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Abstract

While the management of PV generation is the prime application of residential
batteries, they can deliver additional services in order to help systems to become
cost-competitive. They can level-out the demand and potentially reduce the
cost and emissions of the energy system by reducing demand peaks. In this
study, community energy storage (CES) is optimised to perform both PV energy
time-shift and demand load shifting (using retail tariffs with varying prices
blocks) simultaneously. The optimisation method obtains the techno-economic
benefits of CES systems as a function of the size of the community ranging
from a single home to a 100-home community in two different scenarios for the
United Kingdom: the year 2020 and a hypothetical zero emissions target. It is
demonstrated that the levelised cost and levelised value of CES systems reach
intermediate values to those achieved when both applications are performed
independently. For the optimal performance of a battery system being charged
from both local PV plants and the grid, our results suggest that the battery
should be sized suitable to ensure it can fully discharge during the peak period.
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1. Introduction and literature review

PV self-consumption by residential batteries has become one of the key busi-
ness applications for battery energy storage (ES) within the last few years. Al-
though batteries for single dwellings across several countries such as Germany,
Australia and California are the niche market at the moment [1, 2], residential
batteries for communities, referred to as community energy storage (CES) in
this study, are attracting the attention of researchers [3], utility companies [4]
and policy makers [5]. CES is being investigated in various research projects,
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many of them involving pilot plants [6] and/or product development and de-
ployment [7]. Utility companies are so far one of the key promoters with several
programmes worldwide addressing various services such as PV integration and
management [4], demand peak shaving [8] and other applications for facilitating
the proper performance of distribution networks [9].

Roberts and Sandberg argued that CES will be an important asset for man-
aging distributed loads and renewable energy (RE) plants with stochastic gen-
eration outputs, facilitating the transition to the “smart grid” [10]. Some key
advantages of CES systems over single-home ES systems highlighted by the
previous literature are: a) enhanced performance of battery systems due to the
smoother electricity demand profiles of communities [11]; b) relative reduction
of the required energy and power ratings of residential batteries for communities
in terms of kWh/home and kW/home [12]; c) potential economies of scale across
various components of the battery system (particularly, savings can be made in
terms of communications and control equipment) [2]; and d) catalytic effect for
implementation of various energy efficiency and RE initiatives in communities
following a bottom-up approach [13].

Two important challenges for the further deployment of ES in general and
CES in particular are the still high capital expenditure (CAPEX) of most ES
technologies (and batteries in particular) and the need for integration several
services and/or requirements in order to create attractive economic benefits
(i.e. multi-objective use of ES systems) [14, 15]. Various applications could
potentially involve different stakeholders such as end users, utility companies
and/or distribution system operators (DSOs). However, many previous studies
have addressed ES applications independently without discussing the integra-
tion of various applications by the same ES system [16, 17]. For example,
Santos et al. compared four different roles of residential battery storage (PV
self-consumption, demand peak shaving, reduction of PV injection into the grid
and integration of wind power from the grid) from a techno-economic perspec-
tive (required battery capacity, system cost and power exchange with the grid)
but these applications were considered as being mutually exclusive [18].

Alternatively, some attempts have made so far to analyse value propositions
including several applications. Zucker and Hinchliffe concluded that the opti-
mum ES system is dependent on the grid situation and its final application.
Their study considered PV energy time-shift (PVts) in isolation as well as PVts
and arbitrage, each application leading to different sizing in terms of hours of
discharge and capacity [19]. Sundararagavan et al. included the combination
of demand load shifting, frequency regulation and power quality in their anal-
ysis, but they only studied the cost of performing these applications assuming
some ES properties such as durability and efficiency constant [20]. Wade et al.
argued that the corresponding economic benefit should be identified in order
to prioritise the events which add more value, identifying the stakeholder that
can internalise the benefit [21]. From a DSO perspective, a strategy for optimal
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allocation of multiple CES systems including energy arbitrage, peaking power
generation, energy loss reduction, system upgrade deferral, emission reduction
and VAr support has been proposed [22]. However, the coordination of the
ES asset could become a challenge if benefits accrue to different stakeholders.
Technical issues such as the lack of engineering standards were also highlighted
as key market failures which explain the marginal application of value propo-
sitions including several benefits according to a comprehensive report prepared
by Sandia for the Department of Energy in USA, [23].

Two previous studies demonstrated for a scenario in 2020 that CES sys-
tems managing PV generation (in particular PVts was performed) offer more
value than when they manage the community demand (demand load shifting)
while the latter allow CES systems to further reduce the levelised cost [11, 12].
The work presented here investigates the impact of managing both community
PV generation and demand. CES systems performing both PVts and demand
load-shifting simultaneously are investigated in order to understand how the
combination of applications affect the performance, optimum battery capacities
and economic benefits of CES systems. The analysis compares lead-acid (PbA)
and lithium-ion (Li-ion) batteries as well as two different retail tariffs for de-
mand load shifting: a time-of-use tariff (Economy 7) and a real-time-pricing
tariff including four periods based on the electricity prices from the wholesale
market in the United Kingdom (UK). Whether CES performing both appli-
cations makes economic sense is investigated as a function of the size of the
community (ranging from a single home to a 100-home community) and under
two different scenarios: year 2020 and a hypothetical zero carbon scenario. For
the 2020 scenario, the battery parameters are based on the targets given by
battery manufacturers and government technology agencies [2].

2. Methodology

Grid-scale ES systems tend to operate at the distribution level responding
to different events on multiple networks with the occurrences of those events
given by the network state. CES considered here in this work perform PVts
and demand load-shifting on a daily basis. This study follows an end-user per-
spective and CES systems perform both PVts and demand load shifting without
participating in markets such as wholesale electricity and frequency control.

Input data such as community demand, PV generation, battery characteris-
tics as well as the management of CES systems are detailed in this section. The
key performance indicators selected for assessing CES systems are introduced
together with the optimisation method applied as a function of the size of the
community. This methodology has already been presented in two previous pub-
lications [11, 12] and, therefore only the key details required to understand the
rationale behind it are introduced below.
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2.1. PV energy time-shift and demand load-shifting
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Figure 1: Schematic representation of (a) PV energy time-shift and (b) demand load shifting.
No specific units for power are provided in the vertical axis since both graphics are not
representative of any particular community.

In this study, we focus on PVts and demand load shifting, both applications
being schematically represented in Fig. 1. CES systems can help to increase the
amount of PV generation used locally in the community and therefore reduce
the impact of weather conditions on the PV self-consumption. PVts consists
of storing PV generation when it exceeds the community demand to be used
later, typically in the evening. The economic driver for PVts, RevPV ts (£), is
the difference between the import price, Pi (£/kWh), and export price, Pex
(£/kWh), as given by Eq. 1 in which EcharPV (kWh) and EdisPV (kWh) refer
to the battery charge and battery discharge respectively with electricity from
PV systems. The round trip efficiency, η, of the battery system should be higher
than the ratio between the export and import prices in order for PVts to be
economically sensible as shown by Eq. 2 derived from Eq. 1.

RevPV ts = EdisPV × Pi − EcharPV × Pex (1)

RevPV ts = EcharPV × Pi ×
(
η − Pex

Pi

)
(2)

Demand load-shifting consists of levelling-out the demand of a commu-
nity by charging CES systems, EcharDLS (kWh), with off-peak electricity, Piop
(£/kWh), and discharging electricity to meet the peak demand load later,
EdisDLS (kWh), when the price of the electricity is higher, Pip (£/kWh), as
suggested by Eq. 3 used to calculate the related revenue, RevDLS (£). From
a customer perspective, demand load-shifting is only possible if a retail tariff
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offers different prices depending on the time of day. In this case, the condition
for the round trip efficiency given by Eq. 4 is less relaxed since off-peak import
prices are typically higher than export prices.

RevDLS = EdisDLS × Pip − EcharDLS × Pio−p (3)

RevDLS = EcharDLS × Pip ×
(
η − Pio−p

Pip

)
(4)

Two different electricity tariffs are included in the analysis. The first one
is Economy 7 i.e. a time-of-use tariff with two periods: an off-peak period at
night (00:00 to 6:59); and a peak period during daytime hours (7:00 to 23:59).
Economy 7 has been used in the UK since the late seventies to shift daily demand
to the night period in order to stimulate the use more cost effective based load
generation. The second tariff, referred to as “NETA-based”, is a real-time-
pricing tariff with 4 periods based on the prices in the wholesale electricity
market in the UK (called NETA market) in 2011. This tariff was created after
applying a weighted arithmetic mean of wholesale electricity prices with regard
to the total electricity traded on an hourly basis and accounting for other retail
price’s components such as transport costs, incentives for renewable energies and
taxes in the UK. In order to determine the electricity price for the 2020 and the
zero carbon scenario (see Table 2), we use an intermediate progression between
the average trend for the last 25 years (more conservative increase) and the
average trend for the last seven years (more marked increase). While Economy
7 is based on the same electricity prices throughout the year, electricity prices
vary throughout the year according to the wholesale electricity prices for the
NETA-based tariff. Details about how the NETA-based tariff was built could
be found in reference [12]. Fig. 2 shows both tariffs in the year 2020 and the
zero carbon scenario. Thus, considering both applications, the total battery
charge, Echar (kWh), and discharge, Edis (kWh), are given by Eq. 5 and Eq. 6
respectively:

Echar = EcharPV + EcharDLS (5)

Edis = EdisPV + EdisDLS (6)

2.2. Demand data

Demand data monitored from a total of 102 dwellings which belong to a
low carbon community located in the centre of the UK were used for this study
[24]. The largest community included in this study comprises 100 dwellings.
The annual average electricity and heat demands were equal to 3.2 MWh and
12.5 MWh respectively in agreement with the average house in the UK in 2011
[25]. The demand dataset has a temporal resolution of one minute. In all future
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Figure 2: Retail electricity prices for the two tariffs utilised in this study when projected to
two different scenarios: 2020 and a hypothetical zero carbon scenario in the UK.

scenarios considered by the UK Government, electric heating becomes more im-
portant due to the penetration of heat pumps [26]. This study also analyses
the impact of meeting the space heating and domestic hot water demands (by
using air source heat pumps) on the CES performance, durability and economic
benefits. The heat pump model used in this study was validated in a previous
study [27] and details of the model can also be found in a previous publication
[28]. The heat pump percentage ownership for the various communities is ex-
plained in Section 2.7.

2.3. PV generation data

Together with the demand, solar irradiance was also monitored on-site by
the UK Energy Research Centre [24]. We utilise a single diode PV model which
was experimentally validated by Villalva et al. [29]. The rating of the PV array
was assumed to be 3 kWp for all dwellings in close agreement with the aver-
age PV installation in the UK in 2013 [30]. Moreover, various azimuth angles
were considered in order to account for various PV array orientations for a real
community (varied between −50 ◦ and +50 ◦ according to 10 ◦ degree changes).
PV generation was modelled as a function of the local irradiance and outdoor
temperature with a temporal resolution of 1 minute [31]. The PV percentage
ownership was dependant on the scenario year and is explained in Section 2.7.

2.4. Battery input data

Table 1 summarizes the main input data utilised with the battery perfor-
mance submodel including the maximum charge rating, discharge rating and
the depth of discharge depending on the battery technology and current state
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Table 1: Value of the different control parameters implemented for PbA and Li-ion batteries.

Parameter (Unit) PbA Li-ion
Maximum charge current (A) 0.2·C 3·C

Maximum discharge current (A) 0.4·C 3·C
∆SOC 0.5 0.6

Maximum SOC 0.9 0.8
Minimum SOC 0.4 0.2

of art. The battery performance model for both PbA and Li-ion technologies is
explained in SI Section 9.1.

2.5. Key performance indicators

We assess CES systems comprising PbA and Li-ion battery batteries when
they perform PVts and demand load shifting simultaneously as a function of the
community size and battery capacity through various key performance indica-
tors. Three of these indicators are determined after resolving an annual energy
balance for the community. The PVES is the fraction of the total PV genera-
tion, EPV (kWh), which is supplied to the CES system, EcharPV , as shown in
Eq. 8. The DES is the fraction of the annual community electrical demand
(including the electricity consumption by heat pumps), Ed (kWh), met by a
CES system (Edis) as defined in Eq. 9. The round trip efficiency, η, is defined
according to Eq. 7 as the ratio between the annual electricity discharged by the
battery system, Edis (kWh), and the annual electricity charged into the battery
system, Echar (kWh), considering both PV and grid charge at off-peak times.
Another indicator used to asses the technical performance of PbA and Li-ion
batteries is the number of equivalent full cycles, EFC, given by the Eq. 10 in
which n refers to the number of years in operation according to the durability
model presented in SI Section 9.1 andk is a generic year. Cnom (kWh) refers to
the nominal battery capacity.

η =
Edis
Echar

(7)

PVES =
EPV ES
EPV

(8)

DES =
Edis
Ed

(9)

EFC =

∑n
k=1Edis
Cnom

(10)

7



The economic assessment follows a life cycle approach by determining the
levelised cost of CES, LCOES (£/kWh), levelised value of CES, LVOES (£/kWh),
and internal rate of return, IRR (%). The levelised cost and levelised value ag-
gregate the different costs and revenues respectively over the total discharge
throughout the battery life by calculating their present value (for the year in
which the investment is performed) as seen in Eq. 11 and Eq.12 respectively.
A discount rate equal to 10% is utilised here to account for the value of money
with time, this value also being used in other previous techno-economic ES
evaluations made from a utility company perspective [23, 20]. In Eq. 11, TLC
refers to the total levelised cost of a battery system. As shown in Table 2, the
total CAPEX of a CES system is comprised of the cost of the storage medium
(£/kWh), inverter cost (£/kW), balance of plant (BoP) (£/kW) and mainte-
nance (£/kW).

LCOES =
TLC∑n

k=0
Edis

(1+r)k

(11)

LV OES =

∑n
k=1

RevDLS+RevPV ts
(1+r)k∑n

k=0
Edis

(1+r)k

(12)

Finally, the IRR is a measure of the profitability for the CES investment
including all positive and negative cash flows, CFk (£). Since two different ser-
vices are provided by CES systems, the battery size and CAPEX will be fixed
by the application which demands more CES capacity. Likewise, the LVOES
will aggregate the benefits created by the two different applications and the
application that drives more cycles will have a larger impact in the value.

0 =

n∑
k=0

CFk
(1 + IRR)k

(13)

2.6. Optimisation method

Different to other technologies such as hydrogen and pumped hydro storage,
the capacity (kWh) and power (kW) ratings of battery systems are not inde-
pendent. A battery system is suitable for daily cycling and therefore the charge
from the PV arrays and the grid can overlap when PVts and demand load shift-
ing are performed simultaneously. Therefore, integrating these applications by
the same battery system requires a strategy which is executed using a forecast
of both PV supply and demand.

The optimisation method firstly calculates the maximum CES demand given
by the day of the year in which both PVts and demand load shifting require-
ments are the largest based on some previous monitored data. Then, the largest
battery capacity corresponds to the maximum CES demand. In a second step,
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Figure 3: Flow chart representing the algorithm which was utilised to obtain the performance
of a battery system when performing PVts and demand load shifting with the NETA-based
tariff using 1 minute (loop variable k) data for every day (loop variable i) of the year. The
flowchart sequence follows the number sequence in the boxes. The sum symbol represents the
aggregation of results to obtain daily daily values from hourly data. The index p represents
the four periods of the NETA-based tariff.
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the performance and economic benefits of CES systems are determined for ev-
ery day of the year for a total of 10 battery capacities. The minimum battery
capacity as well as the capacity resolution are equal to one tenth of the max-
imum. The ten battery capacities for both retails tariffs and each community
size are shown in Fig. 14 and Fig. 15 of the SI Section 9.3 for the year 2020 and
the hypothetical zero carbon scenario respectively. Finally, performance and
economic results are aggregated throughout the year and compared in order to
select the optimum battery capacity.

The algorithm to determine the maximum battery capacity for CES sys-
tems performing both PVts and demand load shifting simultaneously and only
demand load shifting are schematically represented in Fig. 11 and Fig. 12
respectively in SI Section 9.2. The main difference between them lies in the
calculation of the peak demand load which the battery should meet the day af-
ter. When PVts is also considered, the community demand load, PV generation
and round trip efficiency of the CES system are used as input data to calculate
firstly the fraction of the demand load met by the PV generation and then, the
surplus available PV energy which reduced the demand load shifting require-
ments. The fraction of the peak demand load directly met by PV generation
is then subtracted from the total peak demand load to be shifted when only
demand load shifting is performed. Finally, the community energy balance as
well as the battery charge and discharge are aggregated throughout the year in
order to determine various key performance indicators and select the optimum
CES system as shown in Fig. 3. Similar algorithms for PVts and demand load-
shifting individually can be found in references [11, 12].

While the algorithm which determines the maximum battery capacity uses
monitored PV generation and demand data, the calculation of the optimum
battery capacity should be based on day-ahead forecast of both PV generation
and demand load in order to simulate real performance conditions. In a real
application, the off-peak charge of the battery should be estimated in advance
in order to allocate the PV charging afterward therefore there is uncertainty
since both the daily PV generation and demand profiles are unknown. The
off-grid charge calculation is also affected by the battery round trip efficiency
as shown in Fig. 3. In this study, perfect forecast was used to quantify the
techno-economic performance regardless of any specific forecast methodology.
This identifies the maximum possible benefits/value which could be provided
by the battery system. Moreover, electricity charged from the PV plants was
prioritized over electricity charged from the grid because it is generated on-site
by the end users’ PV plants and it has more value (the cost of importing electric-
ity from the grid is higher than the value assigned to the PV electricity export).
Finally, the electricity charged from the PV arrays was only discharged at peak
times.
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Table 2: Summary of the input data selected for the scenarios, including the electricity price,
PV generation, demand and battery properties.

Parameter 2020 Zero carbon

Electricity price (p/kWh)a 16.3 31.0

Export feed-in tariff (p/kWh)b 3.2
PV penetration (%)c 7.6 57.0

HP penetrationc 14 100
Electricity demand (MWh/year)c up to 2.9 up to 2.4

Space heating demand (MWh/year)c up to 10.3 up to 6.1
DHW demand (MWh/year)c Current Current

Inverter cost reduction (%)d -25 -30
BoP cost (£/kW)e 50 45

Maintenance cost (£/kW)e 6.5 6.5

PbA

Maximum cycle life (EFC)f 1250 1500
Z (%/EFC)g 0.024 0.02

Calendar losses (%/month)h 0.15 0.12
Storage medium cost (£/kWh)i 150 65

Li-ion

Maximum cycle life (EFC)f 3000 3600
Z (%/EFC)g 0.01 0.0083

Calendar losses (%/month)h 0.09 0.08
Storage medium cost (£/kWh)i 310 160

a The price of the utilities was estimated using an average trend of those followed in the last
25 years and last seven years [32].
b export bonus in 2012 [33].
c Based on estimations from the UK Government [26]. The annual space heating and
DHW demand of the average household was 16.8 MWh in 2006 and the annual electricity
consumption was 3.0 MWh [34].
d Cost reduction according to the one in the last 15 years [35] over current cost based on
data from SMA Solar Technology AG e.g. £1100 for a 3 kW single phase inverter.
e Based on published data from the Department of Energy (DOE) [36].
f Confirmed with manufacturers including Solom and Hitachi.
g Based on linear capacity reduction considering the assumed ∆SOC.
h Monthly battery capacity percentage reduction.
i From available literature [37, 38, 39].
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2.7. Scenarios

It has been previously reported in the literature that the value of ES increases
with the penetration of RE technologies [40, 39]. We therefore analyse CES in
two different scenarios based on PV and heat pump penetrations but also the
evolution of capital cost of batteries, electricity prices and community demand:
2020 and a hypothetical zero carbon scenario. In order to model them, cost tar-
gets from battery manufacturers [41] as well as the decarbonisation objectives of
the UK Government were utilised [26]. In particular, the 2020 scenario is based
on mid-term objectives while deep decarbonisation with battery technologies
reaching a high level of maturity were assumed for the “zero carbon” scenario.
Table 2 summarizes all the input data selected for the two different reference
years. This study does not include a sensitivity analysis but the impact of var-
ious input parameters on the techno-economic benefits of residential batteries
was already analysed for single homes [42, 43] and communities [28] respectively.

The PV and heat pump penetration ownership refer to the proportion of
homes in a community with a PV array and a heat pump, respectively. CES
systems are prioritised for homes with a PV array up to a certain limit set by
the PV penetration. For example, as the size of the community increases, the
community PV percentage changes from 100% for a single home to 57% (equal
to the PV penetration given in Table 2) for a 100-home community in the zero
carbon scenario. Given the still low PV penetration in the UK by 2020 (7.6%),
we only simulate communities up to 50 dwellings in this scenario (with a PV
percentage equal to 15.2%).

The heat pumps were randomly introduced across the homes of the commu-
nity based on the UK penetration given in Table 2. Total electrification of the
heat sector was assumed for the zero carbon scenario i.e. each house has a heat
pump. For a more comprehensive explanation of the PV penetration and heat
pump penetration, the readers are directed to references: [11, 12].

3. Performance results

Results for PbA batteries are presented here to analyse the impact of the
combination of applications on both the battery performance and community
energy balance. Figure 4 shows the performance results of PbA batteries as
a function of the battery capacity and the community size determined when
projected to the year 2020 with the NETA-based tariff. Which application is
predominant for each battery capacity and community size is reflected on the
various values and patterns. The community PV percentage is higher than 76%
up to the 10-home community and as a consequence, the EFC, round trip ef-
ficiency and DES were more affected by the energy charged from surplus PV
generation within the community. The PVES reached a low (i.e. the PV elec-
tricity export is relatively high) when the PV penetration was higher than 76%
because PV electricity was only discharged at peak times. The community PV
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Figure 4: Performance results of PbA batteries performing PVts and demand load-shifting
with the NETA tariff in 2020 as a function of the size of the community and the battery
capacity: (a) equivalent full cycles, (b) round trip efficiency, (c) PVES and (d) DES . The
battery capacity is given as a percentage of the maximum ES demand.

percentage was lower than 40% for the communities with more than 20 homes.
In these circumstances, most electricity charge comes from the grid at off-peak
periods and this increased the number of equivalent full cycles up to 616 EFC
for a 50 home community.
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Figure 5: Performance results of PbA batteries performing PVts and demand load-shifting
with Economy 7 in 2020 as a function of the size of the community and the battery capacity:
(a) equivalent full cycles, (b) round trip efficiency, (c) PVES and (d) DES . The battery
capacity is given as a percentage of the maximum ES demand.
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Table 3: Performance parameters optimised for PbA and Li-ion batteries for PVts and demand
load shifting when projected to 2020 and the zero carbon year. The size of the community
(dwellings) and the capacity of the battery (kWh) which achieved the optimum values is shown
in brackets.

Year Battery Tariff EFC η PVES DES

2020

PbA
NETA-based 616 (50,440) 0.87 (45,598) 0.14 (1,49) 0.29 (1,49)

Eco7 905.3 (50,564) 0.88 (100,1073) 0.34 (15,101) 0.64 (1,7)

Li-ion
NETA-based 1442 (20,29) 0.89 (45,536) 0.14 (1,48) 0.41 (1,48)

Eco7 1836 (10, 261) 0.89 (1,88) 0.33 (5,81) 0.89 (1,88)

Zero

PbA
NETA-based 705 (100,974) 0.87 (90,2106) 0.13 (1,18) 0.30 (1,38)

Eco7 1005 (100, 866) 0.88 (75,1557) 0.31 (1,11.8) 0.67 (1,50)

Li-ion
NETA-based 1639 (100,208) 0.89 (70,1506) 0.12 (1,16) 0.31 (1,36)

carbon Eco7 1907 (100,797) 0.89 (60,631) 0.30 (1,27) 0.68 (1,66)

The fraction of the community demand met by the CES operation is greater
when PVts is combined with demand load shifting with Economy 7 as shown in
Fig. 5. The PVES is much higher due to the longer peak period of Economy 7
since batteries are sized according to the demand at peak time (after subtracting
the peak demand load fraction which is met directly by local PV generation).
The PVES has a much flatter profile for any community size as a consequence
it reached its maximum (0.35) for medium battery capacities (105 kWh battery
in the 20-home community) and then it slightly declined. Same conclusions to
those extracted from PbA results apply for Li-ion batteries in terms of the im-
pact of the size of the community and the battery capacity when considering the
higher round trip efficiency and discharge ratings of Li-ion chemistry discussed
in previous sections.

4. Economic results

Figure 6 shows the optimum battery capacity which minimised the levelised
cost of performing PVts, demand load-shifting and the combination of them
with the NETA-based tariff and Economy 7 for PbA technology in 2020 and
the zero carbon year. The optimum capacity which minimises the levelised cost
of meeting the demand load with PVts and the NETA-based tariff is 95% the
capacity when only considering demand load-shifting in the zero carbon year
and a PV penetration of 57%. This percentage reduces to 75% for Economy 7.
This suggests that results from demand load-shifting should be used as a guide-
line to analyse the results when these applications are combined. The impact
of adding PV management to demand load management for CES operation in
terms of cost, profitability and revenue is discussed next.

Fig. 7 compares the optimum LCOES, LVOES and the IRR for PbA tech-
nology when performing PVts, demand load-shifting and both application si-
multaneously with the NETA-based tariff and Economy 7 respectively. For any
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Figure 6: Optimum PbA battery capacity which minimised the levelised cost (LCOES) associ-
ated with PVts, demand load-shifting and both applications combined with the NETA-based
tariff and Economy 7 as a function of the size of the community in 2020 and the zero carbon
year.

community, the optimum battery capacity performing both applications simul-
taneously decreases regarding the case in which only demand load-shifting is
performed but the energy managed by the battery reduces more due to the PV
energy supplied directly to the demand load. For example, while a 185 kWh bat-
tery performing PVts and demand load-shifting simultaneously minimises the
LCOES by annually supplying 9763 kWh in a 15-home community, a 186 kWh
battery performing only demand load-shifting is able to annually shift 12866
kWh in the same community. As a result, the combined management of PV
generation and demand load reduces the EFC from 635 EFC to 542 EFC in this
case. Secondly, CES systems only discharge at peak times and this reduces the
overall charge of the battery from the PV plants and the grid. As a result, the
LCOES increases from 0.35 £/kWh to 0.42 £/kWh when the battery performs
PVts in addition to demand load-shifting.

However, the consideration of the PV management increases the profitability
of CES systems and the value associated with the discharge. Using local PV
generation is more attractive from a financial point of view than shifting demand
load with the NETA-based tariff. For a 5-home community with a community
PV percentage ownership of 100%, the IRR and the LVOES increase up to
-16.2% and 0.16 £/kWh respectively, which means a 19% and 167% increase re-
garding only demand load-shifting (-20.0% and 0.06 £/kWh respectively). The
remarkable increase in the LVOES is related to the fact that PV energy is only
discharged at peak times. This effect is stronger for community PV percentage
ownership higher than 75%.
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Figure 7: Optimised (a) LCOES, (b) IRR and (c) LVOES as a function of the size of the
community for PbA technology depending on the application developed when considering the
NETA-based tariff for demand load-shifting in 2020.
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Figure 8: (a) Optimised LCOES, (b) IRR and (c) LVOES for PbA technology as a function
of the size of the community depending on the application when considering Economy 7 for
demand load-shifting in 2020.

PVts introduces the same effects when incorporated with demand load-
shifting with Economy 7 as shown in Fig. 8. However, the larger annual
discharge achieved with this tariff buffers the impact of adding PVts. Addi-
tionally, charging from the grid is not as limited as it is with the NETA-based
tariff due to the much longer peak period of Economy 7. As a consequence,
the LCOES just slightly increases because the electricity generated from the
PV plants counterbalanced the reduction of the shifted demand load. In the
case of a 5-home community (100% of PV percentage), the LCOES increases
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by 19% (from 0.27 £/kWh to 0.32 £/kWh). Again, PVts markedly increases
the value associated with the battery discharge to 0.128 £/kWh for a 5-home
community (it was equal to 0.086 £/kWh with Economy 7). Also, the LVOES
is higher than when only PVts is considered (0.125 £/kWh) for community PV
percentages higher than 75% since the electricity charged from the PV plants is
discharged only at peak time. The consideration of PVts does not modify the
profitability of the project markedly and the IRR only increased from -12.9%
to -11.6% (10%) for a 10-home community due to the lower impact of the elec-
tricity charged from the PV plants on an annual basis.
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Figure 9: (a) LCOES, (b) IRR and (c) LVOES optimised for Li-ion technology as a function
of the size of the community depending on the application when considering the NETA-based
tariff for demand load-shifting in 2020.

Fig. 9 and Fig. 10 show the results for Li-ion batteries when PVts is com-
bined with the NETA-based tariff and Economy 7 respectively. The combination
of applications make the maximum LVOES obtained by PbA and Li-ion batter-
ies different. The LVOES is derived from the revenues given by Eq. 2 and Eq.
4, i.e. it is proportional to the round trip efficiency. Previous studies demon-
strated that the maximum LVOES for both PVts and demand load shifting
is achieved by the battery with the largest capacity since it performed more
efficiently, the maximum round trip efficiency of PbA and Li-ion technologies
being very similar in these circumstances (since the battery its oversize) [11, 12].
When both applications are combined, the maximum LVOES is given by the
batteries with the smallest capacity in which the fraction of energy charged from
the PV plants is higher regardless of the community size. While Li-ion batter-
ies offer high round trip efficiency for low capacities for any community size
[11], PbA technology requires larger capacities to achieve similar values. This is
the reason why the maximum LVOES achieved by Li-ion batteries when being
charged from the PV plants and the grid using Economy 7 (0.141 £/kWh) is
higher than the value achieved by PbA batteries (0.126 £/kWh). In the case of
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Table 4: Economic parameters optimised for PbA and Li-ion batteries using PVts and de-
mand load shifting when projected to the year 2020 and a zero carbon year. The size of
the community and the capacity of the battery (kWh) which achieved the optimum values is
shown in brackets.

Year technology Tariff LCOES (£/kWh) IRR(%) LVOES(£/kWh)

2020

PbA
NETA-based 0.27 (50,570) -12.6 (30,463) 0.16 (5,13)

Eco7 0.17 (50,564) -5.0 (50,564) 0.13 (5,20)

Li-ion
NETA-based 0.33 (50,316) -12.4 (30,417) 0.15 (1,5)

Eco7 0.20(50,358) -1.5 (10,159) 0.14 (5,11)

Zero

PbA
NETA-based 0.10 (100,1620) 24.2 (60,631) 0.33 (1,4)

Eco7 0.06 (100,1253) 64.2 (100,674) 0.27 (25,68)

Li-ion
NETA-based 0.14 (100,821) 16.0 (70,304) 0.31 (1,3)

carbon Eco7 0.09(100,996) 34.4 (100,559) 0.29 (15,34)

the NETA-based tariff, the round trip efficiency played the same role but the
off-peak and peak prices were variable on a daily basis. Given its (relatively)
modest round trip efficiency, PbA batteries only discharge when the peak prices
are much higher than the off-peak prices and this impacts on the revenue ob-
tained by PVts i.e. it increases the LVOES up to 0.16 £/kWh. The maximum
LVOES of Li-ion technology is 0.136 £/kWh.
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Figure 10: (a) LCOES, (b) IRR and (c) LVOES optimised for Li-ion technology as a function
of the size of the community depending on the application when considering Economy 7 for
demand load-shifting in 2020.

5. Discussion

When CES systems perform PVts and demand load-shifting simultaneously,
the performance is fixed by the combined effects introduced by both applica-
tions. Which application is more relevant depends on the management system

18



and the CES size. The management system determines which application has
priority for charging the CES system (PVts in this work) and whether PV elec-
tricity is only discharged at peak periods (this was assumed in this work). Then,
increasing the size of the CES system intensifies the importance of the appli-
cation which does not have priority counterbalancing the results.The decision
whether to discharge PV electricity only at peak time or extend it to off-peak
time could be further investigated in future work. It is suggested that this is
done on a daily basis depending on the amount of PV charge, battery size, peak
time duration, off-peak and peak prices.

The combination of PVts and demand load-shifting introduces a dilemma
related to the different nature of the electricity which is managed by a CES
system. When only PV electricity is managed, electricity charged from the PV
plants is discharged whenever the demand is higher than the PV generation
(assuming enough battery charge). Likewise, electricity which is charged from
the grid when the price of the electricity is low is discharged at peak times
when only demand load-shifting is performed. Nevertheless, when electricity is
charged from both PV plants and the grid simultaneously, the fraction charged
from PV plants can also be discharged during the valley period while the frac-
tion charged from the grid should strictly be discharged at peak time. However,
the difference between the valley and the peak price may make the annual rev-
enue higher when the PV electricity is only discharged at peak time. Therefore,
additional research is needed to evaluate the optimal charging process from both
PV plants and the grid considering various criteria such as community impact,
ageing and economic profitability and environmental impact, in particular in
countries with high carbon intensity. Moreover, more realistic forecast strate-
gies should be included in future studies in order to determine the profitability
without perfect day-ahead information.

The methodology used input data from the UK for modeling PV generation,
demand and heat generation. These input data should be updated when possi-
ble for 2020 and the hypothetical zero carbon year. Likewise, the methodology
could be given a wider scope by using input data from different countries or for
other distributed generation resources such as wind electricity. From another
perspective, this methodology could be implemented for local communities or
developments in which there is less uncertainty in the input data. This could
be very useful for utility companies, energy service companies and consultancies
which want to design, build and integrate optimal CES systems for a community
or development with specific RE generation and demand load requirements. So
far, the lack of infrastructure and incentives to install CES systems together
with some regulatory barriers related to the supply of electricity among con-
sumers made individual homes the first option for the deployment of residential
batteries, Germany being a good example. This work gives conclusive evidences
for alternative sizing.
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6. Conclusions

The performance, economic benefits and optimum battery capacities for CES
systems performing PVts and demand load-shifting simultaneously were quan-
tified as a function of the size of the community. Economy 7 is an attractive
tariff for charging batteries from both PV plants and the grid given the long
peak period which allows a high fraction of the demand to be shifted while
integrating the surplus PV electricity available. Our results suggest that dis-
charging only at peak time is not the optimum solution when the peak period is
not long enough to integrate the discharges associated with PVts and demand
load-shifting (<8 h). In order to illustrate this conclusion, the LCOES of the
optimum PbA battery performing in a 5-home community increases from 0.35
£/kWh to 0.42 £/kWh (20%) when PVts is added to demand load-shifting with
the NETA-based tariff.

PVts increases the LVOES of CES while demand load-shifting has the poten-
tial to reduce the LCOES as demonstrated with Economy 7. PVts and demand
load-shifting are competing applications for battery technology. PVts reduces
the amount of community grid import which is shifted because a fraction of it is
directly met by the PV generation, ranging from 26% for a single home with a
HP to 30% for communities with more than 30 homes. We conclude that Li-ion
is the the best technology for communities with large fraction of PV generation,
in particular for values of PV percentage ownership higher than 50% while PbA
should be the technology choice when demand load-shifting is the prime appli-
cation. In order to manage both local PV generation and demand load with an
optimal balance of performance and profitability, utility companies and battery
suppliers should consider Li-ion battery capacities of 230 kWh, 360 kWh and
670 kWh for a 20-home, 50-home and 100-home communities respectively, these
values being 132 kWh, 320 kWh and 600 kWh for Li-ion batteries.

7. Acronyms, nomenclature and list of symbols

Acronyms Nomenclature
BoP Balance of plant C Battery capacity, kWh

CAPEX Capital expenditure CF Cash flow, £
CES Community energy storage DES Community’s demand proportion met by a CES system
DOD Depth of discharge Echar Seasonal CES charge, kWh
DSO Distribution system operator EcharDLS Seasonal CES charge from the grid, kWh
EFC Equivalent full cycles EcharPV Seasonal CES charge from PV plants, kWh
ES Energy storage Ed Seasonal demand of a community, kWh
HP Heat pump Edis Seasonal CES discharge, kWh

Li-ion Lithium ion EdisDLS Demand load-shifting seasonal CES discharge, kWh
NETA New Electricity Trading Arrangements EdisPV Seasonal CES discharge associated with PVts, kWh
PbA Lead acid IRR Internal rate of return, %
PVts PV energy time-shift LCOES Levelised cost of energy storage , £/kWh
RE Renewable energy LVOES Levelised value of energy storage , £/kWh
SOC State of charge n Number of years the battery lasts

Subscripts P Price of the electricity, £/kWh
ex Export PVES PV generation’s proportion supplied to a CES system
i Import RevDLS Demand load-shifting revenue, £

i-op Import at off-peak time RevPV ts PVts revenue, £
i-o Import at peak time TLCC Total levelised cost, £
k generic year η Round trip efficiency
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9. Supplementary information

9.1. Battery model

The PbA and Li-ion battery performance submodels are based on the equiv-
alent circuit of a battery comprising a voltage source and resistance, the state-of-
charge (SOC) being the main parameter which affects their variations [31, 44].
The lead-acid and lithium-ion battery models were experimentally validated by
by J. B. Copetti et al. [45] and by O. Tremblay et al. [46] respectively. A
bidirectional inverter is necessary to charge and discharge the battery system
during the off-peak and peak period respectively. The rating was optimised
following a community approach [28] and was assumed to be equal to half the
maximum community peak load. The efficiency of the bidirectional inverter as
a function of the load factor was also included in the analysis [47]. Companies
like Hitachi, Saft and Solom were consulted for the data provided in Table 1.
The minimum discharge time would be 20 min and 2.5 hours for Li-ion and PbA
batteries respectively according to the selected technical characteristics.

The durability submodel is based on the reduction of battery capacity from
cycle losses (during charge/discharge) and calendar losses (a time-dependent
loss in capacity independent of operation) [48]. The battery lifetime was related
to the capacity drop to a certain level which was assumed to be 70% of the
initial. The cycle losses were assumed to be linear with the depth of discharge
for a given cycle and with the nominal battery capacity, Cnom (kWh), for the
SOC ranges indicated in Table 1 using a linear life coefficient characteristic for
any battery technology Z according to Eq. 14 [47]. However, the final cycle life
is smaller than the maximum cycle life presented in Table 1 due to the calendar
losses. Calendar losses were based on an Arrhenius formula for Li-ion technology
[49] and on a linear relationship between the capacity loss and the maximum
battery life (years) for PbA technology due to the lack of related data. The key
input data for the durability submodels depending on the battery technology
are also given in Table 1.

∆C = Z × Cnom × ∆SOC (14)

9.2. Algorithms to determine the maximum community energy storage demand

Fig. 11, Fig. 12 and Fig. 13 show a schematic representation of the al-
gorithms utilised to determine the maximum size of a battery system when
performing PVts and demand load shifting simultaneously, only demand load
shifting and only PVts respectively.
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Figure 11: Flow chart representing the algorithm which was utilised to obtain the maximum
size of a battery system when performing PVts and demand load-shifting with the NETA-
based tariff using 1 minute (loop variable k) data for every day (loop variable i) of the year.
The flowchart sequence follows the number sequence in the boxes. The sum symbol represents
the aggregation of results to obtain hourly values (from 1 minute data) or daily values (from
hourly data). The index p represents the four periods of the NETA-based tariff.

9.3. CES discretisation

This section shows the different CES systems tested by the optimisation
method depending on the application, technology and the reference year. Specif-
ically, the different CES systems were derived from the first step of the opti-
mization method as explained in Section 2.6.
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Figure 12: Flow chart representing the algorithm which was utilised to obtain the maximum
capacity of a battery system when performing demand load-shifting with the NETA-based
tariff using 1 minute (loop variable k) data for every day (loop variable i) of the year. The
flowchart sequence follows the number sequence in the boxes. The sum symbol represents
the aggregation of results to obtain hourly values (from 1 minute data) or daily values (from
hourly data). The index p represents the four periods of the NETA-based tariff.
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Figure 13: Flow chart representing the algorithm which was utilised to obtain the maximum
capacity of a battery system when performing PVts using 1 minute (loop variable k) data for
every day (loop variable i) of the year. The flowchart sequence follows the number sequence
in the boxes. The sum symbol represents the aggregation of results to obtain hourly values
(from 1 minute data) or daily values (from hourly data).
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Figure 14: Battery capacity as a percentage of the ES demand for different communities
in 2020 for PbA batteries performing (a) PVts and demand load-shifting with the NETA-
based tariff and (b) PVts and demand load-shifting with Economy; and for Li-ion batteries
performing (c) PVts and demand load-shifting with the NETA-based tariff and (d) PVts and
demand load-shifting with Economy.
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Figure 15: Battery capacity as a percentage of the ES demand for different communities in
the zero carbon year for PbA batteries performing (a) PVts and demand load-shifting with
the NETA-based tariff and (b) PVts and demand load-shifting with Economy; and for Li-ion
batteries performing (c) PVts and demand load-shifting with the NETA-based tariff and (d)
PVts and demand load-shifting with Economy.
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