
 

 

Enhancing the detection performance of a vision-based occupancy detector for buildings 

 

Author 1 

Paige Wenbin Tien, PhD Researcher 

● Department of Architecture and Built Environment, Faculty of Engineering, University of 

Nottingham, Nottingham, United Kingdom 

ORCID Number:  0000-0003-0123-248X 

Author 2 

● Shuangyu Wei, PhD Researcher 

● Department of Architecture and Built Environment, Faculty of Engineering, University of 

Nottingham, Nottingham, United Kingdom 

Author 3 

● Tin Wai Chow, MSc  

● Department of Architecture and Built Environment, Faculty of Engineering, University of 

Nottingham, Nottingham, United Kingdom 

Author 4 

● Jo Darkwa, Professor, PhD, MSc.  

● Department of Architecture and Built Environment, Faculty of Engineering, University of 

Nottingham, Nottingham, United Kingdom 

Author 5 

● Christopher Wood, Associate Professor, PhD, MSc 

● Department of Architecture and Built Environment, Faculty of Engineering, University of 

Nottingham, Nottingham, United Kingdom 

Author 6 

● John Kaiser Calautit, Associate Professor, PhD, MSc 

● Department of Architecture and Built Environment, Faculty of Engineering, University of 

Nottingham, Nottingham, United Kingdom 

 

 

Full contact details of corresponding author. 

Email: paige.tien@gmail.com, paige.tien@nottingham.ac.uk 



 

 

Abstract 

Occupant behaviour is one of the key parameters that significantly impact the operation of 

heating, ventilation, and air-conditioning (HVAC) systems and the energy performance of 

buildings. The detailed occupancy information can improve HVAC operation and utilisation 

of building spaces. Strategies such as vision-based occupancy detection and recognition 

have recently garnered much interest. This study investigates the performance of a vision-

based deep learning detection technique for enhancing building system operations and 

energy performances. The model used was the Faster RCNN with Inception V2. Two 

occupancy detection model configurations were developed, tested and evaluated. Both 

models were analysed based on the application of the detector within a selected case study 

building, along with the evaluation based on the different evaluation metrics. Results 

suggest that the occupancy detector (Model 1) provided an overall accuracy of 95.23% and 

an F1 score of 0.9756, while the occupancy activity detector (Model 2) provided an 

accuracy of 89.37% with an F1 score of 0.8298. Building Energy Simulation (BES) was 

used to evaluate and compare the impact of such an approach on the indoor occupancy 

heat gains. The study highlighted the potential of the detection approaches, but further 

development is necessary, including optimisation of the model, full integration with HVAC 

controls and further model training and field testing. 
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Nomenclature 

API   Application Programming Interface 

BES   Building Energy Simulation 

COCO dataset  Common Objects in Context Dataset 

CO2   Carbon Dioxide  

CNN   Convolutional Neural Network 

DLIP   Deep Learning Influenced Profile 

HVAC   Heating, Ventilation and air-conditioning 



 

 

IoU   Intersection over Union 

mAP   Mean Average Precision 

PC   Personal Computer 

R-CNN   Region-based Convolutional Neural Network 

RFID   Radio Frequency Identification 

SSD   Single-shot Detector



 

 

1. Introduction and Literature Review 1 

Occupancy behaviour and patterns within building spaces have been identified as significant 2 

factors impacting building energy efficiency (Delzendeh et al., 2017). Recent studies have 3 

investigated occupancy behaviour in buildings and developed demand-driven solutions to 4 

improve building system operations (Paone and Baacher, 2018). To obtain occupancy data, 5 

various technologies were employed, including infrared (Yun and Lee, 2014), Wi-Fi (Simma et al., 6 

2019) and Radio Frequency Identification (RFID) (Li et al., 2011). These solutions provide 7 

information about a building space, such as occupancy count and location, however, there are 8 

several limitations, such as the requirement of multiple sensors distributed across the room and 9 

limitations in terms of recognising occupancy behaviour (activities, interaction with equipment or 10 

appliances) and the determination of the location of the occupants within the space (Dongre et al. 11 

2019). Furthermore, indirect methods such as environmental-based sensors were used (Yun and 12 

Won, 2012), to monitor the changes within the space when occupants are present. Effectively, 13 

the data collected is employed to develop demand-driven solutions for more effective system 14 

controls (Kathirgamanathan et al., 2021), energy optimisation (Salimi and Hammad, 2020), and 15 

also building energy management (Jin et al., 2018). Many of these solutions are based on artificial 16 

intelligence and machine learning models that have advantages in terms of adaptability and 17 

application to different types of buildings (Amasyali and El-Gohary, 2018). Studies suggest that 18 

further enhancement of such strategies should include achieving a multi-objective system that 19 

enables building energy and comfort management (Shaikh et al. 2018). 20 

 21 

Other solutions, such as data-driven and forecasting-based methods, can also be used to 22 

optimise the operation of building energy systems but are dependent on historical data or patterns 23 

(Marinakis, 2020). However, the diversity in occupancy among different spaces and varying 24 

occupancy activities in buildings may present challenges for such solutions. Furthermore, a 25 

potential time delay can occur between the prediction and the provision of the actual building 26 

requirements. This indicates the need to develop solutions such as demand-driven controls that 27 

can adapt to varying occupancy patterns in real-time and optimise HVAC operations. 28 

 29 
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Furthermore, the cooling/heating design setpoint temperature assigned to building spaces is 30 

usually based on the indoor space's purpose/function. For instance, the CIBSE Guide (CIBSE, 31 

2015)  suggests operative temperatures for spaces such as offices, libraries and restaurants at 32 

21 - 25°C in the UK. Additionally, conventional building HVAC systems are typically operated 33 

based on fixed or predefined scheduled profiles. The impact of different occupancy patterns and 34 

activities are typically not considered, resulting in over or under conditioned building spaces.  35 

 36 

To resolve such limitations, recently there has been an increase in research employing computer 37 

vision and deep learning-based approaches that enable real-time detection and recognition in 38 

buildings to reduce building energy demands (Tien et al., 2022 and Wei et al., 2021). The studies 39 

employed a computer vision approach to detect and predict the internal heat gains in office 40 

buildings based on the detected occupancy and activities. It was highlighted that the occupancy 41 

behaviour directly impacted the energy consumed in buildings (Tien et al., 2021a) and also, 42 

indirectly (Tien et al. 2021b), via internal heat gains from the use of electrical equipment or 43 

appliances such as computers and monitors (Wei et al., 2021). Furthermore, such vision-based 44 

approaches can also be used to detect the operation of windows in buildings (Tien et al., 2021c) 45 

and indoor fires (Pincott et al., 2022). The predicted information can be used to adjust the control 46 

and operation of the HVAC to reduce the energy demand and enhance thermal comfort (Wang et 47 

al., 2022). In addition, it can generate realistic occupancy profiles for building energy models, 48 

potentially reducing the performance gap. These are initial studies that introduced the framework 49 

and approach, with no in-depth investigation of the model configuration and its impact on the 50 

performance of the detection model, in particular, the data curation, labelling and training 51 

employed. Furthermore, the impact of selecting a suitable response category; between the ability 52 

to detect and recognise the number of occupants, position, and activities performed must be 53 

investigated. Finally, most of the studies focus on small office spaces and the performance of the 54 

detector must be evaluated when applied in larger spaces and number of occupants.  55 

 56 

2. Method 57 

To enable accurate and real-time detection of occupancy levels and activities within building 58 

spaces to assist the operations of building energy systems, the present work will employ the 59 
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method introduced in (Tien et al., 2021c). Two different occupancy detector configurations were 60 

developed, tested, and analysed. Detailed performance comparisons are provided through the 61 

real-time application of the detectors within a selected case study building, and the use of different 62 

evaluation metrics. Furthermore, a comparison between the actual observation (ground truth) and 63 

the generated occupancy profiles also called here deep learning influenced profiles (DLIP), was 64 

carried out. Building Energy Simulation (BES) was used to show if the occupancy heat gains could 65 

be represented more accurately using the two occupancy detector configurations as compared to 66 

ground truth.  67 

 68 

2.1 Case Study Building 69 

A postgraduate study space on the first floor of the Paton House Building at the University Park 70 

Campus, University of Nottingham, UK was selected to assist in testing the developed real-time 71 

occupancy detectors. The Paton House Building is a typical Victorian-style house (Qu et al., 2021) 72 

which was repurposed by the University as teaching and office spaces. The climate in the case 73 

study area can be classified as a temperate oceanic (Kottek et al., 2006). The location and images 74 

of the Paton House Building are shown in Figures 1a and 1b. The building is naturally ventilated 75 

and integrated with a central heating system. The U-values of external walls, external floor, roof, 76 

doors, and windows are 1.42, 0.95, 1.46, 2.33, and 5.20 W/m2K, respectively. The test room has 77 

a floor area of 36.62 m2 and a floor-to-ceiling height of 3.52 m, and there are six sliding sash 78 

windows that can be opened at the bottom for ventilation. Figure 1c presents the floor plan of the 79 

first floor of the building along with the configuration of the room shown in Figure 1d. To enable 80 

the capture of the whole test room, cameras with a resolution of 1080p and a wide 90-degree field 81 

of view was fixed in the corner of the room and close to the ceiling. It should be noted that this 82 

case study building is not intended to evaluate the building itself or its facilities but rather for 83 

testing the detection methods in a small-size classroom with occupants performing activities 84 

common in this type of space. 85 
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 86 

Figure 1: Paton House at University Park Campus, University of Nottingham, UK. (a) Location 87 

map of the building, (b) Outlook of the building, (c) Building floor plan, (d) Room configuration, 88 

(e, f) Experimental test room setup.  89 

 90 

As shown in Figures 1e and 1f, two cameras were placed at two corners of the room with 91 

Detection Camera A, and Detection Camera B. Figure 2 presents the field of view from both 92 

cameras. For this study, the detection performance evaluation was only carried out using Camera 93 

B. Furthermore, the room has a capacity limit due to COVID-19 restrictions during the test period. 94 

For the experimental test, there were 8 participants. The detection performance analysis was 95 



 

5 

 

based on the detection and recognition of each participant, as shown in Figure 2. It should be 96 

noted that in practice, images/videos of occupants are not saved during the real-time detection 97 

and are only shown here for demonstration purposes. 98 

 99 

Figure 2: Field of view from Camera A & B with the identification of occupants  ‘People 1 – 8’ for 100 

the purposes of detection performance analysis. 101 

 102 

2.2 Development of the Vision-based Detector Using a Deep Learning Method 103 

Recently, many studies have focused on employing data and demand-driven solutions to enhance 104 

HVAC operation and performance (Kallio et al., 2021). The application of vision-based techniques 105 

for detection and recognition tasks using a camera device has many advantages, but at the same 106 

this has limitations. Using vision-based systems in indoor spaces presents several challenges, 107 

including obstacles blocking the view of the desired detection area or objects. Internal 108 

environmental conditions, including lighting and glare, could impact detection and recognition 109 

performance.  110 

 111 

The framework introduced in (Tien et al., 2022) highlights the potential of using deep learning 112 

techniques based on a classification-based algorithm to develop computer vision-based 113 

detectors. It showed the potential of using detected occupancy information to assist HVAC system 114 

controls. The present study will build on previous knowledge and technique to establish two 115 

occupancy detection model configurations and evaluate their capabilities.  116 

 117 

Following the model development process 2 in (Tien et al., 2022), images of occupants were 118 

collected to form the datasets described in Table 1. Model 1 is configured to detect the number 119 
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of people in the space. Whereas Model 2 is configured to detect and recognise common 120 

occupancy activities performed by the occupants. This includes ‘sitting’, ‘standing’ and ‘walking’. 121 

 122 

Table 1: Number of images and labels per category for Models 1 and 2. 123 

Category Number of Images Number of Labels 

 Training  Testing  Total Training  Testing  Total 

Model 1: People Counting 

People 40 10 50 168 45 213 

Model 2: Occupancy Activities 

Sitting 400 100 500 753 149 902 

Standing 400 100 500 701 134 835 

Walking 400 100 500 1000 177 1177 

Total 1200 300  2454 460  

 124 

The software, LabelImg (Tzutalin, 2015) was used to label all of the images located within both 125 

datasets manually. As shown in Figure 3, labels were assigned entirely around each specific 126 

region of interest. For most images, more than one occupant appears within the image; hence 127 

multiple labels were assigned. 128 

 129 

Figure 3: Example images from the training and testing image datasets used to train the 130 

models.  131 

 132 

In this study, a Convolutional Neural Network (CNN) model configuration was used. To assist the 133 

development of the neural network, the TensorFlow Object Detection API was used. This 134 

framework platform provides pre-trained models through a transfer learning approach that 135 

enables the development of the vision-based occupancy detector. Existing models provided in 136 

the TensorFlow Detection Model were explored to establish the model configurations. Based on 137 

the assessment of the different models, the pre-trained model Faster R-CNN (with Inception V2) 138 
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was selected. The time required for training the models would vary due to the differences in the 139 

input data and the desired detection output responses.  140 

 141 

The trained models were deployed to a camera to provide real-time detections in the selected 142 

postgraduate study space. A scenario consisting of eight occupants present within the space was 143 

recorded. This ensured that the two detection model configurations were evaluated using the 144 

same sequence of occupancy activities and positions. It also ensured that other factors such as 145 

the indoor lighting conditions and glare did not influence the results, providing a fair comparison 146 

between the model’s detection and recognition abilities. The detection and recognition responses 147 

were obtained and recorded every second, generating the DLIP. 148 

 149 

For Model 1, count-based profiles were generated, giving the number of occupants detected over 150 

time within the building space. For Model 2, similar profiles generation process following (Tien et 151 

al., 2022) was employed; with three responses, sitting, standing and walking. The formed DLIPs 152 

would be assessed and compared with the true ‘actual observation’ to evaluate the overall 153 

performance of each occupancy detector. 154 

 155 

The model's performance was assessed based on the average Intersection over Union (IoU) 156 

accuracy (Wu et al., 2020), the percentage of the time achieving correct, incorrect and no 157 

detections and the confusion matrix. Further evaluation was performed based on the common 158 

metrics of precision, recall and F1 score. Details about these evaluation metrics are detailed in 159 

(Goutte and Gaussier, 2005) and employed in similar studies (Tien et al., 2022 and Wei et al., 160 

2022). 161 

 162 

3. Results and Discussion 163 

The following section presents the results of the training and testing of the two different occupancy 164 

detectors. It presents the analysis of the performance of the detector during an field experiment 165 

conducted within the selected building space. A further evaluation was by comparing the DLIP 166 

profiles generated with the ground truth results or the actual observation profiles. 167 

 168 
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3.1 Training 169 

A summary of the training results is given in Table 2. Since Model 1 had a smaller image dataset 170 

and only one response assigned, it led to a shorter training duration and fewer training steps than 171 

Model 2. As observed in Table 2, the total loss versus the training steps plot indicates the 172 

complexity of Model 2 compared to Model 1. Greater fluctuations were seen during the model 173 

training. Effectively, based on the loss convergence, both models were trained and should be 174 

able to carry out the detection tasks.   175 

Table 2: Training results for the two occupancy detectors.  176 

Training 
Conditions 

and 
Results 

Model 1: People Detection Model Model 2: Occupancy Activity Model 

Model 
Used 

Faster RCNN with Inception V2 

Total Steps 41,901 166,128 

Training 
Duration 

2 hours, 54 minutes 10 hours, 29 minutes, 52 seconds 

Average 
Loss 

0.07607 0.13436 

Minimum 
Loss 

0.003567 0.005654 

Total loss 

versus the 

number of 

training 
steps 

 

 
 

 177 

To confirm the completion of the training of the models, initial detection was performed using the 178 

test images from the dataset. Results are presented in Table 3 with the confusion matrix and the 179 

common classification metrics. The confusion matrix presents the ability of the two classification 180 

models (Model 1 and 2) based on their performance of a set of testing data whereby the true 181 

values are known. Model 1 was designed to only recognise one type of response (people) via a 182 

binary classification problem, while Model 2 has a total of 3 detection responses with the addition 183 

of none/other classification to assist the analysis of the model performance. For both models, true 184 
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positive results were achieved when the classifier correctly recognises the person present in the 185 

building space and true negative when it correctly recognises no people in the space. The 186 

confusion matrix also presents the amount of false positive and false negative results achieved, 187 

referring to the number of detections that were incorrectly detected. Based on the confusion 188 

matrix, the walking activity achieved a higher accuracy (92.66%) compared to the other activities 189 

of sitting (87.92%) and standing (82.84%). However, the standing and walking activities may have 190 

similar occupancy body form and shape, which could present difficulties in identifying the true 191 

activity, it led to the occurrence of walking being incorrectly identified as standing (11.19%). 192 

Overall, the results showed the detectors' potential as effective occupancy detectors. To further 193 

evaluate the trained models in terms of their ability to classify occupancy and activities, common 194 

evaluation metrics, including accuracy, precision, recall and F1 score were used (Sokolova et al. 195 

2006).  196 

 197 

Table 3: Confusion matrix and model performance results based on the evaluation of the model 198 

using the test image dataset. 199 

Confusion Matrix 

 
Class Accuracy  Precision  Recall  F1 Score  

Model 1: People 

People 84.48% 0.9796 0.8571 0.9143 

Model 2: Occupancy Activities 

Sitting 94.04% 0.925 0.8911 0.9077 

Standing 91.43% 0.9064 0.8284 0.8657 

Walking 92.70% 0.8643 0.9266 0.9047 

Average 92.72% 0.8986 0.8820 0.8927 
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Figure 4 presents snapshots of the detection and recognition during the experimental test using 200 

the two different occupancy detection models. Figures 4a, b, c shows the results achieved from 201 

the application of Model 1, and Figures d to i for Model 2. For the majority of time, Model 1 enabled 202 

the detection and recognition of most occupants within the building space. Whereas Model 2, had 203 

some no/false incorrect detections in identifying the occupancy activities. Many of these instances 204 

occurred directly for the occupants furthest away from the camera and/or obstructed by objects 205 

in the room or by other people. Further analysis will be given to identify the benefits and limitations 206 

of each of the detection model configurations. 207 

  208 

 209 

Figure 4: Snapshots of occupancy detection and recognition during various key stages of the 210 

experimental test using the different detectors. 211 

 212 

Figure 5 shows that Model 1 achieves an average detection IoU of 98.85% for all the occupants. 213 

Despite Occupancy 6 within the direct view and angle of the camera, a slightly lower IoU (93.60%) 214 

was achieved. This may have resulted from the participant facing opposite the camera in most 215 

instances. Future works should take this into account when creating the training dataset. 216 

However, overall the results indicate the ability of the vision-based detection approach to enable 217 

real-time identification of the number of occupants present in a building space. 218 
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 219 

During the experimental test, the activity of sitting was performed by all occupants. For this 220 

activity, consistent IoU was achieved, with an average IoU accuracy of 92.80%. Only some of the 221 

occupants performed the standing and walking activities. Hence, further evaluation of other 222 

activities must be carried out in future works. The results showed IoU accuracies of 85.25% and 223 

71.25% were achieved for standing and walking activities. Such a lower IoU accuracy was due to 224 

the difficulty in detecting and recognising these two types of activities with similar occupancy body 225 

form and shape. The results in Figure 5B also suggest that the IoU accuracy was not highly 226 

impacted by the different occupants in the space and their positions in relation to the camera, 227 

indicating the detection camera was positioned at a suitable place within the room to capture the 228 

activities of most of the occupants. 229 

 230 

 231 

Figure 5: Average IoU (%) of the occupants during the experimental test using Models 1 and 2.  232 

 233 

A detailed summary of the results is presented in Table 4. The results suggest that achieving 234 

correct/incorrect and no detections would have been influenced by the model performance on 235 

recognising each occupant within the space. For Model 1, up to 100% correct detection could be 236 

achieved along with minimal incorrect detections. No/ missed detections also occurred.  237 
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 238 

For Model 2, which detects occupancy activities, the results suggest that the detection 239 

performance was varied across each occupant. It should be noted that not all occupants 240 

performed all types of activities. Overall, for all three activities, the percentage of correct 241 

detections was the highest, with an average of 74.13%, compared to incorrect detections at 1.25% 242 

and no/missed detections at 24.63%. The highest no/missed detections were observed for 243 

occupant 1, with a no/missed detection rate of 64.12%. This may be due to occupant 1 being one 244 

of the furthest from the camera. 245 

 246 

Table 4: Detection performance in terms of the percentage of time achieving correct, incorrect, 247 

and no detections. 248 

Percentage of Time Achieving: 

Model 1: People 

Occupant 
(People Detection) 

Correct 
Detections 

Incorrect 
Detections 

No/ Missed 
Detections 

1 89.70% 0.00% 10.30% 

2 76.41% 0.00% 23.59% 

3 99.67% 0.00% 0.33% 

4 97.34% 0.00% 2.66% 

5 99.67% 0.00% 0.33% 

6 99.67% 0.00% 0.33% 

7 99.34% 0.33% 0.33% 

8 100.00% 0.00% 0.00% 

Average 95.22% 0.04% 4.73% 

Model 2: Occupancy Activities 

Occupant Activity 
Correct 

Detections 
Incorrect 

Detections 
No/ Missed 
Detections 

1 Sitting 35.55% 0.33% 64.12% 

Standing N/A N/A N/A 

Walking N/A N/A N/A 

All Activities 35.55% 0.33% 64.12% 

2 Sitting 56.04% 0.00% 43.96% 

Standing 33.33% 33.33% 33.33% 

Walking N/A N/A N/A 

All Activities 55.81% 0.33% 43.85% 

3 Sitting 67.59% 1.03% 31.38% 

Standing 36.36% 63.64% 0.00% 

Walking N/A N/A N/A 

All Activities 66.45% 3.32% 30.23% 

4 Sitting 65.12% 0.00% 34.88% 

Standing N/A N/A N/A 

Walking N/A N/A N/A 

All Activities 65.12% 0.00% 34.88% 

5 Sitting 98.01% 0.00% 1.99% 

Standing N/A N/A N/A 

Walking N/A N/A N/A 
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All Activities 98.01% 0.00% 1.99% 

6 Sitting 92.25% 0.00% 7.75% 

Standing 50.00% 41.67% 0.00% 

Walking 100.00% 0.00% 0.00% 

All Activities 91.03% 1.66% 7.31% 

7 Sitting 81.88% 3.83% 14.29% 

Standing 92.31% 7.69% 0.00% 

Walking 100.00% 0.00% 0.00% 

All Activities 82.39% 3.99% 13.62% 

8 Sitting 98.98% 0.00% 0.00% 

Standing 85.71% 14.29% 0.00% 

Walking N/A N/A N/A 

All Activities 98.67% 0.33% 1.00% 

Average Sitting 74.43% 0.65% 24.80% 

Standing 59.54% 32.12% 6.67% 

Walking 100.00% 0.00% 0.00% 

All Activities 74.13% 1.25% 24.63% 

 249 

To further evaluate the performance of the detectors during the experimental tests, Figure 6 and 250 

Figure 7 present the results in the form of the confusion matrix. For model 1, the results verify the 251 

results presented in Table 4 with the lowest true positives values of 76.41%, and the highest 252 

number of false positives of up to 23.59% was for the detection of Occupant 2. In comparison to 253 

the detection of the other occupants, more consistent results were achieved, giving minimal false 254 

negatives with no false positives. Overall, an average of 95.23% were achieved for true positives 255 

in correctly detecting people within the space.  256 
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 257 

Figure 6: Detection performance results for Model 1 (people detector) in the form of a confusion 258 

matrix. 259 

As presented in Figure 7, the results suggest Model 2 can adequately identify each of the different 260 

activities performed by the occupants. The results indicate that the walking activity achieved the 261 

most true positives, with a value of up to 100%. Secondly, it is followed by the sitting activity. This 262 

achieved up to an average of 74.18%. The confusion matrix for each occupant suggests that the 263 

lower percentage achieved for this activity was due to the occasion of no prediction when this 264 

activity was performed. Furthermore, the standing activity was sometimes predicted as sitting 265 

and/or no detection of such activity, giving the worst performance compared to the other 266 

responses. The overall performance shown in Figure 7i was used to calculate the common 267 

evaluation metrics, including the accuracy, precision, recall, and the associated F1 scores given 268 

in Tables 5 and 6 for both models.  269 

 270 
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 271 

Figure 7: Detection performance results for Model 2 (occupancy activity detector) in the form of 272 

a confusion matrix. 273 

The evaluation metrics results are shown in Table 5. Model 1 provided an overall accuracy of 274 

95.23% and an F1 score of 0.9756. Model 2 provides an accuracy of 89.37% with an F1 score of 275 

0.8298. Since multiple responses were selected for this model, further development is required 276 

to ensure a consistent level of detection accuracy could be achieved across the different 277 

occupancy activities. Furthermore, since both models were only tested on a selected experimental 278 

test, further analysis is required to evaluate whether both models can effectively assist the 279 

operations of building HVAC systems and enhance the building energy performances through 280 

further testing on different indoor spaces and variation in variation occupancy conditions. For 281 

example, Model 1 may be effective in predicting the CO2 concentration levels based on the 282 

occupancy count, while Model 2 would be more suitable for evaluating the heat gains from 283 

occupants or predicting the activity rate for thermal comfort calculations in real-time. 284 
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 285 

Table 5: Detection performance results based on common classification evaluation metrics from 286 

the application of Models 1 and 2. 287 

Occupant Class Accuracy Precision Recall 
F1 

Score 

Model 1: People 

1 Person 89.70% 1.000 0.8970 0.9457 

2 Person 76.41% 1.000 0.7641 0.8663 

3 Person 99.67% 1.000 0.9967 0.9983 

4 Person 97.34% 1.000 0.9734 0.9865 

5 Person 99.67% 1.000 0.9967 0.9983 

6 Person 99.65% 1.000 0.9965 0.9982 

7 Person 99.67% 1.000 0.9967 0.9983 

8 Person 100.00% 1.000 1.000 1.000 

Average Person 95.23% 1.000 0.9523 0.9756 

Model 2: Occupancy Activity 

1 

Sitting 35.55% 1.0000 0.3556 0.5245 

Standing N/A N/A N/A N/A 

Walking N/A N/A N/A N/A 

All Activities 35.55% 1.0000 0.3556 0.5245 

2 

Sitting 61.35% 0.6270 0.5604 0.5918 

Standing 66.67% 1.0000 0.3334 0.5001 

Walking N/A N/A N/A N/A 

All Activities 64.01% 0.8135 0.4469 0.5460 

3 

Sitting 51.98% 0.5150 0.6759 0.5846 

Standing 67.67% 0.9725 0.3636 0.5293 

Walking N/A N/A N/A N/A 

All Activities 59.83% 0.7438 0.5198 0.5570 

4 

Sitting 64.65% 1.0000 0.6545 0.7912 

Standing N/A N/A N/A N/A 

Walking N/A N/A N/A N/A 

All Activities 64.65% 1.0000 0.6545 0.7912 

5 

Sitting 98.01% 1.0000 0.9801 0.9800 

Standing N/A N/A N/A N/A 

Walking N/A N/A N/A N/A 

All Activities 98.01% 1.0000 0.9801 0.9800 

6 

Sitting 83.53% 0.6888 0.9225 0.7887 

Standing 83.33% 1.0000 0.5000 0.6667 

Walking 100.00% 1.0000 1.0000 1.0000 

All Activities 88.95% 0.8963 0.8075 0.8185 

7 

Sitting 91.40% 0.9141 0.8188 0.8638 

Standing 96.16% 0.9602 0.9231 0.9413 

Walking 100.00% 1.0000 1.0000 1.0000 

All Activities 95.85% 0.9581 0.9140 0.9350 

8 

Sitting 92.35% 0.8738 0.9898 0.9282 

Standing 92.86% 1.0000 0.8571 0.9231 

Walking N/A N/A N/A N/A 

All Activities 92.61% 0.9369 0.9235 0.9257 

Average 

Sitting 80.64% 0.6975 0.7418 0.7190 

Standing 87.47% 0.9899 0.6304 0.7703 

Walking 100.00% 1.0000 1.0000 1.0000 

All Activities 89.37% 0.8958 0.7907 0.8298 
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 288 

Based on the experimental test, the detections and recognitions were recorded in the form of the 289 

DLIPs. Figure 8 presents the generated count-based profiles for each response achieved using 290 

Model 1 and their activities in Model 2. Since the same video recording was used for testing the 291 

models, it essentially compared the number of occupants present in a building space versus the 292 

occupants performing various activities.  293 

 294 

Figure 8: Formed deep learning influenced profiles (DLIPs) from the application of Models 1 and 295 

2 during the experimental test. 296 

 297 

The ground truth or Actual Observation profile was used to further assess the detection 298 

performance of the methods. Results given in Figure 9 suggest that the occupancy and activities 299 

profiles consistently fluctuate, indicating prediction error. Therefore, further improvements are 300 

required to enhance the detection model's accuracy, reliability, and stability. 301 

 302 
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 303 

Figure 9: Comparison of the formed DLIPs with the Actual Observation Profile. 304 

 305 

Figure 10 compares the generated DLIP with Actual Observation profiles (ground truth). The 306 

occupancy count DLIPs generated using Model 1 was used to predict the occupancy heat 307 

emissions. Heat gains profiles were generated assuming the detected occupants were sitting. 308 

Moreover, Figure 10 also presents the predicted occupancy heat emission profile based on the 309 

occupancy activity profiles in Figure 8b, generated using Model 2. This was compared with Model 310 

1, indicating a difference in heat emissions of up to 29.75%. As compared with the Actual 311 

Observation profile, a difference of up to 5.69% for Model 1 and 25.36% for Model 2 was 312 

observed, indicating substantial errors in the detections of Model 2.  313 

 314 

Although Model 2 was supposed to be more accurate in predicting the actual heat emissions of 315 

the occupants, Model 1 was closer to the Actual Observation (ground truth) due to the limited 316 

activities (mostly seating) performed by the occupants during the experimental test. This 317 
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highlights the importance of developing an accurate and stable occupancy activity detector in 318 

order to be effective and valuable for building control systems. Furthermore, a greater impact 319 

could potentially be observed when such a detection method is implemented within larger indoor 320 

spaces with more people performing various occupancy activities.  321 

 322 

Figure 10: The generated DLIP using Models 1 and 2 plotted against predefined and the Actual 323 

Observation Profile. 324 

 325 

4. Conclusion and Future Works 326 

The study investigates the development of a vision-based deep learning detection technique for 327 

enhancing building system operations and energy performance. Two occupancy detection 328 

approaches based on Faster RCNN with Inception V2 model were developed, tested and 329 

evaluated. Model 1 focused on detecting the number of occupants in a building space. While 330 

Model 2 focused on detecting common occupancy activities such as ‘sitting’, ‘standing’ and 331 

‘walking’. Similar images were used for training the model, and the same training procedure was 332 

conducted. Both models were evaluated based on an experimental test performed within a 333 

postgraduate study space at the University. 334 

 335 

Model 1 provided an overall accuracy of 95.23% and an F1 score of 0.9756,  providing good 336 

detection of the number of occupants within the indoor space. Model 2 provided a lower accuracy 337 

of 89.37%, with an F1 score of 0.8298. Since Model 2 had multiple detection tasks, further 338 

development is required to ensure a consistent level of detection accuracy could be achieved 339 

across the different occupancy activities. Although Model 2 was supposed to be more accurate 340 

in predicting the actual heat emissions of the occupants, Model 1 was closer to the Actual 341 
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Observation (ground truth) due to the limited activities (mostly seating) performed by the 342 

occupants during the experimental test. This highlights the importance of developing an accurate 343 

and stable occupancy activity detector in order to be effective and valuable for building control 344 

systems. It is envisaged that the proposed detection approach could have a greater impact when 345 

applied in a larger indoor space with more occupants and different types of activities. Hence, 346 

future works should evaluate the application of the detection approach in various types of indoor 347 

spaces with variations in the number of occupants and their activities. Further model training with 348 

larger datasets should be carried out to improve the overall detection performance. The impact of 349 

parameters such as the indoor lighting conditions and positioning of the detection camera should 350 

be evaluated.  351 
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