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Abstract 

 

Lanthanum (La) doped zinc oxide (ZnO) nanomaterials (LaxZn1-xO, x = 0.0, 0.03, 0.05, 0.07 M) 

were synthesized via co-precipitation method using zinc acetate, lanthanum nitrate as precursors, 

octylamine as capping and reducing agent. The structures, morphologies, optical activity and 

antibacterial properties of LaxZn1-xO were investigated by powder X-ray diffraction (XRD), 

Fourier transform infrared (FT-IR) spectroscopy, High resolution scanning electron microscopy 

(HR-SEM), Energy dispersive X-ray (EDX), UV-Visible, Photoluminescence (PL) spectroscopy. 

The antibacterial activities of LaxZn1-xO were tested by modified disc diffusion method. The 

XRD results showed that the La
3+ 

ions were successfully incorporated into the ZnO host, and the 
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products were well-crystalline. The average size of undoped and doped La-doped ZnO was 

found to be in the ranges from 15.64 to 10.18 nm. In addition, the sphere-like nanoparticles 

morphology of LaxZn1-xO was confirmed by HR-SEM images. The band gap of La-doped ZnO 

nanoparticles were varied with the La
3+ 

ions doping concentration. In addition, increasing the 

doping concentration of La
3+ 

ions in ZnO increases the defects in ZnO lattice and hence resulting 

red-shift in UV emission, which indicate the presence of narrow band-gap in doped 

nanoparticles. 

Keywords: Chemical route; La-doped ZnO; Nanomaterials; Optical; Structural; Antibacterial 

activity. 

 

1. Introduction  

The nanostructured metal oxides show unique properties like semiconducting, insulating 

behavior etc., over their same bulk materials [1-3]. In recent years, zinc oxide (ZnO) 

nanomaterials have attracted much consciousness within the scientific researchers owing to its 

low-cost, easy fabrication, photocatalytic activity, wide band-gap semiconductor [4-9], unique 

optical, magnetic and electronic properties etc. [10-12] ZnO materials are a translucent piezo 

electric and electro conductive materials. In addition, ZnO materials act as an admirable 

ultraviolet absorber and antibacterial agent. ZnO materials possess band gap energy of 3.37eV 

and great excitation binding energy of 60 meV at room temperature (RT), which provides more 

efficient excitonic emission even at high temperature. ZnO materials have been synthesized 

through numerous methods, which include chemical precipitation, sol-gel, microwave radiation 

and hydrothermal methods, etc.  
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The doping of ZnO materials with different types of metallic ions [12-15] enhances its 

optical, magnetic and conducting properties. Such modified ZnO materials may be used as a base 

material for magnetic semiconductors, solar cells, field-effect transistors, gas sensors, light-

emitting materials, photo-catalysts and biological systems (bio-imaging, drug delivery, etc.) [16-

17]. Furthermore, doping with rare earth elements (e.g., La, Tb, Er, Eu, Dy and Sm) provides 

many interesting properties of ZnO materials, which includes the efficient modulation of the 

emission in the visible range owing to their unique optical properties. Above all, Lanthanum 

(La)-doped ZnO materials shows excellent gas sensitivity and photocatalytic activity. 

Present research is focused on investigating the result of La doping concentration on the structure 

and optical properties of undoped and La doped ZnO materials prepared by a facile chemical 

precipitation method using zinc acetate as source of Zn
2+

 ions and lanthanum nitrate as source of 

La
3+ 

ions. The chemical precipitation route to synthesis of La doped ZnO materials has several 

advantages like high quality, low-processing cost, quite low temperature and higher yield etc. in 

comparison with other methods. 

 

2. Materials and Methods 

2.1. Synthesis of LaxZn1-xO (x= 0.0, 0.03, 0.05, 0.07 M) nanomaterials 

Undoped and La-doped zinc oxide (LaxZn1-xO) nanomaterials were prepared by co-

precipitation method using zinc acetate and lanthanum nitrate as metal precursors (Zn, La 

respectively) and octylamine as reducing and capping agent. To the solution of 0.1M of zinc 

acetate in 100 mL methanol, 1 mL of octylamine was added then stirred continuously for 24 h at 

room temperature to obtain homogenous precursor solution. Later, different moles (0.03, 0.05, 

0.07 M) of lanthanum nitrate (LaNO3) were added into the above precursor solutions and stirred 
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for 3 h. Finally, 3 M NaOH was added drop wise into the obtained solution until pH attains 12. 

The resulting solution was aged about 1h and the precipitates were collected and washed using 

distilled water to remove the unreacted reagents. The slurry was dried in an oven at 80 ˚C for 

about 10 h and annealed at 400 ˚C for 2 h. The pure ZnO sample was prepared by adopting the 

same procedure without the addition of LaNO3. 

 

2.2. Characterization 

X-ray diffraction (XRD) pattern was recorded at room temperature using  

PAN analytical X′Pert PRO equipment using CuKα irradiation as found the wavelength  

(λ           ). The morphology and elemental composition analysis of the samples were 

investigated by High resolution scanning electron microscope using (JEOL, JSM-67001).  

The optical absorption spectra were recorded by UV-Vis absorption spectrometer (Perkin Elmer 

T90 Spectrophotometer). Room-temperature photoluminescence spectral measurements were 

carried out using JY Fluorolog 3-11 spectrometer. The solid phase FT-IR spectrum in KBr pellet 

technique was recorded with (FT-IR; JASCO, Model 6300).  

2.3. Antibacterial activity 

Antimicrobial activity of the prepared samples was tested in both gram-negative and 

gram-positive bacteria namely Staphylococcus aureus, Proteus mirabilis, Salmonella typhii and 

Bacillus subtilis by disc diffusion method with small modifications. The 24 h bacterial cultures 

were swabbed in a Muller Hinton agar amended plates. Whatmann filter paper discs of 3 mm 

diameter were impregnated with  00 μL of the solution containing samples (LaxZn1-xO; x = 0.0, 

0.03, 0.05, 0.07 M) and these discs could evaporation for 1 h. Reference standard discs were 

prepared with ampicillin ( 0 μg/mL) to compare the antibacterial activity of the samples  After 
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drying, the discs were placed in swabbed bacterial plates and incubated at 28 °C for 24 h. After 

incubation, plates were examined for clear zone around the discs. A clear zone more than 2 mm 

in diameter was taken for antibacterial activity.  

 

3. Results and Discussion 

3.1. Powder X-ray diffraction (XRD) analysis 

 Figure 1 showed the powder XRD patterns of LaxZn1-xO (x = 0.0, 0.03, 0.05, 0.07 M) 

nanoparticles with 2θ range from 30
o
 to 75

o
 at room temperature. The diffraction peaks and their 

relative intensities of both undoped and La doped ZnO samples were in good agreement with the 

standard JCPDS card no. 36-1451. Hence, the observed patterns can be clearly endorsed to the 

presence of hexagonal wurtzite structure.  Furthermore, in Figure 1, no additional XRD peaks 

were found which clearly indicates the absence of La oxide or Zn-La alloys formation. Hence, it 

was clear that the introduction of dopant could not alter the crystal structure, whereas it dispersed 

uniformly in the ZnO matrix [18]. 

In addition, from Figure 1, it was found that the most intense peak of doped ZnO 

materials shifted towards higher θ value  This shift is due to the internal strain developed by the 

substitution of Zn
2+

 (host ions) by La
3+

 dopant ions [19-22]. The higher intensity of all peaks 

suggested that the material was in highly crystalline nature.  

The lattice parameter was calculated using the formula given in Eq. (1):  

   















 


2

2

2

222
2

3

4

4
sin

c

l

a

khkh
     ---- (1) 

where θ is the diffraction angle, λ, the incident wavelength (λ = 0.1540 nm), h, k, and l are 

Miller’s indices  The obtained lattice parameter values of both undoped and La-doped ZnO were 
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listed in Table 1. From Table 1, it was clear that the lattice parameter values of La-doped ZnO 

materials, are less in comparison with those for pure ZnO materials, due to the shift of XRD 

peaks towards higher 2θ values for doped ZnO nanoparticles. Similar lattice parameter values (a 

= 3.251001 ± 0.000064 Å c = 5.208817 ± 0.000161 Å for undoped ZnO materials and a = 

3.249680 ± 0.000054 Å, c = 5.205810 ± 0.000140 Å) has been reported by Goel et al. [23]. 

Moreover, it was clear that La-doping changed the lattice parameters values, but the crystal 

system (hexagonal) and space group (P63mc) remain unchanged.  

The average crystallite size was calculated using Scherer formula given in Eq. (2): 

                            



cos

89.0
L

                                                                 

----(2) 

where L is the crystallite size, λ, the X-ray wavelength, θ, the Bragg diffraction angle and β, the 

full width at half maximum (FWHM). The average crystallite sizes of undoped and doped ZnO 

were listed in Table 1. The average crystallite sizes of undoped and La-doped ZnO materials 

were calculated to be 15.64 nm (x = 0M), 13.28 nm (x = 0.03M), 11.46 nm (x = 0.05M), 10.18 

nm (x = 0.07 M) respectively. Thus, the particle size decreases because of La doping in ZnO 

nanostructures. This reduction in the crystallite size is due to distortion in the ZnO matrix by 

La
3+

 dopant ions, which decreases the rate of growth of ZnO. 

 

3.2. Fourier transform infrared (FT-IR) spectral Analysis  

The FT-IR spectra of LaxZn1-xO (x = 0.0, 0.03, 0.05, 0.07 M) nanoparticles were shown 

in Figure 2. The strong intensity band at around 505 cm
-1

 clearly indicates the Zn-O stretching 

vibration and the band at 607 cm
-1

 confirms the presence of ZnO and La. The 880 cm
-1

 

corresponds to N-O deformation vibration. It was noted from the FT-IR data that the Zn-O 
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vibrational mode was more prominently observed and this clearly concludes a strong doping 

exist in LaxZn1-xO. 

 

3.3 High Resolution-Scanning electron microscopy (HR-SEM) studies 

The surface morphology of LaxZn1-xO (x = 0.0, 0.03, 0.05, 0.07 M) materials was 

examined by HR-SEM analysis and showed in Figure 3. HR-SEM images clearly indicated the 

sphere-like morphology of nanoparticles. Furthermore, from the Figure 3 it was noted that as La 

concentration increases, particle size of the samples decreased, which was consistent with the 

XRD results. 

 

3.4. Energy dispersive X-ray (EDX) analysis  

The chemical purity and elemental composition of the LaxZn1-xO materials were 

investigated by Energy Dispersive X-ray analysis (EDX) as shown in Figure 4. The EDX results 

showed the presence of Zn, O and La by the appearance of their corresponding peaks without 

any other characteristic peaks and suggested that the prepared samples do not contain any other 

element impurities.  

 

3.5. UV–Vis absorption spectroscopy 

The optical properties of LaxZn1-xO materials with various doping concentrations were 

investigated by UV–Vis absorption spectra which are shown in Figure 5. From Figure 5, it was 

noted that the band-edge absorption of the synthesized LaxZn1-xO materials located at around  

366-373 nm (in near UV region). The optical band gap of Eg is calculated using the following 

Eq. 3 [23, 24].  
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                                     α   A(hν-Eg)
n
/hν                ---------------- (3) 

 

where A and n is a constant, equal to 1/2 for the direct band gap semiconductor. The calculated 

band gaps of the synthesized LaxZn1-xO materials were shown in Figure 6. It was noted that the 

lanthanum doping concentration had significant effects on the band gaps of synthesized  

LaxZn1-xO materials. When the doping concentration of lanthanum changes from 0 to 0.07 M, the 

value of Eg is decreased from 3.07 to 2.91 eV. When a Zn site in ZnO was occupied by a La 

atom, there were two main effects were observed: (1) The impurity bands closer to the lower 

edge of the conduction band, which was created by substituted La and (2) The obtained band-gap 

exhibit narrow, due to the strong orbital coupling between La and O. The results illustrated that 

La doping concentration plays vital role in tuning the band gap of the synthesized LaxZn1-xO 

materials. Furthermore, the existence of extended tail band (from 450 to 800 nm) in the UV 

spectra of La-doped ZnO nanoparticles (Figure 5) showed its optical capability almost in the 

whole range of visible light spectra. The sp–d exchange interactions between the conduction 

band electrons and the localized d electrons of the La
3+

 ions, which substitute Zn
2+

 ions lead to 

the broad absorption in visible light range [25]. In addition, the s–d and p–d exchange 

interactions cause a negative and a positive correction to the conduction band and the valence 

band edges individually, resulting in strong visible light absorption of the La-doped ZnO 

materials [26, 27]. Hence, La- doping in ZnO host can introduce the impurity energy levels in 

band gap and expands its visible light response, which is favorable for several potential 

applications. These results indicate that the La doped ZnO nanoparticles can absorb in UV as 

well as in the visible region of the solar light suggesting that the La doped ZnO nanoparticles 

could be applied as a visible light photocatalyst [28]. 
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3.6. Photoluminescence spectral analysis 

The PL spectra of LaxZn1-xO materials (x = 0, 0.03, 0.05 and 0.07) was showed in Figure 

7. The emission bands around at 410 nm (UV emission) were observed due to the recombination 

of the free excitons in ZnO [29-31]. Small variations (409.95, 410.15, 410.14, 410.25 nm) in the 

positions of UV emission bands in PL spectra of LaxZn1-xO materials could be attributed to the 

impact of lanthanum doping concentration. The position of UV emission bands slightly increases 

as lanthanum doping concentration increases, but the intensity of the peaks decreased. Hence, the 

UV emission had a red shift, since the doping concentration of lanthanum increases. In addition, 

the shift in the emission spectra for undoped and doped ZnO may be attributed, due to the strain 

created in the crystal lattice to accommodate larger La atoms in ZnO. Furthermore, the deep-

level emission in region from 490 nm to 540 nm was due to the intrinsic deep-level defects and 

extrinsic impurities in ZnO [32-40].  

 

3.7. Antibacterial Activities  

The antibacterial activities of synthesized LaxZn1-xO materials were tested against the 

human pathogens like P.mirabilis, S.typhi, S.aureus, B.subtilis with reference to Ampicillin. The 

antibacterial activity values are listed in Table 2. From the results, it was observed that the 

synthesized LaxZn1-xO materials showed desired activity against P. mirabilis and S. typhi. 

Furthermore, when La concentration increases, activity of LaxZn1-xO materials against P. 

mirabilis and S. typhi increases to higher extent, while LaxZn1-xO materials showed no activity 

against S. aureus, B. subtilis, P. mirabilis and S. typhi causes kidney stone and typhoid fever 

respectively. Hence, the synthesized LaxZn1-xO can be used in the treatment of kidney stone and 

Typhoid Fever. 
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4. Conclusions 

In summary, La-doped ZnO (LaxZn1-xO: x = 0.0, 0.03, 0.05, 0.07 M) nanoparticles have 

been synthesized by chemical precipitation route. From XRD measurements, it was confirmed 

that the particle size of the synthesized LaxZn1-xO materials decreases with increasing La 

concentrations and possess hexagonal wurtzite structure. In addition, the sphere-like morphology 

was revealed by HR-SEM and HR-TEM analysis. The elemental composition was confirmed by 

EDX analysis. Furthermore, it was found that La
3+

 ions were successfully incorporated into the 

ZnO lattice, and the red shift was appeared in PL spectra for doped nanoparticles compared with 

undoped one. The band gap energies of doped nanoparticles were decreased from 3.07 eV to 

2.91 eV with increasing the lanthanum doping concentration. Hence, these results indicated that 

the lanthanum doping concentration plays an important role in tuning the size, band gap and 

photoluminescence property of the ZnO nanoparticles. In addition the synthesized LaxZn1-xO 

materials possess significant antibacterial activity against P.mirabilis, S.typhi and used for 

treatment of kidney stone and typhoid fever. 
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Figures captions 

 

 

Fig. 1. Powder XRD pattern of LaxZn1-xO nanomaterials 
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Fig. 2. FT-IR spectra of LaxZn1-xO nanomaterials 
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Fig. 3. HR-SEM images of LaxZn1-xO (a) x = 0, (b) x = 0.03, (c) x = 0.05 and (d) x = 0.07) 

nanomaterials 
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Fig. 4. EDX spectra of LaxZn1-xO (a) x = 0, (b) x = 0.03, (c) x = 0.05 and (d) x = 0.07) 

nanomaterials 
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Fig. 5. Absorption spectra of LaxZn1-xO nanomaterials 
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Fig. 6. Tauc plots of (αhν)
2
 versus hν of LaxZn1-xO (a) x = 0, (b) x = 0.03, (c) x = 0.05 and (d) 

x = 0.07) nanomaterials 
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Fig. 7. PL spectra of LaxZn1-xO nanomaterials 
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Table 1. Structural parameters (Lattice constant and Crystallite size of LaxZn1-xO 

nanomaterials 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

La 

Concentration 

(mole %) 

Lattice parameter values 

(Å) 

Crystallite 

size (D) 

(nm) 

Volume (V) 

(Å)
3 

(a) (c) c/a 

0 

0.03 

0.05 

0.07 

3.251 

3.242 

3.211 

3.178 

5.211 

5.192 

5.162 

5.091 

1.606 

1.603 

1.605 

1.602 

15.64 

13.28 

11.46 

10.18 

53.92 

49.44 

47.56 

45.48 
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Table: 2 Antibacterial activities of LaxZn1-xO nanomaterials for against human pathogens 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Antibacterial activities of samples were determined as zone of inhibition (in mm) 

Samples P. mirabilis S .typhi S. aureus B. subtilis 

Ampicillin (C) 24 19 12 11 

x = 0 7 5 0 0 

x = 0.03 9 9 0 0 

x = 0.05 20 15 0 0 

x = 0.07 22 7 0 0 
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 Enhanced optical properties La doped ZnO nanoparticles 

 La-doped ZnO nanomaterials were synthesized by chemical method 
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 The antibacterial activities of LaxZn1-xO were tested by modified disc diffusion method 

 Average particle size of undoped and doped La-doped ZnO was found 15 to 10 nm 
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