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Abstract 

Transport represents over a quarter of Europe's greenhouse gas emissions and is the leading cause 

of air pollution in cities. It has not seen the same gradual decline in emissions as other sectors. Recently, 

the thermoelectric power generation (TEG) technology emerges as an alternative solution to the 

emission reduction challenge in this area. In this paper, we present an innovative pathway to an 

improved heat supply into the concentric shape-adapted TEG modules, integrating the heat pipe 

technologies. It relies on a phase changing approach which enhances the heat flux through the TEG 

surface. In order to improve the heat transfer for higher efficiency, in our work, the heat pipes are 

configured in the radial direction of the exhaust streams. The analysis shows that the power output is 

adequate for the limited space under the chassis of the passenger car. Much effort can also be applied 

to obtain enhanced convective heat transfer by adjusting the heat pipes at the dual sides of the 

concentric TEG modules. Heat enhancement at the hot side of the TEG has an effective impact on the 

total power out of the TEG modules. However, such improvements can be offset by the adjustment 

made from the coolant side. Predictably, the whole temperature profile of TEG system is subject to the 

durability and operational limitations of each component. Furthermore, the results highlight the 

importance of heat transfer versus the TEG power generation under two possible configurations in the 

passenger car. The highest power output per repeat unit is achieved at 29.8 W per 0.45 Litre with a ZT 

value 0.87 for a Bi2Te3-based thermoelectric material in our studies. The study provides an insight into 

a structurally achievable heat exchanger system for other high-temperature thermoelectric materials. 
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1. Introduction 

    Thermoelectric heat recovery, as one of the most promising clean technologies, has drawn 

great attentions due to its unique merits of energy conversion [1]. Unlike the traditional fossil fuel 

energy systems, TEG devices converts waste heat directly into electricity through the Seebeck effect 

of the semiconductor materials whereby a temperature difference is maintained between the hot and 

cold side of the TEG module [2]. The TEG devices have the advantages of silent operation and they 

have no moving or mechanically complex components enabling them lasting for a very long time. 

They also operate at wider operational temperature range than most existing energy recovery 

systems [3, 4]. There are several existing researches that have proved the feasibility of applying the 

TEG devices for waste heat recovery from vehicles. Agudelo et al. [5] and Stevens et al. [6] analysed 

the potential for energy recovery from the exhaust gases and the theoretical limit of thermoelectric 

generators for a given exhaust system configuration. The results shows that the muffler has the 

greatest exergy loss making it the ideal place where waste energy can be recovered in the exhaust 

system. Additionally, there is an optimum number of thermoelectric leg pairs that maximize the 

power extracted for any TEG system. 

   However, each technology has its own advantages and challenges. The major challenge of the 

TEG device is its relatively low heat to electricity conversion efficiency.  Recent years have 

witnessed impressive progress in thermoelectric materials. There have been many researches 

covering different aspects of thermoelectric materials, including bulk thermoelectric materials, 

individual nanostructures, and bulk nanostructures [7]. Nonetheless, there is still space for 

innovation and development of thermoelectric materials to take advantage of their solid-state nature, 

scalability and environmental friendliness in the automotive industry [8]. It could be highly 

anticipated from such material development that the TEG system would be applied in automotive 

waste heat industry in near future, if other challenges are addressed. Furthermore, in practice, the 

financial viability is highly sensitive to source temperature, device efficiency, maintenance cost, 

and the projected device lifetime. Benday et al. [9] presented a new methodology for the systematic 

study of thermoelectric generator economic analysis. This study provided a platform for analysing 

the performance of real-world systems and can be used to predict where further technological 

development on TEG materials and devices would be most effective. Huang et al. [10] presented a 

regenerative concept for TEG systems. It is found that the regenerative TEG systems can achieve 

power output which is similar with other TEG systems by using high temperature TE materials and 

guarantee a lower cost. 



    Despite the increasing research on thermoelectric materials, there are still many device-level 

challenges that prevent TEG devices from being applied in real applications. There are many 

researchers who focus on the numerical simulation of the performance of the TEG devices [11-13]. 

Hogblom et al. [14] established a simulation methodology for characterization and simulation of TEG 

systems allowing accurate prediction of the voltage and current as well as the heat flow at steady state. 

Zhang [15] first developed a numerical model which has taken into account the influence of 

temperature-dependent material properties, spatial-dependent heat flow rate in thermoelements and the 

heat and electricity losses at the junctions for performance calculation of the TEG devices. Liang et al. 

[16] presented a mathematical model of two-stage TEG and the performance of the two-stage TEG is 

analysed by simulating the effect of relevant factors as well. The results show that the output power 

and conversion efficiency of the two-stage TEG are higher, compared with the single-stage TEG. Yu 

et al. [17] investigated the transient behaviour of TEG system in different start-up modes by using the 

different heat transfer coefficient related to the engine speed. It is concluded that a higher vehicle speed 

improves the TEG performance in addition to accelerating the transient response. Liu et al. [18] 

developed an approach for integrating computer-aided analysis with an optimization method that could 

be applied to the design and optimization of thermoelectric generators. This approach was applied to 

the multi-objective and multi-parameter optimization of geometric thermoelectric generators to design 

an optimal structure for TE modules. The results showed that the power outputs of the optimal design 

were about 5.7%, 5.0%, 9.4%, 18.9%, 28.9%, and 30.6% higher, respectively, than the initial design 

values. However, the improvement in power output reduced the conversion efficiency. 

    In addition to the numerical simulation research, there are also several researchers who have 

investigated the performance of TEG devices by experimental tests.  Liu et al. [19, 20] performed 

experimental study on different structural designs of heat exchanger in order improve the efficiency of 

TEG system in which a maximum power output of 944 W is obtained in the revolving drum test under 

real working condition. Montecucco et al. [21-23] analysed the impact of thermal imbalance on the 

power produced at module and system level of a TEG array in series and parallel. Experimental results 

clearly demonstrate that the temperature-mismatch situation creates a power production drop of 9.22% 

and 12.90% for the series and parallel cases respectively. Wang et al. [24] performed a serial 

experimental test on a new type of open-cell metal foam-filled plate heat exchanger based 

thermoelectric generator system. The results show that the heat exchange efficiency of 83.56% 

between heated air and cold water is achieved.  

Other than the progress in the simulation and experimental study of the performance of TEG devices, 

the heat transfer performance has also been paid close attention. In most cases, it is poor heat transfer 

design that inhibits achieving the ideal efficiency. Accordingly, thermal scientists and system 



engineers focus mainly on enhancing the heat transfer to and from the TEG devices in order to 

improve the overall efficiency of the vehicle TEG systems [25]. Beyond the heat transfer 

enhancement, the novel design of the heat exchanger for TEG devices has been carried out as well. 

Aranguren et al. [26] built a new thermoelectric generator prototype which could produce 21.56 W 

of net energy covering 0.25 m2 of space. In terms of heat dissipation, with the usage of the heat 

pipes in the finned heat exchanger, a 43% more net power is obtained. Ma et al. [27] investigated 

the effect of longitudinal vortex generators (LVGs) on the performance of a TEG with a plate-fin 

heat exchanger numerically. The results indicated that the heat input and open circuit voltage of the 

TEG with LVGs are increased by 41–75% compared to a TEG with smooth channel. Tian et al. [28] 

proposed a new waste heat recovery system with a heat pipe exchanger which is applied to recover 

thermal energy in high temperature industrial exhaust gas. After three-month of continuous 

operation, the heat pipe exchanger is observed to save 15% natural gas without any blockage of the 

gas side channel. In addition to the notable TEG performance discussed so far, the existing TEG 

systems are often too bulky to be applied in the exhaust system. Ali et al. [29] introduced a new 

innovative design of the thermoelectric generator incorporating the extended pin with segmented 

pin configuration. The new design allows the device operating at two different cold junction 

temperatures. Wang et al. [30] presented an innovative design of a cylindrical TEG heat exchanger 

which is applied to light duty passenger cars. An effective solution for enhancing the heat transfer 

of gas flow in the radial direction to the TEG is proposed in their research. Huang et al. [31] have 

investigated the electrical performance between different shapes of TE module, the results indicate 

that the open circuit electric potential of the annular TE module is 17% higher than that of the square 

TE module. Most of the existing researches are based on the numerical and experimental analysis 

of the influence of external conditions such as temperature and mass flow rate of heat exchanger 

for exhaust TEG system. However, the installation space and weight of the TEG system are rarely 

discussed. In practice, there is a very limited space in the vehicle exhaust system and therefore it 

should be optimized. Moreover, the weight of the TEG is also a vital factor in an effort to achieve 

the fuel economy [32].  

To improve the defects of existing vehicular TEG systems, a light weight heat exchanger is 

significant for the development of vehicular TEG systems. Therefore, in the current work, a novel 

design of a concentric cylindrical TEG system is presented for use in the automotive exhaust system. 

Instead of using a bulky and heavy heat exchanger, the novel TEG system has a compact and 

lightweight heat sink which is assisted by heat pipes. As a reliable and efficient heat transfer 

component, heat pipes have been widely used for the thermal management of electronic devices. 

Heat pipes have the advantageous in that they have high heat conductivity, fast thermal response, 



and are light weight [33, 34].  The combination of heat pipes with heat exchanger is projected to reduce 

the weight of the TEG system and the whole vehicle as well, consequently improving the fuel economy. 

   The proposed design is capable of adapting to the shape of the exhaust pipe besides 

accommodating more TEMs in the same installation length. In this paper, the numerical studies about 

the heat transfer performance of this novel TEG system is conducted with different heat transfer 

coefficient conditions at hot and cold sides of the heat sink. The present study also investigates the 

impact of heat enhancement at the hot side on the total power out of the TEG modules and the influence 

of the arrangement of the coolant side. Furthermore, the whole temperature profiles of TEG system in 

different cross-section and the temperature distribution in the direction of thermoelectric legs are 

explored in this study. At last, the contour of the maximum power output for the single repeat unit of 

the TEG system is concluded under different convective heat transfer coefficients on the exhaust gas 

and coolant side of the system which are correspond to engine speed under different working 

conditions. Thus, in this study, the feasibility of heat-pipe synergic heat exchanger and the thermal and 

electric performance of the concentric cylindrical TEG system are examined. 

 

2. Model description 

A thermoelectric system is composed of several thermal and masses transport processes which store 

and exchange heat through conduction, convection and radiation. Fig.1 shows the overall architecture 

of a thermoelectric power generation system in the form of heat energy flow. The TEG is connected 

with thermal masses on both the hot and cold sides. Energy conversion in the TEG takes place in the 

form of electrical and heat power, leading to changes in the thermal energy stored inside the thermal 

masses towards the downstream. Meanwhile, parasitic heat loss is inevitable within the TEG due to 

the Peltier effect (at interfaces) and resistive Joule heating. In addition to the improvements of TEG 

ZT value, the heat conduction and convection processes at both sides of TEG module are also the 

major parameters to maintain the performance of power generation. Regarding the economics of 

thermoelectric power generation, the cost mainly depends on the nature of the heat source in place 

whereby adequate heating is needed by the relatively low efficient TEG materials. To develop a 

thermoelectric system including heat exchangers, heat flux through the thermoelements should be 

sufficient to maintain the appropriate temperature difference. 



 

Fig.1. Schematic of a full thermoelectric power generation system with major heat transfer features 

The typical heat flux through the thermoelectric legs is maintained at around 10 kW/cm2, assuming 

that the legs thickness is 1 mm and the temperature difference is 373 K.  One can potentially deliver 

this heat flux by concentrating heat through conduction in the device`s hot and cold sides whereby 

using fins or any other heat transfer enhancement methods are employed. System optimisation, 

especially for automotive applications, is crucial, hence both the thermoelectric device and the heat 

exchangers should be developed together to match heat flux requirements. Constantly varying heat 

source/sink temperatures over hot/cold sides of the thermoelectric modules is also a problem in the 

exhaust heat recovery system. In a typical exhaust heat recovery system, heat sink/source (usually 

fluids) temperature varies significantly along the flow direction. Therefore, a proper thermal limiting 

or flattening component may be needed to solve the heating mismatch along the exhaust pipe.  



2.1. Schematic structure 

 As shown in Fig.2, the TEG system consists of a series of repeat units that are segregated along the 

exhaust stream to shape into a practical exhaust pipe. The repeat unit is made up of four concentric 

TEG modules, three hot plates and two cooling plates including twelve heat pipes in each plate as 

highlighted in blue and red colours in Fig. 2a and Fig. 2b. The exhaust stream interacts with heat pipes 

and transfers the heat into the TEG in the radial direction of the exhaust stream. The channel spaces of 

both the exhaust and the coolant are tightly shaped by the heat pipes, the surface of the cooling plates 

and the shell of the heat exchanger. Based on the power output demand, this configuration can be easily 

adapted by exchanging the channels of the exhaust and coolant flows as well as adjusting the number 

of repeat units. In reality, each unit has different flow parameters such as coolant temperature Tw,n, 

exhaust temperature Te,n. These differences arise as a result of decreasing the temperature of the 

exhaust while increasing the temperature of the coolant. Therefore, the specific configuration of flow 

patterns makes great impacts on the thermoelectric power generation.  

Comparing with some commonly used TEG modules, a concentric TEG module is applied instead 

of the square-shaped TEG modules, where the method of self-clamping by adjacent TEG modules is 

introduced to further reduce the need for the single clamp on each TEG modules. In such model, the 

 

 

 

Fig. 2. A schematic of the (a) 2D TEG system model and the two 3D configurations of hot and cold sources: (b) ‘Cold core’ 

configuration and (c) ‘Hot core’ configuration 
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primary assumption of constant temperature in the exhaust and coolant flow is made for simulation 

purposes. Also, the parallel link inside each repeat unit is set in which the total internal electrical 

resistance Rin is equal to a quarter of individual TEG module resistance RTEG. The parameter analysis 

of matched load resistance is conducted for tracking the maximum power point when the external load 

is fluctuating. By assuming the same power output from each unit, the total power generation of the 

whole system is calculated by multiplying the number of units used in the exhaust pipe. 

Specifically, in Fig. 2b, the coolant flow can be allocated to an inner axial flow by replacing the 

exhaust flow with the outer axial flow channel in respect of utilising the merit of the higher heat 

capacity of the water coolant. In addition, extruded fin stacks can be installed on heat pipes to enhance 

heat transfer convection in the exhaust streams. Unlike the conventional square shape TEG modules, 

the concentric and cylindrically shaped TEGs can easily be accommodated with round exhaust pipes. 

Due to the alteration of clamping method in this new design, the uneven thermomechanical stress on 

the components are expected to be minimised by replacing the individual clamps with four simple self-

locking metal cables that are bolted through the internal holes of TEG modules. Additionally, the 

geometric details of major TEG components and heat pipes are listed in the Table 1. 

Table 1 Geometric details of major TEG components and heat pipes  

Parameters 
Thermoelectric 

leg 

Copper 

connector 
Heat pipes 

Ceramic 

plate 

Insulation 

ring 

External 

copper 

plate 

Internal 

copper 

plate 

Length (mm) 2.55 5.8 - - - - - 

Width (mm) 2.55 2.55 - - - - - 

Height (mm) 2.55 0.3 40 0.7 16 23.1 7 

Diameter (mm) - - 6 - - - - 

Inner Diameter 

(mm) 
- - - 50.8 40.8 50.8 32.8 

External Diameter 

(mm) 
- - - 101.6 50.8 115.6 101.6 

2.2. Materials  

In order to simplify the simulations, some assumptions are made to reduce the computational time. 

Firstly, the thermal resistance caused by coolant convection is much smaller than the exhaust 

convective heat transfer. Therefore, the heat transfer coefficient of the cold-water hw is assumed to be 

a constant value. Also given that the complexity of the exhaust mixer and the combustions, air 

properties are used as an approximation. The error associated with neglecting the combustion products 

is usually no more than about 2% [35]. Table 2 shows the properties of the major components in the 

TEG system used in the simulations. As the heat pipes used in current work are copper-water heat pipe, 



according to the equivalent thermal properties which is guided by the test results from manufacture, 

the thermal conductivity in the radial direction which is assumed to be 400 W/m·K (same as copper) 

and 4000 W/m·K in the axial orientation. This setting is widely used in the engineering for simplifying 

the simulation calculation though with acceptable accuracies. 

Table 2 Materials Properties of major components in the TEG system 

Parameters Copper plate 
Copper 

connector 
Ceramic Plate Insulation material Heat pipe 

Thermal conductivity 

(W/m·K) 
400 400 180 0.022 

400 (Radial)  

4000 (Axial) 

 

The thermal conductivity of heating and cooling plates is set at 400 W/m·K. The dielectric material, 

Aluminium Nitride (AlN) ceramic, whose thermal conductivity is assumed to be 180 W/m·K, is 

designed concentrically to separate the copper plates and the TEG legs. The MicroFoam® insulation 

material, whose thermal conductivity is set as constant at 0.022 W/m·K, is installed to prevent the heat 

loss between the exhaust and the coolant, This insulation material is used in this case due to its stable 

thermal performance across the high-temperature range.  

The thermometric material Bismuth Telluride Bi2Te3, which is widely available in the common 

market, is electrically connected in series. Since the TEG thermal properties highly vary under 

changing temperature conditions, all the relevant properties are set as temperature-dependent variables 

as shown in Table 3. The interpolations are used here to estimate the Seebeck coefficient, thermal 

conductivities, and electrical conductivities of the n-type and p-type thermoelectric legs. 

Table 3 Temperature-dependent polynomials of thermoelectric materials properties  

Thermoelectric 

Leg 

Seebeck coefficient, α 
(V/K) 

Thermal conductivity, λ 

(W/m·K) 
Electrical conductivity, σ 

(S/m) 

n-type 
2.0 × 10-13T3 + 1.0 × 10-9T2 – 9.0 

x 10-07T + 8.0 x 10-6 

-4.0 × 10-8T3 + 5.0 × 10-5T2 – 

2.6 × 10-4T + 5.1 

-2.6× 10-3T3 + 4.60T2 – 

2.7× 103T + 5.8 × 105 

p-type 
-3.0 × 10-14T3 – 3.0 × 10-9T2 + 2.0 

× 10-6T - 0.20 × 10-4 

2.0 × 10-7T3 - 0.20 × 10-4T2 + 

8.0 × 10-4T - 7.8 

-2.6× 10-3T3 + 4.60T2 – 

2.7× 103T + 5.8 × 105 

 

2.3. Boundary Conditions and heat transfer equation 

Many topologies and shapes of the TEG system have been studied in literature (longitudinal, 

hexagonal transverse, circular, etc.). However, the basic models of heat transfer are not improved 

fundamentally. Accordingly, this concentric TEG repeat unit is fully assessed in this paper. 

Considering the function of TEG, the exhaust heat is needed to be extracted from the heat sinks of  the 

TEG, resulting in exhaust temperature reduction at every repeat unit implying that 𝑇𝑒,𝑖 > 𝑇𝑒,𝑖+1 , in 



other words, the later TEG performance is lower than the previous one. On the other hand, in the 

coolant loop, the temperature rise is usually within 3˚C due to the high mass flow rate. The coolant 

should be heated by the heat sinks of the TEG, which means 𝑇𝑤,𝑖 < 𝑇𝑤,𝑖+1 in the direction of the 

coolant flow. Considering the cases in this study, it is assumed that the TEG repeat unit share the same 

hot source and cold source temperature for power output evaluation only. The assumption is not 

considered in the case of fluid flow simulations. Therefore, the heat extraction by heat pipes per unit 

due to the power generation can be expressed as; 

∑ 𝑄ℎ
𝑖 (𝑡)𝑛

𝑖=1               (1) 

where i is the number of repeat unit, n is the number of segregated TEG modules placed in series. And 

Qh is the useful heat from the exhaust flow which is absorbed by the heat sinks and heat pipes as seen 

in Fig.1.  Qh can be obtained by applying the heat transfer equations under Cauchy boundary condition: 

𝑄ℎ
𝑖 (𝑡) = ℎ𝑒

𝑖 ∙ 𝐴𝑒
𝑖 ∙ (𝑇𝑒,𝑎𝑣𝑔

𝑖 (𝑡) − 𝑇𝑒
𝑖(𝑡))         (2) 

where  ℎ𝑒
𝑖 , 𝐴𝑒

𝑖   and 𝑇𝑒
𝑖 are heat transfer coefficients, interfacial area and surface temperature of hot side 

heat sinks, respectively. 𝑇𝑒,𝑎𝑣𝑔
𝑖  is the average fluid temperature on the hot side heat exchanger and it is 

the value used to solve the one-dimensional temperature distribution on each TE module, expressed 

as; 

𝑇𝑒,𝑎𝑣𝑔
𝑖 (𝑡) = (𝑇𝑒,𝑖𝑛

𝑖 (𝑡) + 𝑇𝑒,𝑜𝑢𝑡
𝑖 (𝑡)) 2⁄          (3) 

where 𝑇𝑒,𝑖𝑛
𝑖 (𝑡) = 𝑇𝑒,𝑜𝑢𝑡

𝑖−1 (𝑡) and 𝑇𝑒,𝑜𝑢𝑡
𝑖 (𝑡) = 𝑇𝑒,𝑖𝑛

𝑖+1(𝑡) , this means that the exhaust inlet temperature 

𝑇𝑒,𝑖𝑛
𝑖 , at each unit, is depended on the previous exhaust outlet temperature from the upper stream. The 

outlet temperature 𝑇𝑒,𝑜𝑢𝑡
𝑖  subsequently become the inlet boundary condition for the lower streams in 

turn. The same settings can be applied at the coolant side, the heat that is extracted from exhaust is 

eventually applied in heating up the coolant which can be expressed as; 

∑ 𝑄𝑐
𝑖(𝑡) = ∑ ℎ𝑤

𝑖 · 𝐴𝑤
𝑖 ∙ (𝑇𝑤

𝑖 (𝑡) − 𝑇𝑤,𝑎𝑣𝑔
𝑖 (𝑡))𝑛

𝑖=1  𝑛
𝑖=1          (4) 

where  ℎ𝑤
𝑖 , 𝐴𝑤

𝑖   and 𝑇𝑤
𝑖  are heat transfer coefficients, interfacial area and surface temperature of cold 

side heat sinks, respectively.  𝑇𝑤,𝑎𝑣𝑔
𝑖  is the average fluid temperature on the hot side heat exchanger. 

Therefore in the ith repeat unit, the power output, 𝑃𝑡𝑒𝑔
𝑖  is obtained by four parallel-linked concentric 

TEG modules, expressed as; 



𝑃𝑡𝑒𝑔
𝑖 = 𝑄ℎ

𝑖 (𝑡) − 𝑄𝑐
𝑖(𝑡) = ℎ𝑒

𝑖 ∙ 𝐴𝑒
𝑖 ∙ (𝑇𝑒,𝑎𝑣𝑔

𝑖 (𝑡) − 𝑇𝑒
𝑖(𝑡)) − ℎ𝑤

𝑖 · 𝐴𝑤
𝑖 ∙ (𝑇𝑤

𝑖 (𝑡) − 𝑇𝑤,𝑎𝑣𝑔
𝑖 (𝑡))  (5) 

Totally, the power output of the configured system can be summed up as; 

𝑃𝑡𝑜𝑡 = ∑ 𝑃𝑡𝑒𝑔
𝑖𝑛

𝑖=1 = ∑ (ℎ𝑒
𝑖 ∙ 𝐴𝑒

𝑖 ∙ (𝑇𝑒,𝑎𝑣𝑔
𝑖 (𝑡) − 𝑇𝑒

𝑖(𝑡)) − ℎ𝑤
𝑖 · 𝐴𝑤

𝑖 ∙ (𝑇𝑤,𝑎𝑣𝑔
𝑖 (𝑡) − 𝑇𝑤

𝑖 (𝑡)))𝑛
𝑖=1   (6) 

It is worthwhile to note that both ℎ𝑒
𝑖  and ℎ𝑤

𝑖  are local averaged-values which are reciprocally 

associated with engine load and exhaust conditions. These parameters are not only sound indicators of 

heat transfer enhancement but also used to identify the type of available enhancement methods. 

Therefore, in this simulations, the both ℎ𝑒
𝑖   and ℎ𝑐

𝑖  are varied from 50 W/m2·K to 1200 W/m2·K and 

from 1000 W/m2·K to 20000 W/m2·K, respectively. In addition, the temperature of the exhaust source 

and the coolant is set as 823 K and 323 K, respectively. The parameter analysis of external load 

resistance, Rex, is carried out by varying the value from 0 Ω to 7.5 Ω at a step of 0.1 Ω.  

Besides the classical heat transfer equations, the thermoelectric effect is integrated and simulated 

by using the coupled-field equation as; 

− ∇⃑⃑ ((𝜎𝛼2𝑇 + 𝜆)∇⃑⃑ 𝑇) − ∇⃑⃑ (𝜎𝛼𝑇∇⃑⃑ 𝑉) = 𝜎 ((∇⃑⃑ 𝑉)
2
+ 𝛼∇⃑⃑ 𝑇∇⃑⃑ 𝑉)     (7) 

∇⃑⃑ (𝜎𝛼∇⃑⃑ 𝑇) + ∇⃑⃑ (𝜎∇⃑⃑ 𝑉) = 0           (8) 

where 𝜎, 𝛼, and 𝜆 are the electrical conductivity, Seebeck coefficient and the thermal conductivity of 

thermoelectric legs, respectively. In order to solve these partial differential equations (PDE) [36], the 

Weak Form PDE function is coded into a physical model builder in the COMSOL Multiphysics 

Software. Therefore, a 3D geometry of the repeat unit is discretized, and the coupled solutions can be 

solved based on the above boundary conditions. 

3. Results and discussion 

3.1. System performance of repeated TEG unit 

In the simulated cases, the best results of the repeated Bi2Te3-based TEG unit are shown in Fig. 3 

(Parallel linked among the four concentric TEG modules). The major features of the TEG are; matched 

load voltage, matched load current and matched load power as shown in U-I-P curves of Fig.3b. The 

matched load voltage is obtained at 4.5 V when the matched load resistance reaches to 0.7 Ω (which 

is RL/4, a quarter of each modular resistance of 2.8 Ω). Meanwhile, the maximum output power is 

achieved at 29.8 W for the same load resistance condition in which the match load output current is 



6.62A which passes through the terminal connectors. The Water-TEG-Exhaust configuration for the 

radial direction outperforms the Exhaust-TEG-Water configuration shown in Fig.3d which represents 

the power rating.  

For the Exhaust-TEG-Water configuration, the matched load power achieved is less than 5 W which 

is computed for a total of 4 TEG modules even when the best convective conditions are applied. A 

limited heat transfer area could be the major reason that causes such undesired results. To compare 

Fig.3a to Fig.3c, the temperature at hot side heat pipe are kept at 555 K and 371 K respectively. There 

  

(a) (b) 

  

(c) (d) 

Fig.3. Repeated TEG temperature distribution simulation at (a) external exhaust channel and (c) internal exhaust channel  

with matched U-I-V curves at (b) external and (d) intermal exhaust channel configuration respectively 
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Load Resistance at 0.7 (Ω) 



is still room for improvement to increase the hot side temperature of the TEG legs. However, it should 

be noted that the fin stacks, which are not simulated in this case, might contribute to higher heat transfer 

coefficient at the interface of the exhaust and the heat pipes. The main obstacles to applying extra fin 

stacks are the limited space within the standard exhaust pipe. The advantage of the Water-TEG-

Exhaust configuration is that the fin stacks can easily be applied to the hot side heat pipe at the external 

channel. Therefore, a higher power rating could be anticipated. 

To maintain a sustained temperature difference at both sides of the TEG, heat pipes are deployed in 

our cases by means of integrating them with the concentric cooling/heating copper blocks. The main 

reason for such deployment is to reduce the thermal resistance of the heat sinks at both ends of the 

TEG surfaces. As shown in Fig.4a and Fig.4b, the cooling block can be maintained at 401.7 K while 

  

(a) (b)  

  

(c)  (d)  
Fig.4. Thermal performance of thermoelectric power generator system at (a) cooling blocks (b) heating block (c) cross 

section of TEG modules and (d) the cut out through axisymmetric line 
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the heating block can be achieved at 555.7 K. Both copper blocks show excellent temperature and even 

distribution of temperature which help to maintain the temperature of TEG legs within each module. 

Therefore, a proper temperature distribution within TEG legs can be obtained as seen in Fig.4c where 

the temperature difference within the module is about 20 K in the radial direction of the exhaust flow. 

In addition to the arrangement of heat pipes, it is worthy to note that proper insulations around the 

TEG modules also contribute to maintaining a bigger temperature difference as shown in Fig.4d. The 

thermal bridging may happen without sufficient thermal insulation at the junctions between heating 

blocks and cooling blocks. This may result in undesirable heat loss to the water coolant directly. As 

seen in Fig.4d, the TEG modules are tightly sandwiched between stacked cooling and heating blocks. 

Therefore, thermal insulation material with high performance are required and are carefully placed 

between the blocks to solve such issues. In this case, the TEG module operates at its optimal 

temperature condition ranging from 473 K to 523 K. The figure of merit, ZT value of 0.867 is achieved 

which is acceptable at the current stage regarding the conversion efficiency. 

Due to the unique characteristic of the flow and heat transfer pattern, the correlations of combined 

internal and external flow correlations (Aligned or staggered tube banks) cannot be applied in this case 

[37]. Alternatively, the average heat transfer coefficients value ℎ̅ at the local interface is adopted as 

the indicators of heat transfer enhancement.  

As can be seen from the curves of Fig.5a, the increases of heat transfer coefficient of either exhaust 

gas or coolant reveal a general trend of steady rise of the power output though the margins of the rises 

varied. And the trends of improvement in power generation could be recognised in two stages from 

both curves. Below the value of 10000 W/m2·K for the water coolant heat transfer coefficient, the 

  

(a) (b) 

Fig.5. Power output contour of TEG system under different heat transfer enhancement method for (a) external and (b) internal 

exhaust channel respectively 



power output increase rapidly with coolant side heat enhancement. However, the power out of TEG 

increases at a slower rate when it comes to the later stage. Same as the water coolant side, there are 

upward trends in power generation of the TEG, and the curves become more linearly when the heat 

transfer coefficient increased. In Fig5b, it is noted that the heat transfer enhancement at exhaust side 

is not effective as expected although the power output increases with higher heat convection. The 

limited narrow area is the main reason that the waste heat from exhaust is not extracted effectively by 

the smaller contact area with the heat pipes. However, at water coolant side, the improvements of 

power output are clearly noticeable. Higher water convection results in improved heat flux through the 

TEG system and increase the final power output of the repeat unit.  

  

(a) (b) 

  

(c) (d) 

Fig.6. Performance curves of TEG system with internal exhaust channel: maximum power output versus 

load resistance and match load voltage versus match load current under enhanced heat convection of (a) and 

(b) the exhaust gas, (c) and (d) the water coolant 



3.2 Performance Comparisons  

In the exhaust pipe of modern vehicles, heat transfer coefficient ranges from 100 W/m2·K to 1500 

W/m2·K according to the practical engine performance. The exhaust flows steadily in the turbulent 

region. On the other hand, the heat transfer coefficient of the water coolant in vehicle radiators is in 

the range of 5000 W/m2·K to 15000 W/m2·K within the fin stacks. Nevertheless, the performance of 

the TEG is closely related to the layout of the heat source and heat sinks, where careful thermal designs 

of the TEG heat exchanger should be examined in order to attain better heat transfer performance. 

In the radial direction, the heat loss of the conventional exhaust pipe takes place at the pipe surface 

to the ambient atmosphere. Given that the functions of TEG, the waste heat with high entropy, should 

be maximally recuperated along the path of exhaust stream flow. In this study, two configurations are 

simulated and the comparisons between them is discussed. As shown in Fig.6 and Fig.7, both heat 

source and cold source impose enormous impacts on the output power of the TEGs. However, the 

overall power rating of the Water-TEG-Exhaust configuration is much better than the Exhaust-TEG-

Water configuration.  

  

(a) (b) 

  

(c) (d) 



Fig.7. Performance curves of TEG system with external exhaust channel: maximum power output versus 

load resistance and match load voltage versus match load current under enhanced heat convection of (a) and 

(b) the exhaust gas, (c) and (d) the water coolant 

In Fig.6a, the output power increases significantly with higher heat transfer coefficient. The U-I 

profile changes correspondingly under the same trend as seen in Fig.6b. Interestingly, the trend in heat 

transfer improvement at coolant side, which is presented in Fig.6c, shows a disproportional increase 

in output power for the Exhaust-TEG-Water configuration. Although the output power of the TEG still 

increases, a weaker impact of higher heat transfer coefficient is noted in Fig.6c and Fig.6d. The growth 

of both output voltage and output current become inactive as shown in Fig.6d. The resistance of TEG, 

as presented as the slope of the curves in Fig.6d, are affected by the enhanced coolant flow. The results 

of U-I curves in Fig.6d tend to be normalised to an upper limit when the heat transfer coefficient 

increases. 

In comparison to with the results of Exhaust-TEG-Water configuration in Fig.6, the Water-TEG-

Exhaust configuration shows better TEG performance in terms of output power, which is consistent 

with heat transfer coefficient improvement. It is mainly attributed to the larger surface area of the 

external channel. More heat flux can be transferred into the heating blocks under same heat transfer 

coefficient conditions. Another main benefit of this setting is that extra fin stacks can be configured 

on the heat pipes due to the ample space available in the exhaust channel. In such contexts, the higher 

heat flux can be achieved. 

3.3 Temperature distribution  

The results of temperature distribution in the radial direction of the TEG system are shown in Fig. 

8. The two different configurations result in different heating impacts on the components in the TEG 

system. With the higher heat transfer coefficient at the exhaust channel, the TEG system exhibits a 

higher temperature profile at the hot side heat pipe. This is consistent with other investigations where 

a major decline of hot side temperature and temperature gradient are noted in both Fig.8a and Fig.8b 

due to the parameter variations at the hot side of the TEG module. The largest temperature difference 

at hot side heat pipe is 225.8 K while the difference of temperature gradient is maintained at 144 K. 

This decline inevitably contributes to adverse effects on the power output of the TEG system. 

Therefore, extra heat enhancement measures are needed in this regard. The optimal temperature of 

Bi2Te3 based TEG should settle in the range of 450 K to 520 K according to the current material 

development. Any temperature rise above this region will make TEG legs less efficient and a higher 

risk of thermal shock to the solder materials. Additionally, the conventional copper-water heat pipe 

here may be challenged by such temperature rise and therefore could not adhere to the operational 



temperature ranges. As shown in hw-20000-hg-1200 curve of Fig.8a, only such case is suitable for the 

optimal condition of both the heat pipes and the TEG. The overall temperature profile can be improved 

and reduced by the application of fins stacks in the future. 

On the cold side, the heat transfer coefficient of water coolant has minimal effects on the 

temperature distribution of the TEG system. It is also noted that the temperature distribution of the 

exhaust-outside system is generally higher than that of the exhaust-inside system with different heat 

transfer coefficient, which is well consistent with the previous results in terms of the power output for 

these two systems. In contrast, the difference of the maximum temperature between these two systems 

is 104.9 K, but the difference of the maximum temperature between these two systems is merely 2.6 

K. Furthermore, the highest temperature gradient of the exhaust-outside system is 300.7 K which is 

higher than that of the exhaust-inside system. The reason for such a variance is as a result of the 

enhanced exhaust heat exchange that is arranged in the external channel. 

In addition to these four curves in each schematic, there are three shadow parts in these two 

schematics which indicate the copper-water heat pipe upper-temperature range, including the optimal 

temperature ranges for Bi2TE3 material and automotive coolant temperature range.  In practice, these 

three areas are the optimum working temperature for the system when it is assembled in the automotive. 

Among all these eight curves, it can be noted that the temperature distribution is located at the optimal 

temperature range for Bi2TE3 material and copper-water heat pipe upper-temperature range only when 

the exhaust is arranged at external channel and the heat transfer coefficient when water and exhaust 

side is set at 20000 W/m2·K and 1200 W/m2·K respectively. In Fig.8b, none of the four curves is 

located in the optimal temperature range for Bi2TE3 material in the schematic of the temperature 

  
(a)  (b) 

Fig.8. Schematic of temperature distribution and heat flow across TEG system in radial direction for (a)  

external and (b) internal exhaust channel 



distribution of the exhaust-inside system, which means this kind arrangement is not suitable for the 

concentric cylindrical TEG system, or an enhancement for heat transfer is needed.  

This temperature distribution analysis also give a guidance for orientating the concentric cylindrical 

TEG system in the whole exhaust system in real application. The actual temperature profiles in the 

TEG should be carefully into account, in order to fit the optimal operational condition for maximum 

power output of TEG. In addition, it is useful for engineers to seek proper engineering materials and 

high temperature sealants under all the temperature limits based on our analysis. 

4. Conclusions 

In this paper, a multiphysics model is developed and simulated in multiscale, in which the heat 

transfer coefficient of the exhaust and the coolant in channels, as well as the heat conduction and 

electrical conduction in thermoelectric materials, are conjugated and resolved to comprehensible levels. 

The model is based on an analytical solution of the nonlinear heat transport equation for thermoelectric, 

which enable it to take into account the temperature-dependent material properties of TE elements. 

The performance of a novel compact thermoelectric power generation system is studied over a full 

range of operating parameters regarding the heat transfer enhancements at both the cold and hot sources. 

From these results, it can be concluded that  

 Heat pipe-assisted heat enhancement method is approved to be an effective way to improve the 

TEG performance. Encapsulated heat pipes arrays in the radial direction of the exhaust pipe 

help to enhance heat effectively from an external fluid stream.  

 The features of heat pipes such as temperature flattening, temperature control and thermal diode, 

may help TEG modules for autonomous, maintenance-free operation under fluctuating heating 

sources in the future. The spatial distribution of the temperature rise is considerately responsive 

by the variation of heating condition from exhaust streams. 

 The electric power generation of the device strongly depends on the heat transfer enhancement. 

 The proposed universal structure proved to be useful to systematically provide a broad design 

and operating parameters that can optimise the device performance and lower its cost. 

 The actual temperature profiles analysis give a guidance for orientating the concentric 

cylindrical TEG system in the whole exhaust system and seeking proper materials in real 

application.  

Endurance test versus performance test is needed in future experiment due to the over limitation of 

conventional copper-water heat pipes. The cascaded configurations of different types of heat pipes 

could be a solution which will be validated in our experiment. 
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