently, the UPEC data set only contain 87 polymers 

after omitting those below the detection limit (the majority), with experimental artefacts, or with 

unusually high variability in replicates. This data set was partitioned into 70 points for the 

training set and 17 for test set. After outlier removal and polymers with fluorescence below the 

detection limit, the resulting 968 multi pathogen attachment polymer data set was split to a 

training set of 774 points and a test set of 194 points. 

Molecular descriptors were calculated from the Dragon 7.01 package using SMILES strings to 

present the structures of monomers.35 We generated 3839 constitutional, structural, and 

physicochemical descriptors that depended only on 2D structures. We and others36 38 have shown 

that consideration of monomer or small oligomer structures alone can often provide good 

descriptions of polymer performance without consideration of other structural properties such as 

molecular weight, polydispersity, degree of branching copolymer block size, etc. Copolymer 

descriptors were calculated as a linear combination of monomer descriptors weighted by the 

proportion of each monomer in the copolymer. 24  Highly correlated descriptors (r2 >0.95), and 

those with low variance in the data set were removed, to provide 1640 final descriptors. The 

most relevant descriptors were identified by multiple linear regression with expectation 

maximization (MLREM), an extremely sparse method of identifying features.39 The sparsity was 
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adjusted by a parameter, β, to obtain a model with the lowest standard error of prediction (SEP) 

for all three pathogens. This resulted in a set of descriptors shown in the table S1.  

We have also used experimental time of flight secondary ion mass spectrum (ToF SIMS) ion 

peaks derived from analysis of the surfaces of the polymer spots in the library as descriptors. 

These data were also obtained from Hook et al. and contained surface characterization of one 

spot from the six replicates.23 The assignment of the identities of the peak ions and association 

with the polymer structures is described by Hook and Scurr.32 The water contact area (WCA), a 

measure of surface polarity, was also measured in this paper and employed here as an 

experimental descriptor. Experimental data used for modelling are shown in Table S3.  

The multi pathogen models were generated from a data set that combined all three pathogen 

attachment data sets, using an indicator variable as a descriptor to distinguish between the 

presence (1) or absence (0) of a specific pathogen. A Bayesian regularized Neural Network with 

Gaussian prior (BRANNGP) was used to generate the pathogen attachment models.40  The neural 

network consisted of one input, one hidden and one output layer. The number of nodes in the 

hidden layer was varied from 2 to 10. However, previous reports41 have shown that less than five 

hidden layer nodes are sufficient in almost all cases, and that specifying larger numbers of nodes 

results in almost identical models because of the Bayesian regularization.41 The best model for 

each case was identified as the one with the lowest test set standard error of prediction (SEP), as 

is best practice.42 However the standard error of estimation (SEE) for the training set prediction, 

and the r2 value for the training and test set predictions were also reported. 

To ensure that the neural network was not biased by the order in which the data were presented 

during training, we shuffled the order of the rows. Shuffling of the data order has essentially no 

effect on the quality of the modelled generated. We also checked for overfitting (something 
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Bayesian regularized neural networks are relatively immune to)41 or chance correlations by 

randomly redistributed only the y values. This gave models with r2 values very close to zero, as 

would be expected. 

As described above, the predictions of pathogen adhesion of two new polymer libraries were 

complicated by a change in experimental protocols after generating, measuring, and modelling 

the data using GFP modified bacteria. Pathogens genetically modified to express the mCherry 

fluorescent protein were used to check the prediction of the models for a new polymer array 

containing homo  and copolymers. This prevented a direct, quantitative validation of model 

predictions. The logarithm of the mCherry intensities were autoscaled (normalized) and three 

classes (low, medium, and high attachment) defined for each normalized set of data by 

inspection of the distributions in the histograms (see Supporting Figure S4). Truth tables were 

generated from the class membership of attachment of PA and UPEC to each polymer in the 

array. 

The attachment of each of  (PA),  (SA), and uropathogenic 

(UPEC) to the polymer microarray was modelled using two classes of descriptors: 

experimentally measured time of flight secondary ion mass spectrometry (ToF SIMS) peak 

intensities and water contact angles (WCA); and computed molecular descriptors (from 

DRAGON)35. These descriptors describe the surface chemistry of the polymer spots on the arrays. 

Whilst WCA has been found to be a poor predictor of bacterial attachment across diverse 

libraries when used alone,23 we wanted to investigate its utility when combined with the 

molecularly rich information from ToF SIMS experiments.43 
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Individual models predicting the attachment of each pathogen to the same polymer library 

were reported by Epa et al. using computed molecular descriptors specifically chosen to be 

chemically interpretable.24  The aim of this prior work was to generate models that provided 

some insight into the relationship between surface chemistry and pathogen attachment, as well as 

making quantitative prediction of bacterial attachment of new materials. More arcane molecular 

descriptors generally provide improved predictive power at the expense of loss of chemical 

interpretability. Given the added complexity of modelling surface chemistry polymer 

attachments relationships for several pathogens simultaneously, in this work we chose 

descriptors solely for their ability to generate the most accurate predictions of pathogen 

attachment. We employed indicator variable descriptors to allow the entire set of pathogen 

attachment data to be used to train multi pathogen attachment models that predict the 

performance of polymer libraries for all three pathogens (see Methods). 

Here we compare the performance of multi pathogen attachment models with those that 

predict attachment of single pathogens. We reiterate, these experiments and models predict the 

attachment of single pathogen strains to polymers not coincident mixtures of pathogens, as 

often occur in infections. Model performance was assessed by the ability of each model to 

recapitulate the attachment performance of polymers in a test set not used to train the models. 

We also compared the performance of experimental ion peak and water contact angle 

descriptors with computed molecular descriptors for single and multi pathogen attachment 

models, to assess whether the extra effort involved in ToF SIMS experiments was justified by 

higher model accuracy or interpretability.  

The results of modelling the attachment of the three individual pathogens and the attachment 

of all three pathogens simultaneously to the polymer library are summarized in Table 1. These 
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models were generated by a Bayesian neural network (BRANN), and a linear multiple regression 

model (MLR) was also included for comparison. Clearly, the BRANN multi pathogen model had 

significantly lower standard error of prediction (SEP) than the linear model so predicted the 

attachment to polymers in the test set more accurately (the r2 was also higher than the linear 

model). This is consistent with earlier studies of models predicting each pathogen separately.23 24 

 

. Statistics of pathogen attachment neural network (BRANN) models based on molecular 

descriptors.  Neff is the number of effective adjustable weights, and Ndes is the number of 

descriptors employed, Nhidden in the number of nodes in the hidden layer, SEE is the standard 

error of estimation, SEP is the standard error of prediction and r2 is the squared correlation 

coefficient of the predictions 

    Training set Test set

Model Nhidden Neff  Ndes SEE r2 SEP r2 

Multi pathogen (MLR) … 22 22 0.30 0.59 0.28 0.60 

Multi pathogen 7 488 41 0.16 0.86 0.19 0.81 

 8 246 30 0.17 0.88 0.17 0.87

 7 310 18 0.12 0.87 0.14 0.78

uropathogenic  7 33 18 0.30 0.78 0.24 0.94

The best multi pathogen attachment model was generated by a BRANN neural network model 

that employed 7 neurons in the hidden layer and 41 descriptors. The training set standard error of 

estimation (SEE) and test set standard error or prediction (SEP) values were 0.16 and 0.19 logF 

respectively for this model. The training and test set predictions had r2 values of 0.86 and 0.81, 



 16

indicating a high level of statistical significance and showing that the model was robust and 

strongly predictive. Figure 2 illustrates the performance of the multi pathogen model in 

predicting the attachment of bacteria to the polymer library. 

  

 Measured and predicted attachment (estimated using the log of the GFP fluorescence, 

logF) of the multi pathogen attachment model employing computed molecular descriptors.  

The linear MLR multi pathogen attachment model was also statistically significant (r2~>0.5, 

Table 2)44 but the standard errors of prediction were larger (0.28 logF) than the nonlinear 

BRANN model (0.22 logF). The linear models were derived to elucidate the likely contributions 

of the descriptors to the models. The contributions of the computed molecular descriptors to the 

multi pathogen model are summarized in Figure 3. The main purpose of this and related figures 

in the paper is to show which descriptors make positive or negative contributions to the 
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attachment of one of more pathogens, to provide a qualitative measure of the size of the 

contribution, and to make inferences of the role of surface chemistry where possible. 

 

. The weights of the descriptors in the linear multi pathogen attachment model. The 

error bars represent the standard errors in the parameter estimations from the MLR model. See 

Supplementary Table S2 for an explanation of these descriptors and Discussion for the relevance 

to the model. 

Models relating pathogen attachment to surface chemistry were also generated for each 

pathogen separately. The model that best predicted PA attachment to polymers in the test set was 

derived using a neural network with 8 nodes in the hidden layer and used 30 descriptors. The 

training set SEE was 0.17 logF and r2 was 0.88, while the test set had an SEP of 0.17 logF and an 

r2 of 0.87. This suggests that the model was not overtrained and was quite robust. The SA 

attachment model had a training set SEE of 0.12 and a test set SEP of 0.14, and an r2 of 0.87 and 

0.78 for predictions of attachment to polymers in the training and test sets respectively.  
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Despite the smaller data set size of the UPEC attachment study, a statistically valid and 

predictive model was obtained. The model used two neurons in hidden layer and 18 descriptors. 

The training and test set SEE and SEP values were 0.30 and 0.24 respectively, and the r2 for 

training set was 0.78 and for test set 0.94.  

The graphs showing the correlations between the measured and predicted attachment for the 

individual pathogen models employing computed molecular descriptors are shown in 

Supplementary Figure S5. 

Experimentally measured ToF SIMS ion peaks and water contact angles (WCA) were also 

used as descriptors in the pathogen attachment models to assess their efficiency relative to the 

computed descriptors. The results of modelling the three individual pathogen data sets, and the 

combined multi pathogen data sets with the experimental ToF SIMS analysis and WCA data are 

summarized in Table 2. A linear MLR attachment model for multiple pathogens is included for 

comparison and to allow the contributions of ion peaks to the model to be evaluated. 

 

. Statistics of pathogen attachment BRANN models based on ToF SIMS molecular ion 

peaks and WCA values. See Supplementary Table S3 for ToF SIMS descriptors used in the 

models 

    Training set Test set

Model Nhidden Neff  Ndes SEE r2 SEP r2 

Multi pathogen (MLR) … 16 16 0.31 0.55 0.33 0.52 

Multi pathogen (BRANN) 5 378 79 0.12 0.76 0.21 0.74

6 173 57 0.14 0.92 0.22 0.81

8 259 19 0.11 0.88 0.14 0.84



 19

uropathogenic 2 44 10 0.24 0.87 0.24 0.84

As with the pathogen attachment model generated using computed molecular descriptors, the 

best performing attachment model employed a neural network (BRANN) with 5 neurons in the 

hidden layer and 79 descriptors. This model contained more effective weights but fewer 

descriptors than the same model using computed molecular descriptors. The training and test sets 

were predicted with good accuracy, with SEE and SEP values of 0.12 and 0.21 logF and r2 

values of 0.76 and 0.74 respectively. Values of r2 above 0.7 shows that it is possible to generate a 

good combined model for the attachment of all three pathogens to the polymer library using data 

obtained from experimental techniques: ToF SIMS, and WCA 33. Figure 4 illustrates the 

performance of this multi pathogen model in predicting the attachment of bacteria to the polymer 

library. 
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 Measured and predicted attachment (estimated using the log of the GFP fluorescence, 

logF) of the multi pathogen attachment model employing ToF SIMS ion peak features and WCA 

from experiments as descriptors.  

As with the linear multi pathogen attachment model based on computed molecular descriptors, 

the experimental descriptors also generated a linear (MLR) model of multi pathogen attachment 

of lower statistical significance (r2>0.5, Table 2).44 The standard error of prediction was larger 

(0.33 logF) than the nonlinear model (0.21 logF) and larger than that of linear multi pathogen 

attachment model using computed molecular descriptors (0.28 logF). The contributions of the 

experimental descriptors to the linear model are summarized in Figure 5.  

     

. The weights of the descriptors in the linear multi pathogen attachment model (different 

scales for the ToF SIMS ion peaks, WCA, and the indicator variables for the three pathogens). 

The error bars represent the standard errors in the parameter estimations from the MLR model. 

The best PA attachment model was obtained using a neural network containing 6 neurons in 

the hidden layer and 57 descriptors. The training and test sets were well predicted by this model, 

with SEE and SEP values of 0.14 and 0.22 logF and r2 values of 0.92 and 0.81 for training and 
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test sets respectively. The number of descriptors in the model is higher than in the other bacterial 

attachment models for SA and UPEC. The optimal SA attachment model was obtained from a 

BRANN model that used 8 neurons in the hidden layer and 19 descriptors. Again, the training 

and test set attachment was well predicted by the model, with SEE and SEP values of 0.11 and 

0.14 logF for training and test sets. The corresponding r2 values for these predictions were 0.88 

for the training set and 0.84 for the test set. The low standard errors, high r2 values, and the 

similarity in the prediction efficacy of training and test set data show that this model of SA 

attachment to the polymer library using experimental features is robust and predictive. The 

quality of the models is similar to those reported previously by Epa et al.,24 which had an 

SEP=0.12 logF and r2=0.85 for the test set. The most predictive UPEC attachment model for the 

polymer library was obtained also using a neural network with 2 neurons in the hidden layer and 

10 descriptors. This model predicted attachment of UPEC with SEE and SEP values of 0.24 and 

the r2 values of 0.87 and 0.84 for training and test sets. The relatively small number of 

experimental descriptors and excellent model metrics show that there are few key molecular 

features important for UPEC attachment to the polymer surface.  The model SEE and SEP values 

of 0.24 are significantly better than those reported by Epa, (0.43 and 0.48) presumably because 

the descriptors employed were more efficient than the chemically interpretable set used in the 

earlier study. In our study, r2 was higher for training set 0.87 vs 0.58 in Epa et al.’s model, while 

r2 for test set was a slightly lower at 0.84 versus 0.73 in the Epa et al. study. However, as we 

have shown previously, the standard errors are a more robust measure of model predictivity than 

the r2 values.42 
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The graphs showing the correlations between the measured and predicted attachment for the 

individual pathogen models employing experimental descriptors are shown in Supplementary 

Figure S6. 

We would first like to clarify that the term multi pathogen should be not be confused with the 

term polymicrobial, which describes a situation where a number of bacterial species and strains 

coexist (common in many infections). By multi pathogen, we mean we have tested one bacterial 

species and strain at a time. We have not performed experiments where we mix several strains 

together and examine their collective behaviour.  

The attachment of the three pathogens to the polymer library are reasonably well correlated 

with each other, with r2 values greater than 0.5 for all species, as Table 3 shows. UPEC 

attachment shows good correlation with PA and SA, while PA and SA attachment are correlated 

to a slightly lesser extent. The significance of the pathogen indicator variables (1 when pathogen 

present and 0 when absent) to the attachment models was interesting. Only the UPEC indicator 

variable was statistically significant in the models, and the weights of the PA and SA indicator 

variables were similar and much smaller. Given the caveat that we are only examining single 

strains of each pathogen, we might imply that PA and SA may have more similar structure

property relationships and levels of attachment compared to UPEC. 

. Correlation matrix (r2) for the attachment of the three pathogens to the polymer library. 

 PA SA UPEC 

PA 1.00 0.52 0.66 

SA 0.52 1.00 0.72 
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UPEC 0.66 0.72 1.00 

The differences between the single pathogen and multi pathogen models for the two types of 

molecular descriptors are summarized in Tables 1 and 2. It is clear that there are not large 

differences in the predictive power of the single pathogen models compared to the multi

pathogen model for each family of descriptors. This is illustrated graphically in Figure 6, which 

summarizes the SEP values for pathogen attachment generated by pathogen specific models or 

the by the multi pathogen model. Clearly, the test set SEP values for predicted attachment from 

single pathogen models, are similar to those from the multi pathogen models. This suggests 

strongly that multi pathogen models are effective, and have quantitative predictive power that is 

similar to the individual pathogen models. Consequently, it should be feasible to generate models 

that can make accurate quantitative predictions of pathogen attachment to materials for more 

than three pathogens. The fact that such models can be derived relatively simply by use of 

indicator variables as descriptors shows that the structure activity (attachment) relationships 

between the pathogens may be described well by a nonlinear additive function such as a log

linear relationship. There is also a degree of inductive transfer of knowledge (a type of ‘read 

across’) where internal models predicting the adhesion of each pathogen learn from each other.45 

It has been proposed relatively recently that multi task machine learning models have improved 

generalization performance because they use information from related tasks as an inductive 

bias.46 The efficacy of the multi pathogen model may also be aided by the moderate correlations 

between the attachment of the three pathogens to the polymer library. Bacterial pathogens whose 

attachment to polymers are not as strongly correlated with each other may not be predicted as 

reliably by future multi pathogen models. 
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 Standard errors of prediction values for test set for single pathogen versus multi

pathogen models generated using molecular descriptors or experimental surface analytical ToF

SIMS descriptors. 

The results summarized in Tables 1 and 2 suggest that nonlinear models derived from 

computed and experimental descriptors have similar abilities to predict attachment of pathogens 

to polymers in the test set (SEP values of 0.19 and 0.21 logF). However, the linear model of 

pathogen attachment based on computed molecular descriptors had significantly better predictive 

power than that based on experimental ToF SIMS and WCA descriptors (0.28 versus 0.33 logF). 

Consequently, it may be argued that it is not essential to obtain ToF SIMS data for model 

generation, unless these types of experimental descriptors provide additional insight into the role 
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of surface chemistry on pathogen attachment compared with computed molecular descriptors. 

Table 4 summarizes the statistics of the two multi pathogen models. Figure 7 compares the 

performance of the two descriptor types in predicting the attachment of the test set.   

 

. Statistics of multi pathogen attachment models. See Supplementary Tables S1 and S3 

for details of the descriptors used in the models. 

    Training Test 

Descriptor set Nhidden Neff Ndes SEE r2 SEP r2 

Computed 7 488 41 0.16 0.86 0.19 0.81

Experimental 5 378 79 0.12 0.76 0.21 0.74
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. Test set SEP values for the four pathogen attachment models for the two types of 

descriptors. The experimental descriptors were dominated by ToF SIMS ion intensities and the 

WCA did not play a significant role.  

The model using experimental ToF SIMS ion peaks uses a less complex neural network 

architecture but more descriptors than the model using computed molecular descriptors. 

However, the number of effective weights in the model, derived from the Bayesian 

regularization, are similar. It is clear that both methods for encoding the molecular characteristics 

of the polymers generated very good, robust, and predictive attachment models, and the model 

quality is similar. The SEP values for all models derived using computed molecular descriptors 

are equal to or lower than those derived using experimental descriptors, as Figure 7 shows.  The 

performance of the UPEC model using ToF SIMS ions peak and computed molecular descriptors 

are comparable despite the model derived from ToF SIMS descriptor being sparser (10 relevant 

descriptors compared to 18). 

The weights of the descriptors in the linear multi pathogen models gives some insight into the 

role surface chemistry plays in attachment of the three pathogens. The unweighted contributions 

the computed descriptors made to the model are shown in Figure 3. Curiously, in this linear 

model, the contributions that the PA and SA indicator variables made to the model were very 

similar, suggesting similar structure property relationships at the polymer surfaces, and similar 

levels of pathogen attachment, despite having fundamentally different cell surfaces and signal 

transduction machineries (gram negative vs gram positive). In spite of being easy to calculate 

and capable of generating robust model that make good predictions of the attachment of 

pathogens to polymers, the molecular descriptors are quite arcane and difficult to interpret in 

terms of surface chemistry. The majority of computed descriptors make negative contributions to 
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the attachment model, meaning that when these molecular properties are larger, pathogen 

attachment reduces. The largest negative contribution was from the PVSAs6 descriptor and the 

most positive contribution was from the TIC1 descriptor. The PVSAs6 descriptor is one a of a 

group of P VSA like descriptors that is defined as the amount of the molecular van der Waals 

surface area (VSA) having a property P in a certain (binned) range.47 TIC1 is the first order 

neighbourhood total information content of the molecule, a measure of molecular (graph) 

complexity. It is related to Shannon entropy.48 

The unweighted contributions the sparse experimental descriptors make to this model are 

summarized graphically in Figure 5. Significantly, WCA makes a negligible contribution to 

pathogen attachment in either individual or multi pathogen models. Previously Hook et al had 

also found no correlation between contact angle and pathogen attachment.23 Conventional 

wisdom teaches that reduced bacterial attachment often requires bound water in hydrophilic 

structures. As noted by Hook et al previously, these relatively hydrophobic materials clearly do 

not function by that mechanism. This is consistent with the poor predictive power provide by a 

surface wettability parameter across these diverse material libraries for eukaryotic and 

prokaryotic cells, discussed in detail elsewhere.43 

In the multi pathogen attachment models using the ToF SIMS surface analysis data, the 

indicator variables for the pathogen identity were also significant, with the UPEC indicator 

variable making a much larger negative contribution to the model than the PA and SA indicator 

variables. This may be due to the significantly lower average attachment of UPEC to the polymer 

library. The C4H
+ ion peak made the largest negative contribution to the model, approximately 3 

times larger than the next most significant ion peaks (Figure 5). The dominance of hydrocarbons 

in the ion fragments associated with negative loadings is consistent with the view that monomers 
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with pendent hydrocarbon groups bonded to the ester moiety are more resistant to bacterial 

attachment. The exceptions are the C2H3
+, C3H , C6H11

+ and C6H6O
+ ions that made positive 

contributions to the model. The C2H3
+

 fragment ion is present in the spectra of all polymers and 

is likely to have contributions from both the backbone and the polymer pendant groups. The 

C3H  peak is present at elevated intensities in the mass spectra of monomers 7, 14 and is 

consequently assigned to a fragment of an aromatic ring. C6H11
+ could be an aliphatic chain or a 

cyclohexane ring fragment (e.g. from monomer 5) but it makes negligible contribution to the 

multi pathogen linear model in any case.  The C6H6O
+ ion fragment comes mostly from the 

phenol fragment present in monomer 7.  These contributions towards the logF model imply that 

small aliphatic groups (all hydrophobic) on the meth/acrylate polymer were correlated with low 

bacterial attachment, as was previously reported by Hook et al. and Epa et al.23 24 The more 

hydrophilic phenolic fragment C6H6O
+ appears to enhance attachment of pathogens in the multi

pathogen model, again consistent with these previous studies. It was conjectured that the 

functional groups in the polymer facilitated hydrogen bonding with peptidoglycans, teichoic 

acids, proteins, lipopolysaccharides, lipoteichoic acids or exopolysaccharides present on the 

bacterial cell surface or that are component of biofilms. 

There is relatively little difference between the test set standard errors of prediction (Figure 6) 

for models using computed or experimental descriptors (ToF SIMS ion peak dominated). Models 

derived from experimental descriptors have larger prediction errors for the PA attachment but 

smaller errors for UPEC models (this may also be an artefact of the small training set size of this 

data set). Clearly the computed descriptors avoid the need for further experiments, but the 

experimental descriptors may be easier to interpret in terms of how the surface chemistry of the 

polymers influence pathogen attachment. Generally, for quantitative structure – property 
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relationship (QSPR) methods, use of computed molecular descriptors is desired as it allows 

properties of new molecules to be predicted prior to synthesis. The use of experimentally derived 

data may be useful in cases where the characterization experiments have been carried out for 

another purpose, or where other synthesis or processing properties have a significant effect or 

their performance.  

As mentioned previously previous work on bacterial attachment modelling has been reported 

Epa et al.24, Hook et al.23 and Sanni et al.25. The simplest modelling approach was by Sanni et al., 

where the authors generated a linear attachment model using a composite descriptor derived 

from the log of the octanol water partition coefficient (logP) and number of rotatable bonds in 

the monomer. The model was derived from only (meth)acrylate materials containing 

hydrocarbon pendant groups and it failed to predict attachment for other chemistries that 

promoted greater biofilm formation. The predictions inside this restricted chemical space domain 

of applicability had an r2 of 0.67, good for such a simple linear model.  

Hook et al. employed a partial least squared (PLS) linear method using ions obtained from 

ToF SIMS experiments to find relationship between surface chemistry and bacterial attachment. 

The authors were able to make relatively good models for PA and SA with r2 values of 0.68 and 

0.76 respectively, while PLS failed to find a statistically valid predictive model for UPEC (r2 

<0.3). In this paper, we were able to make substantially improved quantitative models predicting 

the polymer attachment of all three pathogens (see Table 3). This shows that sparse selection of 

features, combined with an optimal non linear modelling method BRANN, can create 

significantly improved predictive models compared to those generated by PLS or other linear 

methods with the same or similar sets of descriptors. 
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Epa et al. sparse selection of computed, interpretable molecular descriptors generated bacterial 

attachment models consistent with those of the current study presented in Table 2. It is 

interesting to note that, despite different sets of descriptors being used, models of similar quality 

were obtained. 

Prediction of the attachment properties of test sets partitioned from a large data set and never 

used to generate the model is a pragmatic way of measuring the predictivity power of 

computational models. However, the ultimate test is to predict the attachment properties of new 

polymers. The models derived for bacterial attachment from computed molecular descriptors 

were used to estimate bacterial attachment for two new libraries, one containing polymers made 

from 12 monomers Supplementary Table S6), and the other containing 368 polymers derived 

from 21 monomers (Supplementary Table S7). Attachment data were obtained for PA and 

UPEC. As explained in the Methods section, these polymer attachment experiments used a 

different fluorescent protein, mCherry instead of GFP to generate the data used to validate model 

predictions. Differences between the different fluorophores meant that quantitative comparisons 

between the predicted and measured pathogen attachment to these new monomers could not be 

made, and classification methods were employed. Predictions were made for low, medium, or 

high pathogen of polymers in the two new libraries based on the distribution of predicted logF 

values. Predictions of the multi pathogen and single pathogen attachment (log GPF fluorescence) 

models were also normalized and assigned to the low, medium and high attachment classes. 

Prediction accuracy was assessed by use of truth tables, and the percentage of class membership 

correctly predicted. 

  As the truth tables for classification by models in Supplementary Figure S7 show, the 

individual pathogen attachment models had similar accuracies to the multi pathogen models at 
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predicting the class membership of the new materials in both new polymer arrays. The class 

membership for attachment of PA to the larger polymer library was predicted with accuracies of 

60% and 71% for the multi pathogen and specific PA models respectively. The class 

membership prediction accuracies were slightly lower for the smaller validation polymer library. 

In this case PA attachment was predicted with 55% and 40% accuracies for the multi pathogen 

model and specific PA model respectively.  Given that classes would be assigned correctly 33% 

of the time by chance, the specific PA model attachment to the smaller polymer library 

predictions are not statistically significant but those of the multi pathogen model are. Adhesion 

of UPEC to polymers is generally lower and the experimental error larger, however, both models 

predicted the class membership with reasonable accuracies (39% and 46% for multi pathogen 

and single pathogen models respectively). Although this study did not allow us to assess the 

predicted pathogen attachment to new polymer libraries quantitatively, it does strongly suggest 

that the models have useful predictive capabilities that will be helpful in selecting improved 

materials with the ability to resist the attachment and biofilm formation for multiple pathogens. 

We have shown that it is possible to predict the individual attachment of three important 

pathogens to a library of copolymers using a  model that employs a specific set of 

descriptors. This model can predict the attachment of each pathogen to the polymers with 

accuracies similar to those of models specifically trained to predict a single pathogen. This offers 

the possibility of developing a generalized description of the response of multiple bacterial 

strains to materials. This could ultimately become a framework with which new materials with 

broad pathogen resistance can be designed and optimized, rather than relying on ‘one pathogen

at a time’ modelling methods now widely used. Such new materials promise reduced materials
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associated infections in the clinic and more broadly in other non clinical applications where 

formation of biofilms is problematic. We anticipate the multi pathogen modelling approach may 

be extendable to more than three pathogens and to experiments where several bacterial species 

(or strains) are coexisting. This will open the way for a comprehensive predictive capability that 

could be used to assess the suitability of novel materials for highly effective implantable 

materials.  

. The following files are available free of charge. 

Supplementary information showing molecular descriptors used in models, explanation of the 

molecular descriptors, correlations of molecular descriptors with logF, correlations of ToF SIMS 

ion peaks with logF, experimental and predicted mCherry fluorescence of test polymer libraries,  

monomers used in polymer library used to train models, graphs showing predicted attachment 

performance for individual pathogen models,  histograms of distributions of measured and 

predicted attachments for two pathogens, truth tables for predicted pathogen attachment versus 

measured attachment,  Structures of monomers used to generate small and large validation 

polymer libraries(file type, PDF) 
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TOC  

Bacterial infections are common in implanted medical devices used to manage chronic health 

conditions. Device infection and pathogen tolerance to antibiotics can be reduced by polymers 

that resist the formation of bacterial biofilms. We show that a single machine learning model can 

predict attachment of multiple pathogens to polymers for the first time, accelerating development 

of new, low pathogen attachment materials. 
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