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Abstract 
 

A brand new HfB2-SiC-MoSi2 coating was fabricated to protect carbon/carbon (C/C) 

composites with inner SiC coating from oxidation, which was prepared by in-situ 

synthesis. In this paper, the C/C substrate with the protection of the HfB2-SiC-MoSi2/SiC 

coating could resist oxidation in 1773 K air for 408 h. The double coating also presented 

expected oxidation protection performance at dynamic oxidation environment. In the test 

process, the surface coating was oxidized to form a self-sealing silicate glass layer 

containing HfO2 and HfSiO4, which could hinder crack propagation in coating. 

 

Keywords: C/C composites; Oxidation; Surface analysis; Heat treatment 

 

 
 
 Corresponding author. Tel.: +86 29-88492272 (H. Li), +86 29-88491834 (Y. Zhang); fax: +86 29-88492642 
(H. Li), : +86 29-88492642 (Y. Zhang).  

E-mail address: lihejun@nwpu.edu.cn (H. Li), zhangyulei@nwpu.edu.cn (Y. Zhang).



2 

 

1. Introduction 

 

In the fields of aeronautics and astronautics, carbon/carbon (C/C) composites are a kind of the 

most promising thermal structural materials [1-4], which are noted for their outstanding 

mechanical properties from low temperature to very high temperature, for instance, high creep 

resistance, low efficient of thermal expansion  and suitable resistance to thermal shock [5-7]. 

Just because there are so many special characteristics, they are preferable material for 

aeronautical and space application, such as turbine engines, leading edges of reentry vehicles, 

rocket nozzle and so on [8]. But their wide applications are limited owing to the easy oxidation 

above 723 K in atmospheric conditions [9-10]. The multilayer protective layer is a pivotal 

strategy to solve the problem [11-12]. SiC coating has low thermal expansion coefficient and 

appropriate compatibility with C/C composites. It can also form dense and continuous SiO2 

glass layer during oxidation, so SiC is considered to be the inner coating of C/C composites. 

However, SiO2 glass layer is volatile more than 1500, which can form some defects in the glass 

layer. 

 

Recently, UHTCs of borides have attracted many attentions because of their high melting point, 

high hardness, excellent oxidation resistance performance and good chemical stability [13-15]. 

In addition, their oxides also present as the inlay in SiO2 glass, which will improve the stability 

of the silicate glass and block oxygen into substrate [16-17]. It is helpful to decrease the 

generation of the cracks, and lessen the penetration of oxygen, which are all conducive to 

increase the anti-oxidation of the sample and then protect C/C substrate better. Therefore, 

introducing transition-metal borides into the SiC coatings is promising to broaden their 

application prospect. 
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Among the transition metal borides ceramic, hafnium diboride (HfB2) [18-20] as one of 

promising candidates has attracted much attention in recent years, which has a series of 

unexceptionable performances, for instance, excellent resistance to oxidation and thermal 

shock. The method of in-situ synthesis is easy to fabricate the UHTCs borides at the lower 

temperature [21]. During the preparation process, many reactions may occur to generate the 

desired phases. 

 

In this research, the Si, C, B2O3, HfO2 and Mo powders as raw materials prepared the UHTCs 

HfB2-SiC-MoSi2 oxidation protective layer through in-situ synthesis on the surface of C/C 

composites with SiC coating. Furthermore, the dynamic anti-oxidation of HfB2-SiC-MoSi2 

coating from room temperature to 1673 K had been investigated. Meanwhile, the microstructure, 

oxidation protection behavior and mechanism of the samples at 1773 K also were investigated. 

 

 

2. Experimental procedures 

 

The oxidation protective coatings were applied on 2-D C/C composites substrates, which were cut 

into little specimens (8×8×8 cm
3
). The density of the C/C substrate was 1.70 g/cm

3
. Before 

applying the coatings, the specimen was polished first and then ultrasonically cleaned. The 

coating contained SiC layer and HfB2-SiC-MoSi2 layer was applied on the C/C substrate. The 

pack cementation technique with Graphite (20-40 wt.%) and Si (60-80 wt.%) as raw materials 

were used for fabricating the inner SiC coating [21]. While the raw materials of B2O3 (10-25 

wt.%), graphite (3-15 wt.%), HfO2 (25-40 wt.%), Mo (5-10 wt.%) and Si (40-60 wt.%) powders 

could fabricate the outer HfB2 (30 wt.%)-SiC (58 wt.%)-MoSi2 (12 wt.%) coating through in-
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situ synthesis. All the specimens and raw powders were placed in the graphite crucible with a 

heat treatment of heating up 5-10 K/min, then thermal insulation for 2 hours at 2373 K in 

normal argon atmosphere. 

 

The isothermal oxidation test and thermo gravimetric analysis (TGA) test was used for 

researching the oxidation resistance of the samples. An isothermal oxidation test was 

implemented in 1773 K air and the samples were placed in an oxidation furnace. The samples 

were weighed by an analytical balance whose sensitivity is ± 0.1 mg. The samples were taken 

out of the oxidation furnace at set intervals during oxidation. As time went on, the accumulated 

weight alterations rates were calculated. The TGA test with the heating rate of 10 K/min 

measured the dynamic oxidation resistance of the specimens whose weight alterations were 

recorded by thermogravimetry mode in air atmosphere from room temperature to 1673 K. The 

crystalline structure, microstructures and elemental distribution could be analyzed by X-ray 

diffraction (XRD), scanning electron microscope (SEM) and energy dispersive spectroscopy 

(EDS), respectively. And the time taken of each point for EDS data collection was 60 s. 

 

3. Experimental results and discussion 

 

3.1 Microstructure of the coatings 

 

An illustration diagram of the preparation process of outer HfB2-SiC-MoSi2 layer is shown in 

Fig.1 and it can be divided into four steps. At first, according to a certain proportion, the raw 

materials of Si, C, HfO2, B2O3 and Mo powders were used for packing the C/C with inner SiC 

coating, thereby making the samples surrounded by these powders in all directions. Then, 

during the heat-treatment of the samples at 2373 K, carbothermal reduction reaction as well as 

the solid reaction would occur among the raw materials, which would form the HfB2, SiC and 
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MoSi2 particles. Next, during the process of the in-situ reaction, due to the low melting point 

of silicon, molten silicon was formed, which would be helpful to form the outer HfB2-SiC-

MoSi2 coating. In addition, owing to the fluidity of the silicon melt, the formed coating 

materials were carried to penetrate into the inner coating, thus strengthening the bonding 

between inner and outer coating. Finally, the HfB2-SiC -MoSi2/SiC double coating was 

prepared on C/C substrates. 

 

The XRD pattern of HfB2-SiC-MoSi2 coating is shown in Fig.2. The HfB2-SiC-MoSi2 coating 

comprises HfB2, β-SiC, α-SiC and MoSi2 phases, they are all the desired products. The HfB2 

phase is obtained by the in-situ carbothermal reduction reaction to reduce HfO2 using B2O3 

and graphite. The SiC phase is made by Si and C powders, while the MoSi2 phase is made by 

Si and Mo powders with the solid reaction. All phases are acquired in the process of heat-

treatment, which proves the superiority of this method. The reactions can be drawn as follows: 

HfO2 (s) + B2O3 (s) +5C (s) → HfB2 (s) +5CO (g) (1) 

Si (g) + C (s) → SiC (s) (2) 
 

2Si (g) + Mo (s) → MoSi2 (s)   (3) 
 

 

The backscatter micrographs of the HfB2-SiC-MoSi2 coating are shown in Fig.3. As shown in 

Fig.3 (a), the outer coating is dense with a lot of white and grey particles distributed on its 

surface. Fig.3 (b) shows a higher magnification than Fig.3 (a), from which the coating includes 

of three kinds of grains (white, black and grey phases). Through XRD and spot analyses of 

EDS (Fig.3 (c)), the different grains are confirmed as HfB2 (white phase), SiC (black phase) 
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and MoSi2 (grey phase). The SiC grains bond closely and few gaps can be seen among them. 

In addition, the HfB2 and MoSi2 grains mainly exist in the interspaces among SiC grains, which 

indicates that the outer coating is formed by the combination of the three kinds of grains. The 

close bonding among the grains is conducive to establish a barrier to effectively hinder the 

penetration of oxygen, thus decreasing the possibility of oxidation occurred at the C/C substrate. 

 

In Fig.4 (a), the cross-section backscatter micrograph of the HfB2-SiC-MoSi2/SiC coated C/C 

is analyzed. The double layer coating has a thickness about 200-310µm, and no penetrating 

crack or obvious hole appears.  In addition, some coating materials actually penetrate into 

substrate through the defects, and the bonding strength of the matrix and coating is enhanced. 

The high magnification of Fig.4 (a) is shown in Fig.4 (b). No distinct interface of double 

coating can be observed, which shows a close combination between two coatings. Furthermore, 

some white HfB2 particles can be found in the inner coating owing to the penetration of the 

outer coating materials during preparing outer coating. Therefore, the penetration of outer 

coating materials into the inner coating will contribute to pad the defects of the inner coating 

and build a strong combination between the double coatings. As shown in Fig.4 (c), the inner 

SiC coating combines closely with C/C substrate and no distinct gap was observed between 

them. Owing to the penetration of the coating materials into the voids of substrate, some carbon 

fibers were wrapped as Fig.4 (d). Through spot EDS analyses (Fig.4 (e)), the materials can be 

confirmed as SiC.  Fig.4 (f) presents the line analyses of HfB2-SiC-MoSi2 coating. Four elements 

are detected which present different trends, and the curves can be divided into two parts. The Si 

element is widespread in the inner and outer coating and most of the C element exists in the 

inner part, the Hf and Mo element is mainly present in 130-330 µm. In summary, the coating 
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presents HfB2-SiC-MoSi2/SiC double layer structure, and it is coincident with our prospective 

coating. 

 

3.2 The 1773 K isothermal oxidation test of HfB2-SiC-MoSi2/SiC coating 

 

The 1773 K isothermal oxidation test in air was carried out to survey the oxidation resistance 

of the HfB2-SiC-MoSi2/SiC coated C/C composites as shown in Fig.5. The oxidation curve of 

C/C with SiC coating exhibits a rapid increase trend. The weight loss of the samples reaches to 

4.15 % after testing 54 h, which presents a finite oxidation resistance. While after applying the 

outer HfB2-SiC-MoSi2 coating, the weight loss rate of the samples drops to 0.76 % after testing 

408 h, which indicates that the oxidation resistance of the coating is further improved. 

Furthermore, The C/SiC/MoSi2-Si coatings prepared by zhang et al. [23] can protect C/C for 

300 h under the same conditions with weight loss 1.4 %. It proves the introduction ofHfB2 phase 

to effectively increase the oxidation resistance of silicon-based ceramic coating. 

 

XRD pattern of C/C with HfB2-SiC-MoSi2/SiC coating after oxidation 408 h is shown in Fig.6.  

After a period of time of oxidation, many oxidation products are generated. Strong SiO2 peaks 

are detected in XRD, which means the generation of the silicate glass. Because of the self-

sealing performance, the formed silicate glass can fill some flaws of coating and protect C/C 

substrate. HfO2 peaks appear, which is the solid oxidation product of HfB2. HfO2 is a stable 

transition metal oxide, whose presence will improve the glass layer stability and viscosity. 

Except SiO2 and HfO2 peaks, HfSiO4 peak can also be found, which is generated due to the 
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reaction of SiO2 and HfO2. HfSiO4 phase is thermal stable with a high melting point (>2900), 

whose formation will enhance the oxidation protection of the glass layer effectively. 

 

According to Fig.7 (a), the surface backscatter micrograph of HfB2-SiC-MoSi2/SiC coated C/C 

after oxidation 408 h at 1773 K is shown. During experiment, the specimens were removed at 

set intervals, which would generate great temperature difference, and create micro-cracks.  

Although an intact silicate glass layer over the coating, some micro-cracks can still form owing 

to the thermal expansion coefficients difference with coating, it can provide a way for oxygen 

into substrate, so increasing the likelihood of oxidation occurred at inner. And a small amount 

of bubbles exist in the glass layer. In addition, a mass of white grains consist in the silicate 

glass layer. The magnification of the white particles is shown in Fig.7 (b).  Parts of the white 

particles are in fact embedded in the black glass layer. By EDS analyse (shown in Fig.7 (d)), 

the black layer is confirmed as SiO2 glass, and the white particles are composed of HfO2 and 

HfSiO4. Since the SiO2 glass possesses fluidity at high temperature and the HfSiO4 phase is 

formed owing to the reaction between the SiO2 and HfO2, the HfO2 and HfSiO4 grains are 

embedded in the silicate glass through a close chemical bonding, which presents as immiscible 

phases in SiO2 glass and increases its viscosity. As shown in Fig.7 (c), crack deflecting or 

termination appears in the surrounding of the white grains, it might be caused by the “pinning 

effect” played by HfO2 and HfSiO4 grains, thus beneficial to expending the cracks energy, and 

effectively promoting the oxidation resistance of samples. 

 

Fig.8 shows the cross-section backscatter micrograph of HfB2-SiC-MoSi2/SiC coating after 

testing for 408 h. In Fig.8 (a), no penetration crack can be observed in the section, which proves 
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its good oxidation resistance. Fig.8 (b) presents the magnification of Fig.8 (a) after oxidation. 

Although some holes are existed because of the coating being oxidized, a large part of the 

coating is still very dense. Besides, plentiful white grains can still be found on the surface. 

Through EDS analysis (Fig.8 (f)), the white particles in the outer part of the coating can be 

recognized as the solid oxidation products of HfSiO4, while the white particles in the inner part 

of the coating are the un-reacted HfB2. Therefore, the external of the coating is oxidized 

primarily.  The magnification of the outer part of the coating is shown in Fig.8 (c). The outer 

part of the coating consists of two zones. One zone is the loose and porous region, caused from 

oxidation.  Another near the substrate is the fine and close region, thus shows an un-reacted 

zone. Fig.8 (d) shows the magnification of Fig.8 (a) part B. Part of the carbon fibers wrapped 

by coating materials can be found from it. Through EDS analyses (Fig.8 (f)), O element is detected 

in the SiC coating materials, which manifests SiC being oxidized due to the penetration of 

oxygen. However, owing to the protection of SiC, the wrapped carbon fibers are not oxidized. 

In Fig.8 (e), due to the oxidation of carbon, many holes exist in the substrate. According to the 

different oxidation levels, the substrate is divided into two oxidation zones, one zone is higher 

oxidation zone, and another is lower oxidation zone. In the former, the substrate is very dense, 

mainly composed of carbon fibers and pyrolytic carbon, therefore, more voids can be observed 

due to the fast oxidation of carbon. While in the lower oxidation zone, many coating materials 

appears in the substrate because of the penetration of them during preparing the inner SiC 

coating, which can be good for protecting the C/C substrate, therefore, fewer voids are formed. 

 

3.3 Dynamic oxidation test of HfB2-SiC-MoSi2 coating 

 

The Dynamic oxidation test of the HfB2-SiC-MoSi2/SiC coated C/C is investigated in a wide 

temperature range from room temperature to 1673 K with the heating rate of 10 K/min as shown 
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in Fig.9. After the TGA experiment, the weight losses rates of the C/C substrates coated with 

single coating and double coating are 19.65 % and 10.29 %, respectively. The coated samples 

in the oxidation process of a wide temperature range can be divided into three stages as shown 

in Fig.9 (a): A stage (room temperature-800K), B stage (800 K-1400 K) and C stage (1400 K-

1673 K). At A stage, neither of two kinds of samples loses weight, but shows a slight weight 

gain phenomenon. The high magnification of B stage is shown in Fig.9 (b). The single SiC 

coating displays weak oxidation resistance above 800 K, but with the modification of HfB2 and 

MoSi2 phases, whose oxidation protection is observably promoted, it reveals the remarkable 

oxidation resistance of HfB2 in a wide temperature range. In general, silica-based coating can 

form fluid SiO2 glass at temperature above 1400 K, thus it has the expected oxidation protective 

effect in this temperature range, but the SiO2 glass layer cannot protect substrates effectively 

from 800 K to 1473 K, which causes large weight loss. Owing to the oxidation of HfB2 phase, 

B2O3 is a crucial oxidation product in the range from 800K to 1400 K, which can heal some 

defects in the coating and provide effective oxidation protection before the generation of the 

SiO2 glass. The high magnification of C stage is shown in Fig.9 (c). When the temperature 

reaches the oxidation protection range of silicon-based ceramic, the vast defects have existed 

in the coating and substrate, thus the SiC coated sample continues losing weight. However, the 

TGA curve of HfB2-SiC-MoSi2/SiC coated C/C flattens out gradually owing to the formation 

of Hf-Si-O glass. In addition, the existence of MoSi2 phase is conducive to form denser SiO2 

glass layer and reduce the consumption of SiO2 glass [22], which can preferably inhibit the 
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entrance and spread of oxygen. Therefore, with the coexistence of HfB2 and MoSi2 phases, the 

samples present anticipant oxidation resistance in the TGA test. 

3.4 Anti-oxidation mechanism of the HfB2-SiC-MoSi2/SiC coating 

 

In order to analysis of oxidation mechanism, a schematic diagram of the HfB2-SiC-MoSi2/SiC 

coated C/C is shown as Fig.10.  Before oxidation, the double coatings including SiC and HfB2-

SiC-MoSi2 coating are applied on C/C specimens to prevent oxidation (Fig.10 (a)). The C/C 

substrates covers with coatings are exposed to the oxygen atmosphere at 1773 K. Under the 

attack of the oxygen, the coating materials can react with oxygen firstly, basing on the reactions 

(4)-(11). 

SiC (s) + 2O2 (g) → SiO2 (s) + CO2 (g) (4) 

2SiC (s) + 3O2 (g) → 2SiO2 (s) + 2CO (g) (5) 

2HfB2 (s) + 5O2 (g) → 2HfO2 (s) + 2B2O3 (s) (6) 

2MoSi2 (s) + 7O2 (g) → 2MoO3 (g) + 4SiO2 (s) (7) 

HfO2 (s) + SiO2 (s) → HfSiO4 (s) (8) 

2SiO2 (s) + SiC (s) → 3SiO (g) + CO (g) (9) 

2C (s) + O2 (g) → 2CO (g) (10) 

C (s) + O2 (g) → CO2 (g) (11) 
 

As shown in Fig.10 (b), at the initial period of oxidation, although many kinds of solid products 

generate, such as SiO2, B2O3 and HfO2, they can’t form a complete protective layer to block 

oxygen into the coating. In addition, some gas byproducts are also generated, which will be 

released from the sample and result in the weight loss. The SiC inner coating is oxidized to 

produce SiO gas (reaction (9)), which can consume the SiO2 protective layer, and cannot be 

removed quickly enough by the bubble migration. Moreover, it will prompt that the SiO2 glass 

generates bubbles and defects, which cannot completely self-cure. The oxidation of MoSi2 
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phase can produce moreSiO2, which means the formation of more dense of SiO2 glass layer 

offering the expected self-cure ability. Accompanied by the longer test time, more SiO2 glass 

are generated due to the oxidation of SiC and MoSi2, thus rapidly forming a continuous silicate 

glass layer, which can cover the defects and block the diffusion path of oxygen [23-24]. Owing 

to the fluidity of the SiO2 glass layer, the formed HfO2 particles are embedded in the silicate 

glass, thereby presenting as immiscible phases in it and increasing its viscosity and stability. 

Based on reaction (8), HfSiO4 particles are formed by the reaction of SiO2 and HfO2 (Fig.10 

(c)), which will serve as the reinforcing phase with HfO2 in the silicate glass layer. In Fig.10 

(d), because the volume change of coating and glass layer is different under unit temperature 

variation, some micro-cracks are formed [25-26]. However, because of the “pinning effect” of 

HfO2 and HfSiO4 particles in the silicate glass layer, the formed microcracks are forced to 

deflect and terminate, which decreases the size of cracks and effectively increase the oxidation 

protection of glass layer [27-28]. After a long time oxidation (Fig.10 (e)), some oxygen 

penetrates matrix and C/C is oxidized, accordingly some voids are formed. Moreover, some 

carbon fibers wrapped by the penetrated coating materials are protected from the oxidation. 

However, although a fraction of substrate is oxidized, the weight loss of the sample is only 

0.76% after oxidation 408 h at 1773 K in air and 10.29% after TGA test, which shows its 

remarkable oxidation protection ability. 

 

4. Conclusions 

The in-situ synthesis was used for fabricating outer HfB2-SiC-MoSi2 coating to apply on C/C 

with inner SiC coating. The double layer coating with the thickness about 200-310 µm could 
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protect C/C composites 408 h at 1773 K with 0.76 % weight loss. The dense and continuous 

silicate glass layer concluding HfO2 and HfSiO4 particles was formed during the oxidation. The 

HfO2 and HfSiO4 particles were inlayed in SiO2 glass, they could enhance its stability and 

viscosity and decrease the flaw size. By the end of oxidation test, the oxidation of the coating 

primarily occurred in coating external, and C/C was intact protected. 
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Figure captions 

 

Fig.1 Illustration diagram of the preparation of the outer HfB2-SiC-MoSi2 coating; 

 

Fig.2 XRD pattern of the outer HfB2-SiC-MoSi2 coating; 

 

Fig.3 (a) Low magnification and (b) high magnification backscatter micrographs of the HfB2-

SiC-MoSi2 coating; (c) spot EDS analyses of (b); 

 

Fig.4 (a) Low and (b) high magnification cross-section backscatter micrographs of the coated 

C/C composites; (c) high magnification backscatter micrograph of the interface between 

C/C composites and the inner SiC layer; (d) magnification of part A in Fig.4 (a); (e) spot 

EDS analyses of Fig.4 (d); (f) EDS element line analyses of the coating; 

Fig.5 Isothermal oxidation of the coated C/C composites in air at 1773 K; 

 

Fig.6 XRD pattern of the double layer coated C/C composites after oxidation at 1773 K in air 

for 408 h; 

Fig.7 (a) Surface backscatter micrograph of the double layer coated C/C composites after 

oxidation at 1773 K in air for 408 h; (b) magnification of part A in Fig.7 (a); (c) 

magnification of part B in Fig.7 (a); (d) spot EDS analyses of (b); 

Fig.8 (a) Low and (b) high magnification cross-section backscatter micrograph of the coated 

C/C composites after oxidation; (c) magnification of part A in Fig.8 (b); (d) magnification 

of part B in Fig.8 (a); (e) magnification of part C in Fig.8 (a); (f) spot EDS analyses of 

Fig.8 (b) and (d); 

Fig.9 TGA curves of coated C/C composites from room temperature to 1673 K; 
 

Fig.10 Oxidation protection schematic diagram of the HfB2-SiC-MoSi2/SiC coating for C/C 

composites. 
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Fig. 6 
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Fig.7 
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Fig.8 
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Fig.9 
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Highlights 

 

1. The UHTCs HfB2-SiC-MoSi2 coating was fabricated through in-situ synthesis. 

 

2. The coating could protect C/C for 408 h with only 0.76% mass loss in 1773K air. 

 

3. The SiO2 glass layer offered the expected self-cure ability. 

 

4. The Hf-Si-O glass layer was responsible for the good oxidation resistance. 

 


