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Abstract 

A series of LaFe1−xTixO3 (x=0.0, 0.2, 0.4, 0.6 and 0.8) nanoparticles have been 

successfully synthesized by simple co-precipitation technique. The synthesized samples 

(calcined at 800° C/3hr) were characterised for structural, optical and magnetic properties. 

Structural phase formation of the crystal shows orthorhombic planes of these samples phases. 

The average crystallite size (Dc) is decreasing with a dopant and found to be varying between 

~ 9 - 25 nm. Tailored surface morphology was analyzed using scanning electron microscope 

(FESEM) and transmission electron microscopes (TEM) with selected area electron 

diffraction pattern (SAED) also confirms the evolution of orthorhombic phases. Diffuse 

reflectance spectra (DRS) are recorded to evaluate the variation of optical band gap (Eg) upon 

titanium doping into the LaFeO3 system. The obtained results attributed that Eg values are 

increasing with dopant altering between 2.05 - 2.61 eV. The metal oxide (M-O) stretching 

vibrations and few functional groups are detected from infrared spectra (IR). The weak 

ferromagnetic behaviour is observed from hysteresis loop behaviour. Additionally, the large 

hysteresis loop behaviour induces no saturation up to 15 kOe in nanoparticles coercivity (Hc) 

and anisotropy constants (K1) are eventually decreasing with ‘x’ values.   
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1. Introduction 

The magnetic nanomaterial is a promising candidate material, due to co-existing states of 

multiple coupled such as magnetism and superconductivity [1-9]. Lanthanum iron oxide 

(LaFeO3) is an ABO3 perovskite oxide having an orthorhombic structure [10-13]. It has 

attracted attention for distinct applications such as electrode materials for fuel cells, 

photocatalyst, chemical sensors, non-volatile magnetic memory devices and ultrasensitive 

magnetic read heads of modern hard disk drives, etc. [14–21].  

Recently, LaFeO3 (LFO) has got much attention owing to its multiferroicity [22]. It is a G-

type antiferromagnetic material possessing high Neel temperature (TN) of 480 

C. Also shows 

a ferroelectric transition at 200 

C [21, 22]. Orthoferrites are the weak ferromagnetic 

materials with interesting magneto-optical properties [23, 24]. The magnetic structure is 

illustrated by two face centred cubic sub-lattices. In this structure, each ferric ion (Fe
3+

) is 

surrounded by six oxygen ions (O
2-

) attributing a collinear arrangement of A and B-lattices. It 

gives rise to antiferromagnetic ordering. However, BO6 octahedra are titled to different 

degrees based on the diameter of the cation at A-site and show a net magnetic moment [25, 

26]. Nano-sized LFO exhibits higher specific surface area (S) than its bulk counterpart, due to 

quantum size effect [21]. It allows various dopants to accommodate in its structure and 

therefore, the properties can be tuned based on the kind of dopant [27]. Preferential 

occupation of A-site or B-sites by the doping element can also influence the electrical, optical 

and magnetic properties of LFO up to some extent [28]. In the literature, no detailed report is 

available on the optical and magnetic properties of substitution on B site by Ti ions using co-

precipitation method. Hence, Nanocrystalline LaFe1−xTixO3 powders have been prepared for 
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investigating structural, optical and magnetic properties using X-ray diffraction (XRD), 

energy dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), UV-

Visible spectrometer, Fourier transform infrared (FT-IR) spectrometer and vibrating sample 

magnetometer (VSM) respectively. 

 

2. Experimental procedure: 

 LaFe1-xTixO3 (x = 0.2, 0.4, 0.6 & 0.8) ceramic powders are prepared by Co-

precipitation method with the aqueous solutions of La(NO3)2.6H2O (99.6 % purity, Sigma-

Aldrich), Fe (NO3)2.9H2O (99.6 % purity, Sigma-Aldrich) and Titanium (IV) isopropoxide 

(99.6 % purity, Sigma-Aldrich) mixtures respectively in alkaline medium. The solutions of 

La (NO3)26H2O, Fe (NO3)2.9H2O and Titanium (IV) isopropoxide in their stoichiometry (1g 

of La (NO3)2.6H2O in 50 ml), (0.8g of  Fe (NO3)2.9H2O in 50 ml), (0.2g of titanium (IV) 

isopropoxide in 50 ml) were dissolved in double distilled water with a constant stirring. The 

neutralization is carried out by adding the NaOH solution, and the pH is maintained around at 

10. The precipitation is formed when the solution continued stirring for 3 hrs at 80 C; then 

the resultant precipitate is cooled to ambient temperature. To remove the additional 

compounds of sodium and chloride, the precipitate is washed and filtered several times with 

double distilled water. To remove the water molecules, the precipitate was dried at 100 C for 

12 hrs. The dried sample was fluffy mass in appearance that is grinded for 2 hrs using the 

motor pestle apparatus and the resulting powder was sintered for 3hrs at 800 C. After 

sintering, the sample was once again grinded for 4 hrs to make uniform particle size. The 

resultant powder is subjected to XRD (Bruker X-Ray Powder Diffraction Meter, CuKα 

λ=0.15418 nm), SEM/EDAX (SEM with EDX using Carl Zeiss SUPRA‐ 555), JASCO UV-

Visible spectrophotometer (V-670 PC), FT-IR spectrophotometer (IR affinity-1, Shimadzu), 
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TEM (TEM: Model Tecnai G20, FEI, USA) andVSM (EV-7 VSM with Max. applied field 

15 kOe) characterization. 

3. Results and Discussion 

3.1. Structural analysis 

Figure 1 depicts the diffraction patterns of LaFe1-xTixO3 (LFTO) nanoparticles. All the 

reflection planes are in good agreement with the standard JCPDS: 82-1958 of orthorhombic 

LFO. Few secondary phases (preceded by *) corresponding to La2TiO5 are detected for the 

increased titanium concentrations (x=0.6 - 0.8).  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. XRD pattern of LaFe1-xTixO3 (x = 0.2, 0.4, 0.6 & 0.8) 
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The average diameter (D) of the sample is evaluated for the intense peak positions using 

Scherrer’s formula [29]: 

(1)
cos




k
D  

Where ‘k’ is a constant and is approximate equals to 0.9 for a spherical symmetry, ‘λ’ is X-

ray wavelength of CuKα = 1.5418 Å, ‘θ’ is diffraction angle and ‘β’ is full-width half maxima 

(FWHM). 

The established results revealed that the crystallite size is decreasing with the increase 

of Ti content and found to be varying between ~ 9 - 26 nm. Respectively, similar kind of 

trend was reported [21]. This behaviour is attributed owing to weakening crystal growth or an 

increase of elastic strain (ε = β/4tanθ) by Ti-addition. From Table 1, it is evident that ε –value 

is increasing from 3510
-4

 to 26  10
-3

. The lattice constants (a, b &c) calculated using the 

formula:                                              (2)
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Where ‘d’ is interplanar spacing distances and hkl are the Miller indices. These are computed 

using X-powder -12 software. The obtained data is shown in Table 1. A small change of unit 

cell volume (V= abc) is noticed with titanium addition (Table 1). Iron possible vacancies are 

Fe
2+

, Fe
3+

, and Fe
+4

. To ensure the charge neutrality and stable orthorhombic structure, Fe
4+

 

ions should necessarily be formed in the lattice structure because of +4 valence of titanium. 

Hence, it removes ferric ions incorporating excess oxygen ions. Lanthanum ions 

preferentially occupy A-site while iron ions occupy B-site in LFO structure. Upon Ti
4+

 

doping,it replaces Fe
4+

 ions. The ionic radii of La
3+

 (0.136 nm), Fe
4+

 (0.058nm), Ti
4+

 ions 

(0.061nm) and O
2-

 (0.155 nm) are responsible for various structural parameters such as 

tolerance factors (t), lattice constants and X-ray density (Dx) [21]. It is remembered that 

perovskite materials perform a stable structure depending upon their tolerance factor (t) and 

is mathematically given by    
 

(3)
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Where RA, RB and RO are ionic radii of A-site, B-site and oxygen ions respectively. For a 

stable orthorhombic structure t <0.96 [30]. In this investigation t-values for 

[La
3+

]A[Fe
4+

,Ti
4+

]BO
2-

structure are 0.645 & 0.644(<0.96) with respect to Ti and  Fe-ions at B-

sites respectively. The high phase purity (absence of secondary phases) at x = 0 & 0.2 shows 

an increasing trend of lattice constants (Table 1).  

 

Table 1. Structural parameters of LaFe1-xTixO3 (x = 0.2, 0.4, 0.6 & 0.8) 

 

 

 

 

 

 

 

 

 

 

 

 

Since Ti
4+

 (0.61Å) ionic radius is greater than that of Fe
4+

 (0.58Å). On the other hand for x = 

0.3-0.8, a unsystematic variation of lattice constants is noticed due to the presence of 

secondary phases. The X-ray density (Dx) and specific surface area (S) are calculated by 

following relations [30]. 

                   

(4)
3


Na

ZM
D

 

(5)
*

6000


xDD
S  

X 0 0.2 0.4 0.6 0.8 

D(nm) 24.6 15.3 11 10 9 

FWHM(β) 0.005 0.012 0.019 0.013 0.022 

Strain (ε) 0.003 0.007 0.010 0.022 0.026 

a(Å) 5.513 5.608 5.534 5.587 5.640 

b(Å) 5.473 5.621 5.572 5.520 5.714 

c(Å) 7.819 7.911 7.850 7.860 7.931 

V (Å)
3
 235.9 249.3 242.1 242.4 255.6 

Dx(g/cm
3
) 6.833 6.424 6.573 6.521 6.183 

S (m
2
/g) 35.7 61.1 82.9 92.0 107.8 

νcm
-1

(M-O)  538.1 540.1 551.6 555.5 561.9 
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Where Z (4) is a number of atoms per unit cell, M is the molecular weight and N (6.023x10
23

) 

is the Avogadro's number. In respect of the results (Table 1), at increased doping level, Dx is 

exhibiting unsystematic trend due to presence of secondary phases. The surface area is 

increasing with rising x-value from 35.7 m
2
.g

-1
 to107.8 m

2
.g

-1
 owing to decrease of crystallite 

size. This clearly reveals the fact that secondary phases can affect the dimensions, volume of 

unit cell and density. 

3.2 Surface Morphology 

Surface morphology and elemental analysis of nanoparticles are carried out using 

scanning electron microscope (SEM) and energy dispersive x-ray analysis (EDAX). In SEM 

photographs (Fig. 2) show the particle grain size around 39 – 77 nm grains were detected. 

This confirms the formation of well nanocrystalline grains during the heat treatment. As far 

as the shape is concerned, x = 0 & 0.2 showed the flat plate-like grains. However, for the rest 

compositions almost clustered spherical grains are observed. It is also noticed that the 

obtained grain sizes (39 – 77 nm) are approximately identical to the crystallite size (25  - 9 

nm)established from diffraction studies. The small enhancement of grain size is due to 

creeping of grain boundary when the specimen underwent heat treatment. The EDAX spectra 

show the abundance of elements in the nanopowders and are presented in Fig. 3. The 

presence of La, Fe, Ti and O elements including their atomic (At%) and weight (Wt%) 

percentages are reported (inset table of EDAX). 
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Fig. 2 SEM photographs of LaFe1-xTixO3 (x = 0, 0.2, 0.4, 0.6 & 0.8) 
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Fig . 3 EDAX spectra of LaFe1-xTixO3(x = 0 & 0.2) 

The surface morphology and structure of LFTO is investigated by TEM and selected area 

electron diffraction (SAED) patterns respectively (Fig. 4). TEM photograph (x = 0.2) shows a 

small agglomeration among the nanoparticles. This is due to weak magnetic interactions 

between the particles [17]. The average grain size of 31.4 nm is consistent with the 

diffraction and SEM results. The SAED pattern shows concentric circular pattern attributing 

the polycrystalline structure and is very close to the diffraction pattern of XRD (x = 0.2).The 

SAED pattern lengths are shown in Fig. 4.  
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Fig. 4. TEM images of LaFe0.8Ti0.2O3 

3.3  FTIR analysis 

Fig. 5 represents the Fourier transform infrared spectra (FT-IR) of La1− xTixFeO3(x = 

0, 0.2, 0.4, 0.6 & 0.8) nano-powders. All spectra show broad absorption bands around 540 - 

560 cm
-1

. A small shift is identified for metal-oxide (M-O) towards the higher wave numbers 

i.e. from 538.1 - 561.9 cm
-1

. Some more absorption bands are observed at approximately 

3618.8 cm
-1

 and 3454.9 cm
-1

whichare designed to the symmetric and asymmetric stretching 

modes of water molecules [31]. At approximately 1456.3 cm
-1

 and 1687.9 cm
-1

wave 

numbers, the bending modes of the O-H bond are observed. A small absorption peak at 

854.5cm
-1

 reveals the presence of metal oxide-bonds which are assigned to the vibrations of 

Fe-O and O-Fe-O bonds [32].  
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Fig.5 FTIR spectra of LaFe1-xTixO3 (x = 0, 0.2, 0.4, 0.6 & 0.8) 

3.4 UV-Visible absorption spectra 

UV–Visible spectroscopy is employed to characterise the optical properties of the 

LFTO nanoparticles. The direct band gap energy (Eg) was determined by fitting the 

absorption data to the direct transition as the equation is αhν = A (hν- Eg)
1/2

, where α is the 

optical absorption coefficient, hν is the photon energy, Egis the direct band gap, and A is 

constant. The extrapolation of the linear parts of the curves toward absorption equal to zero 

gives Eg for direct transitions (Fig. 6). The estimated direct band gaps of all samples are in 

the range of 2.05, 2.15, 2.39, 2.45 and 2.61 eV [30]. The results are in consistent with the 

reported direct bandgap value of LaFeO3 nanoparticles synthesised by sol–gel auto-

combustion method is 2.1 eV [34-36]. These small band gaps of LaFeO3 are interesting for 

application in photocatalytic [37]. 
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Fig. 6. UV-Visible spectra of LaFe1-xTixO3 (x = 0, 0.2, 0.4, 0.6 & 0.8) 
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3.5 VSM analysis  

The M-H loop behavior of LaFe1-xTixO3 (x = 0, 0.2, 0.4, 0.6 & 0.8) is studied from 

vibrating sample magnetometer  at room temperature (RT) varying the applied magnetic field 

(H) during the range of0 to ±15 kOe (Fig. 8). From hysteresis loop behaviour it is confirmed 

that the nanopowders exhibit weak ferromagnetic nature having a small M-H loop. This may 

be due to spin-canted iron moments generated from disordered surface spins [21]. The 

magnetic parameters are reported in Table 2. It can be seen from the table that magnetisation 

(Ms), magnetic moment (nB), remanence (Mr) and squareness are increasing from x = 0-0.2. 

For further increase of x- value both the parameters are showing a decreasing trend. The 

attained maximum value of all magnetic parameters other than coercivity (Hc) and anisotropy 

constant (K1) is interesting for x = 0.2. High phase purity and an increasing number of 

uncompensated spins of iron moments, in turn, causes it. Since they can allow the domain 

wall motion freely; this improves nB value. Likewise, the presence of secondary phases and 

high concentration of non-magnetic cations (Ti
4+

) can hide the domain wall motion. Thus 

lowers the values of above mentioned magnetic parameters. It is also found that the 

anisotropy constant and coercivity are decreasing with the increase of non-magnetic cations. 

This reveals a proportional relationship between Hc and K1. Normally, coercivity is a 

crystallite size dependent parameter. At x=0.8, magnetisation decreases owing to a high AFM 

spin alignments of  Fe
3+

–O
2−

–Fe
3+

& Fe
4+

-O
2-

−Fe
4+

 by superexchange interaction. This leads 

to a reduction of magnetisation. At x = 0.2 the maximum value of magnetisation shows 

magnetic memory device applications. 
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Fig. 7. VSM analysis of LaFe1-xTixO3 (x = 0, 0.2, 0.4, 0.6 & 0.8) 
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From Fig. 8, it is obvious that the coercivity is decreasing with the increase of x-value 

due to a decrease in crystallite size (Dc). Several researchers have reported the inverse 

relation of Hc and Dc based on domain theory [39]. However, in this investigation, a 

proportional relation is established. According to Stoner-Wohlfarth model [39], for a weak 

ferromagnetic single domain particle, Hc decreases as the particle size decreases due to a 

decrease of magnetic moment and anisotropy constant [40-43]. 

 

 

 

 

 

 

 

 

 

 

Figure.8. A graphical representation of dopant vs. coercivity and grain size of the 

nanopowders 
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Table: 2 Magnetic properties of Ti-doped LaFeOx 

 

X 0 0.2 0.4 0.6 0.8 

Coercivity Hc (G) 1217.6 855.0 683.5 583.6 462.5 

Magnetization Ms (emu) 6.49 x10
-3

 8.25 x10
-3

 5.97x10
-3

 5.83x10
-3

 2.32x10
-3

 

Retentivity Mr (emu) 542.9x10
-6

 747.2x10
-6

 339.6x10
-6

 264.5x10
-6

 127.7x10
-6

 

Squareness (Mr/Ms) 0.084 0.091 0.057 0.045 0.055 

Magnetic moment (nB) 2.82 x10
-4

 3.56 x10
-4

 2.56 x10
-4

 2.48 x10
-4

 9.82 x10
-4

 

Anisotropyconstant (K) 8.23 7.35 4.25 3.54 1.12 

      

 

4. Conclusion 

Nanoparticles of LaFe1−xTixO3 (x = 0, 0.2, 0.4, 0.6, 0.8) have been prepared by Co-

precipitation method. The average crystallite size (Dc) is varying between 9nm-24.6nm. The 

morphology is analysed using scanning electron microscope and transmission electron 

microscope. The Eg values are increasing with dopant from 2.05 eV to 2.61 eV. The weak 

ferromagnetic behaviour is observed from hysteresis loop behaviour. Coercivity (Hc) and 

anisotropy constants (K1) are eventually decreasing with ‘x’ value. At x = 0.2 the maximum 

value of magnetisation shows magnetic memory device applications. 

 

Acknowledgment: 

             We gratefully acknowledges support from Arignar Govt Arts College- Cheyyar, and 

VIT University, Vellore, Tamil Nadu, India. We also express our thanks to IIT Chennai and 

IIT Bombay for recording VSM and TEM analysis of the samples. 



17 
 

References  

1. E. Hema, A. Manikandan, P.Karthika, M. Durka, S. Arul Antony, B. R. 

Venkatraman, A novel synthesis of Zn
2+

-doped CoFe2O4 spinel nanoparticles: 

Structural, morphological, opto-magnetic and catalytic properties, J. Supercond. 

Nov. Magn. 28, 8 (2015) 2539-2552. 

2. K. Thanigai Arul, E. Manikandan, R. Ladchumananandasivam, M. Maaza, Novel 

polyvinyl alcohol polymer based nanostructure with ferrites co-doped with nickel 

and cobalt ions for magneto-sensor application, Polymer Int. 65 (2016) 1482-

1485. 

3. A. Manikandan, S. Arul Antony, R. Sridhar, Seeram Ramakrishna, M. Bououdina, 

A simple combustion synthesis and optical studies of magnetic Zn1-xNixFe2O4 

nanostructures for photoelectron chemical applications, J. Nanosci. Nanotech. 15 

(2015) 4948-4960. 

4. J Kennedy, J Leveneur, GVM Williams, DRG Mitchell, A Markwitz, Fabrication 

of surface magnetic nanoclusters using low energy ion implantation and electron 

beam annealing, Nanotechnology 22 (2011) 115602. 

5. J. Kennedy, et al. Intrinsic magnetic order and inhomogeneous transport in Gd-

implanted zinc oxide, Physical Review B 88.21 (2013): 214423. 

6.  E. Manikandan, L Krishnakumar, G. Kavitha, G Mani, Effective Ammonia 

Detection Using n-ZnO/p-NiO Heterostructured Nanofibers. IEEE Sensors 

Journal 16 (2015) 2477 - 248.  

7. AH Shah, MB Ahamed, E Manikandan, R Chandramohan, M Iydroose. Magnetic, 

optical and structural studies on Ag doped ZnO nanoparticles. J Materials Science: 

Materials in Electronics 24 (2013) 2302-2308.  

8. J Leveneur, J Kennedy, GVM Williams, J Metson, A Markwitz, Large room 

temperature magnetoresistance in ion beam synthesized surface Fe nanoclusters 

on SiO2, Appl. Phys. Lett. 98 (2011), 053111. 

9. K. Chinnaraj, A. Manikandan, P. Ramu, S. Arul Antony, P. Neeraja, Comparative 

study of microwave and sol-gel assisted combustion methods of Fe3O4 

nanostructures: Structural, morphological, optical, magnetic and catalytic 

properties, J. Supercond. Nov. Magn. 28 (2015) 179-190. 

10. V. Mary Teresita, A. Manikandan,
 
B. Avila Josephine, S. Sujatha, S. Arul Antony, 

Electro-magnetic properties and humidity sensing studies of magnetically 

https://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=mxbbX1cAAAAJ&citation_for_view=mxbbX1cAAAAJ:WF5omc3nYNoC
https://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=mxbbX1cAAAAJ&citation_for_view=mxbbX1cAAAAJ:WF5omc3nYNoC
https://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=mxbbX1cAAAAJ&citation_for_view=mxbbX1cAAAAJ:WF5omc3nYNoC
https://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=mxbbX1cAAAAJ&citation_for_view=mxbbX1cAAAAJ:hqOjcs7Dif8C
https://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=mxbbX1cAAAAJ&citation_for_view=mxbbX1cAAAAJ:hqOjcs7Dif8C
https://scholar.google.co.in/citations?view_op=view_citation&hl=en&user=mxbbX1cAAAAJ&citation_for_view=mxbbX1cAAAAJ:hqOjcs7Dif8C


18 
 

recoverable LaMgxFe1-xO3-δ perovskites nano-photocatalysts by sol-gel route, J. 

Supercond. Nov. Magn. 29 (2016) 1691–1701. 

11. S. Rajmohan, V. Jeseentharani, A. Manikandan, John Pragasam, Co-precipitation 

synthesis method, characterizations and humidity sensing applications of 

perovskite-type mixed oxide La1-xCoxVO3-δ nanocomposites, Nanosci. Nanotech. 

Lett. 8 (2016) 393-398. 

12. B. Avila Josephine, A. Manikandan,
 

V. Mary Teresita, S. Arul Antony, 

Fundamental study of LaMgxCr1−xO3−δ perovskites nano-photocatalysts: Sol-gel 

synthesis, characterization and humidity sensing, Korean J. Chem. Eng. 33 (2016) 

1590-1598. 

13. S Khamlich, E Manikandan, BD Ngom, J Sithole, O Nemraoui, I Zorkani. 

Synthesis, characterization, and growth mechanism of α-Cr2O3 monodispersed 

particles. Journal of Physics and Chemistry of Solids 72 (2011) 714-718.   

14. A. Manikandan, M. Durka, S. Arul Antony, Magnetically recyclable spinel 

MnxZn1-xFe2O4; (0.0 ≤ x ≤ 0.5) nano-photocatalysts, Adv. Sci. Eng. Med. 7 (2015) 

33-46. 

15. M. F. Valan, A. Manikandan, S. Arul Antony, Microwave combustion synthesis 

and characterization studies of magnetic Zn1-xCdxFe2O4 (0 ≤ x ≤ 0.5) 

nanoparticles, J. Nanosci. Nanotech. 15 (2015) 4543-4551. 

16. Tugova, E. A., et al. "Phase diagram of the LaFeO3-LaSrFeO4 system." Glass 

Physics and Chemistry 32 (2006): 674-676. 

17. Petrović, S., et al. "LaMO3 (M= Mg, Ti, Fe) perovskite type oxides: preparation, 

characterization and catalytic properties in methane deep oxidation." Applied 

Catalysis B: Environmental 79 (2008): 186-198. 

18. Tijare, Saumitra N., et al. "Photocatalytic hydrogen generation through water 

splitting on nano-crystalline LaFeO3 perovskite." International Journal of 

Hydrogen Energy 37 (2012): 10451-10456. 

19. Wei, Zhi-Xian, et al. "Preparation and catalytic activities of LaFeO3 and Fe2O3 for 

HMX thermal decomposition." Journal of Hazardous Materials 165 (2009): 1056-

1061. 

20. Faye, Jérémy, et al. "Influence of lanthanum stoichiometry in La1− xFeO3−δ 

perovskites on their structure and catalytic performance in CH4 total 

oxidation." Applied Catalysis B: Environmental 126 (2012): 134-143. 



19 
 

21. Phokha, Sumalin, et al. "Polymerized Complex Synthesis and Effect of Ti-Dopant 

on Magnetic Properties of LaFeO3 Nanoparticles." J. Nanosci. Nanotechnol. 15 

(2015): 9171-9177. 

22. Jain, P., and S. Srivastava. "Investigation of structural, magnetic and electrical 

properties of pure LaFeO3 synthesized through solution combustion technique. 

Dig. J. Nanomater. Biostructures 10.1 (2015): 141-147. 

23. Treves, D. "Studies on orthoferrites at the Weizmann Institute of Science." Journal 

of Applied Physics 36.3 (1965): 1033-1039. 

24. Didosyan, Yuri S., et al. "Magneto-optical rotational speed sensor." Sensors and 

Actuators A: Physical 106.1 (2003): 168-171. 

25. Mathur, Sanjay, et al. "Molecule derived synthesis of nanocrystalline YFeO3 and 

investigations on its weak ferromagnetic behavior." Chemistry of materials 16.10 

(2004): 1906-1913. 

26. Mathur, Sanjay, et al. "Nanocrystalline orthoferrite GdFeO3 from a novel 

heterobimetallic precursor." Advanced Materials 14.19 (2002): 1405-1409. 

27. Shikha, Preet, Tejwant Singh Kang, and B. S. Randhawa. "Effect of different 

synthetic routes on the structural, morphological and magnetic properties of Ce 

doped LaFeO 3 nanoparticles." Journal of Alloys and Compounds 625 (2015): 

336-345.  

28. Tejuca, Luís G., and J. L. G. Fierro, eds. Properties and applications of perovskite-

type oxides. CRC Press, 2000. 

29. Mahmoud, Mohamed H., et al. "Synthesis of highly ordered 30nm NiFe 2 O 4 

particles by the microwave-combustion method." Journal of Magnetism and 

Magnetic Materials 369 (2014): 55-61. 

30. Phan, Manh-Huong, and Seong-Cho Yu. "Review of the magnetocaloric effect in 

manganite materials." Journal of Magnetism and Magnetic Materials 308.2 

(2007): 325-340. 

31. Thuy, Nguyen Thi, and Dang Le Minh. "Size effect on the structural and magnetic 

properties of nanosized perovskite LaFeO3 prepared by different 

methods." Advances in Materials Science and Engineering 2012 (2012). 

32. Janbutrach, Yutana, Sitchai Hunpratub, and Ekaphan Swatsitang. 

"Ferromagnetism and optical properties of La 1− x Al x FeO 3 

nanopowders." Nanoscale research letters 9.1 (2014): 498.  



20 
 

33. Yang, Zhongqin, et al. "Influence of parameters U and J in the LSDA+U method 

on electronic structure of the perovskites La M O 3 (M= C r, M n, F e, C o, N 

i)." Physical Review B 60.23 (1999): 15674. 

34. Saad, A. Abdullah, et al. Structural, optical and magnetic properties of perovskite 

(La1−xSrx) (Fe1−xNix)O3, (x= 0.0, 0.1 & 0. 2) nanoparticles. Electronic Materials 

Letters 9.1 (2013): 77-81. 

35. J. Kennedy, et al. Controlling preferred orientation and electrical conductivity of 

zinc oxide thin films by post growth annealing treatment. Applied Surface 

Science 367 (2016) 52-58. 

36. FT Thema, E Manikandan, A Gurib-Fakim, M Maaza.Single phase Bunsenite NiO 

nanoparticles green synthesis by Agathosma betulina natural extract. Journal of 

Alloys and Compounds 657 (2016) 655-661. 

37. R. Dhinesh Kumar, R. Thangappan, R. Jayavel, Synthesis and characterization of 

LaFeO3/TiO2 nanocomposites for visible light photocatalytic activity. J. Physics & 

Chem. Solids, 101 (2017) 25-33.  

38. M. A. Rafiq, M. A.Khan, M.Asghar, S.Z.Ilyas, I. Shakir, M. Shahid, M. F. Warsi, 

Ceram. Int. 46 (2015), http://dx.doi.org/10.1016/j.ceramint.2015.04.141 

39. Stoner, Edmund C., and E. P. Wohlfarth. "A mechanism of magnetic hysteresis in 

heterogeneous alloys." Philosophical Transactions of the Royal Society of London 

A: Mathematical, Physical and Engineering Sciences 240.826 (1948): 599-642. 

40. G. Padmapriya, A. Manikandan,
 
V. Krishnasamy, Saravana Kumar Jaganathan, S. 

Arul Antony, Spinel NixZn1-xFe2O4 (0.0 ≤ x ≤ 1.0) nano-photocatalysts: Synthesis, 

characterization and photocatalytic degradation of methylene blue dye, J. Mol. 

Struct. 1119 (2016) 39-47. 

41. AH Shah, E Manikandan, MB Ahamed, DA Mir, SA Mir. Antibacterial and Blue 

shift investigations in sol–gel synthesized CrxZn1−xO Nanostructures. Journal of 

Luminescence 145 (2014) 944-950 

42. C. Barathiraja, A. Manikandan, A. M. Uduman Mohideen, S. Jayasree, S. Arul 

Antony, Magnetically recyclable spinel MnxNi1-xFe2O4 (x = 0.0–0.5) nano-

photocatalysts: Structural, morphological and opto-magnetic properties, J. 

Supercond. Nov. Magn.  29 (2016) 477-486. 

43. A. Diallo, T.B. Doyle, B.M. Mothudi, E. Manikandan, V. Rajendran, M. Maaza, 

Magnetic behavior of biosynthesized Co3O4 nanoparticles, J. Magn. Magn. Mater. 

424 (2017) 251-255. 

http://dx.doi.org/10.1016/j.ceramint.2015.04.141


21 
 

Graphical Abstract  

 

 

 

 

 

 

 

 

 

 

 

 


