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Abstract

Porous media are commonly found not only in the nature but also in industries.
Furthermore, porous media is an important research prototype for a diversity of dis-
ciplines. So far a REV (representative elementary volume) scale lattice Boltzmann
(LB) model has been proposed and popularly used for investigation on heat transfer
in porous media. Unfortunately, such model suffers from a serious drawback that
it can not address an investigated domain where the heat capacitance (the product
of density and specific heat capacity) of porous media varies spatially obviously.
Such deficit restricts dramatically its applicable range. The purpose of the present
work is to remedy such serious shortcoming in a simple way. Numerical validation
demonstrates the capability and reliability of the present model. In order to clearly
show the advantage of the present model, here a single-relaxation-time LB model is
taken as an example to illustrate how to remedy the shortcoming of previous mod-
els. Its multiple-relaxation-time counterpart can be established straightforwardly in
the same way.
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1 Introduction

Fluid saturated porous media exist popularly in the nature, such as soil and
fractured rocks. Many man-made materials (e.g. cements and metal foams)
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can be considered as porous media, too. Especially, a lot of biological tissues,
like bones and wood, can be treated as porous media rationally. Consequently,
saturated porous media, as an important research prototype, are commonly
found in a wide range of disciplines, for example, manufacture industry, ge-
ology, food engineering, bioscience, etc. [1]. Generally, for numerical research,
porous media can be modelled at three levels. Along the direction from fine
to coarse-gain level, they read [2]: pore-scale, the representative elementary
volume (REV) scale, and the domain scale. Considering the balance between
necessary information and computational cost, the REV scale description is
the most popular one adopted in engineering research [3].

During the past three decades, the lattice Boltzmann (LB) method has at-
tracted increasing attention due to its intrinsic advantages, such as relatively
easy treatment of complicated geometry and high parallel computing efficien-
cy[4]. Originally, the LB method was adopted as a powerful tool for pore-scale
modelling of porous media [5–7]. The first REV scale LB model for isothermal
fluid saturated porous media was proposed by Guo and Zhao [8]. Soon, the
same authors designed a thermal LB model for simulation of heat transfer
in porous media [9]. Due to its simplicity and reliability, their REV scale LB
model has been widely used for research on heat transfer in porous media,
such as phase change in porous media [10,11], natural convection in porous
media [12] and convective heat transfer in a channel partially filled by porous
media [13]. In order to improve the numerical stability of Guo’s thermal LB
porous media model, which is based on the so-called single-relaxation-time (S-
RT) approximation, a multiple-relaxation-time (MRT) counterpart has been
constructed by Liu et al. [10,14]. Recently, Wang et al. [15] introduced a lattice
kinetic SRT scheme to improve the numerical stability of Guo’s model.

Guo’s thermal LB porous media model is based on the assumption of local
equilibrium between saturating fluid and solid matrix, where heat transfer
behavior is governed by [9–15]

σ∂tT +∇αTuα = ∇ακm∇αT. (1)

In Eq.(1), uα and T are the volume-averaged velocity and temperature of
fluid in the saturated porous media, respectively. The parameter σ = ε+ (1−
ε)(ρCp)s/(ρCp)f denotes the ratio of heat capacitance (the product of density
and specific heat capacity) between saturated porous media and saturating
fluid, where ε is the porosity of the porous media, and (ρCp)s and (ρCp)f
are the heat capacitance of solid matrix and of saturating fluid, respectively.
In addition, κm = λ/(ρCp)f is the effective thermal diffusivity, where λ is the
effective thermal conductivity and (ρCp)f is the heat capacitance of saturating
fluid.

Recently, several thermal LB models for non-equilibrim heat transfer in fluid
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saturated porous media were published [16,17]. As the governing equation
of energy in a non-equilibrium status [16,17] is completely different from its
local-equilibrium counterpart [9–15], in the present study, we only concentrate
on the local-equilibrium scenarios where Eq.(1) is applicable. In fact, for most
engineering applications, the local-equilibrium assumption of saturated porous
media can work very well [1].

The most serious shortcoming of Guo’s [9] (or Guo’s-like [10–15]) thermal LB
model for heat transfer in porous media is that it can not address an investi-
gated domain where the heat capacitance varies spatially obviously (as shown
below, Guo’s model fails to reproduce real physical pictures even there is only
a small spatial change of heat capacitance within the investigated domain).
In Ref.[9] Guo et al. emphasized that, in order to recover the macroscopic
governing equation of heat transfer in porous media Eq.(1) exactly, one has to
assume σ varies extremely slowly in space. According to Eq.(1), one can see
that σ is equivalent to the heat capacitance of porous media.

Such shortcoming restricts dramatically the applicable range of Guo’s model,
since to satisfy practical requirements most realistic systems consist of multi-
layers of porous media where the specific heat capacities of those porous layers
differ with each other significantly [1,18,19]. Unfortunately, this deficit has not
been addressed yet [9–15], although more than a decade has elapsed since Guo
and Zhao proposed their model [9]. Either the available SRT-based [9,11–13,15]
or MRT-based [10,14] thermal LB models for local-equilibrium heat transfer
in porous media, all always suffer from such drawback.

The purpose of the present work is to remedy such serious shortcoming. The
rest of the present paper is organized as follow. In Section2, a thermal LB
model for local-equilibrium heat transfer in porous media is presented, which
can break the limitation of Guo’s model in a simple way. Numerical validation
for the present model is conducted in Section 3, followed by a conclusion on
this work.

2 LB model for heat transfer in porous media

In the present work, we take a SRT-based LB model as an example to show
how to remedy the aforementioned shortcoming of Guo’s (or Guo-like) ther-
mal LB porous media model [9–15] as Guo’s original model adopted the SRT
approximation. It is very straightforward to establish its MRT-based counter-
part in the same way. For example, to improve the MRT-based thermal porous
media model proposed by Liu et al. [10,14].
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2.1 Evolving equation

The SRT-based LB evolving equation for energy field used in the present study
is the same as that in previous publications [9,11–13]

gj(xα + cejαΔt, t+Δt)− gj(xα, t) = −τ−1
T [gj(xα, t)− g

(eq)
j (xα, t)]. (2)

In Eq.(2) τT is the dimensionless relaxation time for the pseudo-particle distri-
bution gj(xα, t) at space xα and instant t. cejα denotes the discrete velocities
and Δt means the time interval in the LB evolving equation.

However, in the present work, to remedy their shortcoming, the equilibrium
distribution g

(eq)
j in Eq.(2) is different from theirs and reads

g
(eq)
j =

⎧⎪⎨
⎪⎩
T (σ − σ0) + ωjT (σ0 +

cejαuα

c2s
), j = 0

ωjT (σ0 +
cejαuα

c2s
), j �= 0

(3)

where ωj represents the weight coefficients. σ0 is a reference value of σ so σ0

is a constant within the whole investigated domain. The parameter cs satis-
fies c2sδαβ =

∑
j
ωjc

2ejαejβ [20]. In the present work, the same as Ref. [9], a

D2Q5 lattice for two-dimensional problems is used for numerical validation.
For three-dimensional investigated domains, one can invoke a D3Q7 lattice
[21]. Such choice can save computational cost efficiently, which is crucial for
industrial-level simulation, as explained in our previous work [20].

The temperature T is obtained by

T =

∑
j
gj

σ
. (4)

and the effective thermal diffusivity κm is given by

κm = σ0(τT − 1/2)c2sΔt. (5)

According to Eq.(5), it is clear that in the present model the effective thermal
diffusivity depends on σ0 , rather than σ in Guo’s (or Guo’s-like) model (c.f.
Eq.(30) in Ref. [9]). As shown below, it is the key to remedy their shortcoming.

If the investigated domain is homogeneous, namely σ = σ0 within the whole
domain, the present model will reduce to Guo’s model [9]. Therefore, Guo’s
model can be regarded as a special case of the present model.

4



2.2 Multiscale expansion and recovered macroscopic equation

Equation (2) can be expanded in Taylor series as [4]

Δt(∂t + cejα∇α)gj +
Δt2

2
(∂t + cejα∇α)

2gj +
1

τT
[gj − g

(eq)
j ] = O(Δt3). (6)

Introducing the multiscale expansion ∂t = ε∂t1 + ε2∂t2, ∇α = ε∇α1 and gj =

g
(eq)
j + εg

(1)
j + ε2g

(2)
j +O(ε3) [9], we can sort Eq. (6) in terms of ε and ε2 as

(∂t1 + cejα∇α1)g
(eq)
j = − g

(1)
j

ΔtτT
+O(ε). (7)

∂t2g
(eq)
j + (∂t1 + cejα∇α1)[(1− 1

2τT
)g

(1)
j ] = − g

(2)
j

ΔtτT
+O(ε2). (8)

With the symmetry properties of the lattice
∑
j
ωjcejα = 0 and

∑
j
ωjcejαcejβ =

c2sδαβ we can obtain ∑
j

g
(eq)
j = σT, (9)

∑
j

cejαg
(eq)
j = Tuα, (10)

∑
j

cejαcejβg
(eq)
j = σ0Tc

2
sδαβ. (11)

Please bear in mind that the second moment of g(eq) (namely Eq.(11)) is
different from that of Guo’ model[9]. We will discuss it below.

With the aid of Eqs.(9)-(11), as well as
∑
j
g
(1)
j =

∑
j
g
(2)
j = 0, the summation

of Eqs.(7)-(8) over the discrete direction ejα reads

∂t1σT +∇α1Tuα = 0 +O(ε), (12)

∂t2σT +∇α1[c
2
s(
1

2
− τT )Δt∇α1σ0T ] = 0 +O(ε2). (13)

Because σ0 is a constant across the whole investigated domain, ∇α1σ0T =
σ0∇α1T . Accordingly Eq.(13) can be re-written as

∂t2σT +∇α1[σ0c
2
s(
1

2
− τT )Δt∇α1T ] = 0 +O(ε2). (14)

Combining Eqs.(12) and (14), we can obtain the final recovered macroscopic
governing equation for temperature field

∂tσT +∇αTuα = ∇ακm∇αT +O(ε2). (15)

5



where κm = σ0c
2
s(τT − 1

2
)Δt. It is obvious that Eq.(15) can match Eq.(1)

exactly without the restriction that σ should be vary extremely slow in space,
which exists in Guo’s (or Guo’s-like) model [9–15].

Through an analysis on Ref. [9], one can find out that such restriction stems
from that in Guo’s model the second moment of the equilibrium distribution
g
(eq)
j depends on σ, namely

∑
j

cejαcejβg
(eq)j = σTc2sδαβ. (16)

Accordingly, through the multiscale expansion, Guo’s model generates

∂t2σT +∇α1[c
2
s(
1

2
− τT )Δt∇α1σT ] = 0 +O(ε2). (17)

In Eq.(17), to move σ outside from the spatial gradient operator ∇α1 (i.e.
∇α1σT � σ∇α1T ), one has to assume σ vary spatially slightly, namely∇α1σ ≈
0.

3 Numerical validation

In order to validate the present model, natural convection in a square cavity
filled by porous media is simulated, which is a benchmark test. Figure 1 il-
lustrates the configuration of the square porous cavity. The cavity is filled by
two types of porous media with different heat capacitance. Namely, σ1 and σ2

may be different. Accordingly, an inclined interface exists between them. For
natural convection simulation, fluid flow should be modelled simultaneously.
In the present work, the LB model developed in Ref.[8] is adopted for flow
field simulation. A grid resolution 100×100 is employed and σ0 = (σ1+σ2)/2.

Firstly, we set σ1 = σ2 = 1, the porosity ε = 0.4, the Darcy number Da = 10−2

and 10−4, and the Rayleigh number Ra = 104−107. Table 1 lists the calculated
average Nusselt number Nu on the hot wall, compared with those published
in Ref.[9]. In the present work the average Nusselt number Nu is defined as

Nu = − 1

L

∫ L

0

∂T

∂x
dy (18)

where L is the length of the side of the cavity. The results demonstrate when
σ1 = σ2 the present model can generate the same predictions as Guo’s.

Then we set σ2 = 2σ1. As shown by Eq. (1), σ will not affect the temperature
distribution when the system achieves its steady status. it is clear that the
numerical predictions by Guo’s model are completely false, as shown by Fig.
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2 (a). The maximum temperature calculated by Guo’s model is even higher
than the temperature on the hot wall. It is obvious that such nonphysical
internal heating phenomenon is caused by pseudo numerical diffusion around
the interface. Meanwhile, the continuity of temperature distribution near the
interface is broken. On the contrary, the present model still works well, illus-
trated by Fig. 2 (b), which is the same as that of σ1 = σ2 = 1 (c.f. Fig.3 in
Ref.[9]).

The above numerical comparison demonstrates that Guo’s model will be i-
napplicable even thought there is only a very small spatial change of heat
capacitance of porous media. On the contrary, the present model does not
suffer from such deficit.

4 Conclusion

Heat transfer in porous media is an important topic in thermal science. Nu-
merical simulation has become a powerful tool to deepen our insight into this
topic. Due to its simplicity and reliability, the LB model proposed by Guo
et al. [9] for heat transfer in porous media has received increasing attention
[10–15]. Unfortunately, Guo’s model suffers from a serious drawback that it
can not address an investigated domain where the heat capacitance of porous
media varies spatially obviously. The present work shows Guo’s model will
break down even though there is a very small fluctuation of heat capacity
in the investigated domain. In order to remedy this shortcoming to extend
the applicable range of the LB method, in this work we propose a new and
simple LB model for heat transfer in porous media. The numerical results
demonstrate the advantage and reliability of the present model.

Although in the present study we only take a SRT LB model as an example
to show how to address the variation of heat capacitance of porous media,
the extension to its MRT counterpart is straightforward [10,14]. It will be
considered in our future work.
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Fig. 1. Schematic configuration of natural convection in a square cavity filled by
porous media.
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Fig. 2. Isotherms of natural convection in a porous cavity for σ2 = 2σ1, ε = 0.4,
Da = 10−2 and Ra = 105: Streamlines (a) Guo’s model [9] (b) the present model.
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Table 1
Average Nusselt number on the hot wall.

Da Ra present Ref.[9]

10−4 106 2.602 2.603

107 7.787 7.788

10−2 104 1.368 1.367

105 2.977 2.988
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