Exact Fuzzy k-Nearest Neighbor
Classification for Big Datasets

Jesus Maillo, Julidn Luengo, Salvador Garcia, Francisco Herrera
Department of Computer Science and Artificial Intelligence

University of Granada, Granada, Spain, 18071

Email: {jesusmh, julianlm, salvagl, herrera} @decsai.ugr.es

Abstract—The k-Nearest Neighbors (kKNN) classifier is one of
the most effective methods in supervised learning problems.
It classifies unseen cases comparing their similarity with the
training data. Nevertheless, it gives to each labeled sample the
same importance to classify. There are several approaches to
enhance its precision, with the Fuzzy k-Nearest Neighbors (Fuzzy-
kNN) classifier being among the most successful ones. Fuzzy-
kNN computes a fuzzy degree of membership of each instance
to the classes of the problem. As a result, it generates smoother
borders between classes. Apart from the existing kNN approach
to handle big datasets, there is not a fuzzy variant to manage that
volume of data. Nevertheless, calculating this class membership
adds an extra computational cost becoming even less scalable to
tackle large datasets because of memory needs and high runtime.
In this work, we present an exact and distributed approach to
run the Fuzzy-kNN classifier on big datasets based on Spark,
which provides the same precision than the original algorithm.
It presents two separately stages. The first stage transforms the
training set adding the class membership degrees. The second
stage classifies with the KNN algorithm the test set using the
class membership computed previously. In our experiments, we
study the scaling-up capabilities of the proposed approach with
datasets up to 11 million instances, showing promising results.

I. INTRODUCTION

The k-nearest neighbor method (kNN) [1] is an instance-
based classifier that compares new examples with labeled
instances of a training set. As a lazy learning algorithm,
instead of creating an explicit classification model, it defers
all computations until the classification phase. Its classification
rule is based on taking the k& most similar samples of the
training set for an unknown sample. Its similarity is usually
a distance measure, e.g. the Euclidean or Manhattan distance.
Despite its simplicity, the kNN algorithm highlights as one of
top ten algorithms in data mining for its performance [2].

However, the kNN algorithm gives the same importance to
every neighbor, assuming that the boundaries between classes
are perfectly defined, which is not always true. There is an
effective improvement of kNN that alleviates this issue by
using fuzzy sets, named Fuzzy-kNN [3]. To do so, Fuzzy-kNN
has two different phases. First, it changes the class label for
a class membership degree. After that, it calculates the kNN
with the membership information, achieving higher accuracy
rates in most classification problems. There are different fuzzy
approaches to kNN that has shown to be significant improve-
ments. Nevertheless, the original Fuzzy-kNN has demonstrated
to be one of the most effective in practice [4]. Also, it has been
the preferred choice in multitude of fields such as medicine
[5], economy [6] and many other applications.

Isaac Triguero
School of Computer Science
University of Nottingham, Jubilee Campus
Nottingham NG8 1BB, United Kingdom
Email: Isaac.Triguero @nottingham.ac.uk

The kNN algorithm and also his fuzzy variant has two
main problems to tackle large datasets because of their lazy
behavior: runtime and memory consumption. The Fuzzy-kNN
algorithm increases both issues because it needs an extra
phase to compute the class membership degree. This stage
needs nearly the double of main memory available in order to
compute the kNN method with the training set against itself.

These two big data issues can be handled with cloud-based
technologies. The MapReduce paradigm [7] and Spark [8] as a
framework highlight as powerful tools to tackle data-intensive
applications compared to other schemes such as Message
Passing Interface [9]. The main reasons for their success are
the distributed file system and the fault-tolerant mechanism.

Currently, there are contributions to manage big data prob-
lems with the kNN algorithm. Focusing on classification
problems, the method proposed in [10] is an approximate kNN
algorithm consisted of two stages. First, it groups the data to
separate the whole dataset in different splits, and secondly, it
computes a kNN in each partition providing different results
of the original kNN. Another relevant contribution is kINN-
IS [11], where authors proposed an exact approach that can
classify huge datasets. The map phase splits the training set
and computes the kNN of every test sample. The reduce phase
collects all the candidates to be the nearest neighbors and
reports the final k£ nearest neighbors. Thus, it allows us to
deal with big training and test sets with good runtimes and
obtaining the same result than the original kNN algorithm.

However, there is only one approach of the Fuzzy-kNN
algorithm to deal with big data problems. In [12], the authors
proposed simply to split the data and apply Fuzzy-kNN in each
split. Then it collects all the labels of each split and computes
the final results by majority voting. With this scheme, it loses
valuable information about the problem and could be applied
with all the data mining algorithms. In addition, when training
set and/or test set are big, it will need too many splits and that
produces a lot of votes to consider in the last stage, becoming
a scalability problem.

In this paper, we propose a MapReduce-based approach im-
plemented on Spark for the Fuzzy-kNN algorithm. We take ad-
vantage of the in-memory primitives of Spark to manage large
training set by splitting the data. Also, it handles enormous test
sets by iterating over the chunks of this set, if necessary. As
we explained briefly, the scheme of the Fuzzy-kNN algorithm
has two stages. The first calculates the class membership
degree and is the most complex computationally.The map

stage distributes the training set and it computes the kNN on
each split. The reduce stage collects all the candidates to be the
nearest neighbors and obtain the final k£ closest samples. Then,
it computes the class membership and reports a new training
set with this information. Hence, the runtime is speeded up
and the scalability issue is alleviated. The second stage is
divided into map and reduce phases. The map phase consists
of distributing the computation of the distances between the
samples of the test set and the split of the training data. Thus,
each map obtain k candidates to be the k closest neighbors.
Multiple reducer tasks collect all the candidates provided by
the maps and it calculates the final £ neighbors and then it will
classify with the knowledge of the class membership degree
previously computed. Through the text, we will denote it as
Exact Fuzzy-kNN (EF-kNN).

In summary, the main contribution sof this work are as
follows:

o Design and develop an exact model of Fuzzy-kNN. The
implementation makes use of in-memory Spark opera-
tions in order to accelerate all the stages of the method.

o A experimental study of the scalability and accuracy of
this model.

The remainder of this paper is organized as follows. Section
II introduces the state-of-art in Fuzzy-kNN and the big data
technologies. Then, Section III details the proposed Fuzzy-
kNN model. The experimental study is described in Section
IV. Section V concludes the paper and outline the future work.

II. PRELIMINARIES

This section supplies the necessary background information
on the Fuzzy-kNN algorithm (Section II-A) and the big data
technologies (Section II-B).

A. Fuzzy k-Nearest Neighbors algorithm and complexity

The Fuzzy-kNN algorithm [3] is an improvement upon
the standard kNN algorithm. It has demonstrated to be very
competitive in comparison to others Fuzzy approaches in terms
of accuracy. To carry out this method, it is necessary to pre-
calculate the class memberships with the training set. After
that, it calculates the kNN of each sample of the test set. A
formal notation for the Fuzzy-kNN algorithm is the following:

Let TR be a training dataset and T'S a test set, they
are formed by a determined number n and t of samples,
respectively. Each sample x; is a vector (X;1,X;2, X;3, - - ., X;5),
where, x;; is the value of the j-th feature of the :-th sample.
Every sample of TR belong to a known class w, while it is
unknown for T'S. Fuzzy-kNN has two different stages.

The first stage calculates the FK,,emp nearest neighbors
of the TR against itself keeping following a leave-one-out
scheme. To do this, it searches the k,,cm,p» closest samples by
calculating the distances between Xy,q;, and all the samples
of TR. Once calculated the neighbors, it creates the class
membership as shown Equation 1. Thus, the T'R has a class
membership vector instead of the original class label.

0.51 4+ (nj/kmems) - 049 if j=1
uj(z) = (1)
(n;/kmems) - 0.49 if jF#i
The second stage computes the k nearest neighbors like the
first stage, but in this occasion, it calculates for each instance
of T'S the k closest in the T'R. After that, it decides the
resulting class as show the Equation 2 rather than as the kNN
algorithm does (i.e. majority voting).
Yo wig (1w — @] ¥ (= 0)
ul(x) = ! 174
21 ([= a2/ 0m=1))
Although Fuzzy-kNN algorithm improves in terms of accu-
racy to kNN method, it increases the algorithmic complexity
provoking two main problems to handle large-scale data:

o Runtime: The complexity to find the nearest neighbor
training example of a single instance is O(n - D) where
n is the number of training instances and D the number of
features. When it searches for k neighbors, its algorithmic
complexity rises to O(n-log(N)). Moreover, it repeats for
each training sample in the first stage and does the same
for each test sample in the second stage. The runtime of
creating the class membership and predicting the output
class could be despised comparing with the runtime of
calculating the k nearest neighbors in both stages.

e Memory consumption: Fuzzy-kNN model needs to store
in main memory the training and test dataset in order to
boost the computation. When T'R and T'S are really big,
they might easily exceed the available memory.

These difficulties encourage to design a distributed model of

Fuzzy-kNN by using big data technologies as the MapReduce
paradigm and Apache Spark platform.

)

B. MapReduce programming model: Apache Spark

The MapReduce programming paradigm [13], designed by
Google in 2003, is a scale-out data processing tools. It is aimed
at processing large-scale datasets by distributing the storage
and execution through a cluster of machines.

The MapReduce model defines three stages to manage
distributed data: Map, Shuffle and Reduce. The first one reads
the raw data in form of <key-value> pairs, and it distributes
through several nodes for parallel processing. The Shuffle is
responsible for merging all the values associated with the same
intermediate key. Finally, reduce phase combines those coin-
cident pairs and it aggregates it into smaller key-value pairs.
Figure 1 shows a scheme of this process. MapReduce provides
some features for relieving the user from some technical
details: data splitting, fault-tolerance and job communication.
In [14], authors expose an exhaustive review of this framework
and other distributed paradigms.

Apache Hadoop ', is the most popular open-source im-
plementation of MapReduce paradigm, but it can not reuse
data through in-memory primitives. Apache Spark is a novel
implementation of MapReduce that solves some of the Hadoop
drawbacks 2. The most important feature is the type of data

! Apache Hadoop. Web: http://hadoop.apache.org/
2 Apache Spark. Web: https://spark.apache.org/

Input Data

Split 1 Split 2 Split N
Key 1 | Value Key 1 | Value Key 1 | Value
Map Key 2 | Value Key 2 | Value Key 2 | Value
Key T | Value Key T | Value Key T | Value
Shuffle { l '

Value from Split 1 Value from Split 1 Value from Split 1
Reduce 4 [... | [- A I

Value from Split N Value from Split N Value from Split N
\ /
Output Data

Fig. 1: Data flow overview of MapReduce

structure that parallelize the computations in a transparent
way, it is called Resilient Distributed Datasets (RDDs). In
addition, RDD allows us to persist and reuse data, cached
in memory. Moreover, it was developed to cooperate with
Hadoop, specifically with its distributed file system (Hadoop
Distributed File System)

Spark includes a scalable machine learning library on top
of it known as MLIib®. It has a multitude of statistics tools
and machine learning algorithms along different areas of KDD
like classification, regression, or data preprocessing.

III. EF-KNN: EXACT FUzZZY-KNN FOR BIG DATA

In this section, we present an exact approach of distributed
Fuzzy-kNN model for big data classification using Spark.
We focus on the reduction of the runtime of the Fuzzy-kNN
classifier, when the training and test sets are big. Developing in
a parallel framework involves many factors that may impact
the execution time, such as the number of distributed tasks
(Maps), the number of Reduce jobs or the network traffic.
Thus, writing these methods is a challenging and it provokes
many key-points must be taken into account in order to design
an efficient and scalable model.

The main workflow of the Fuzzy-kNN algorithm is com-
posed of two stages. Sections III-A explains how it computes
the class membership degree obtaining a new training set. This
stage computes over the training set versus itself, becoming
the heaviest computationally of the two stages. Section III-B
shows the second stage, it uses the enriched knowledge of the
FTR calculated to classify the TS.

A. Class membership degree stage

This subsection explains the MapReduce process that com-
putes the class membership of the training set. Figure 2 shows
the flowchart of the EF-kNN, dividing the computation into
two phases: map and reduce operations. The map phase divides
the T'R and calculates for each split the distance and takes the
classes of the k nearest neighbors for every training sample.

3Machine Learning Library for Spark. Web: http://spark.apache.org/mllib/

Fuzzy Training
Set (FTR)
0 ft, | fty |- - ft,,m

1 <ClassM~Dist> k —u]
<ClassM = Dist> * Kyomspit 1

2 <ClassM = Dist> - k
Split 1 / =
TR,

S— b
“ TR, TR, TR,
1stiter 2nd iter Vth iter

With T samples e
and V iterations

J

<ClassM - Dist> - k <ClassM = Dist> - kiomspit

. T
- Split 2 1 <ClassM - Dist> -k Kv 2
Training Set TR, T 2 <Cassm-nisc>-k =05l
(TR) - TNV <ClassM - Dist> - k <ClassM - Dist> - Kyam spie
With N samples TRM s
-
y T/V
m-m w Split M <ClassM - Dist> - k "
<ClassM = Dist> - ki Split 1

1
2 <ClassM - Dist> - k

— <ClassM — Dist> - Ko spi
TV <ClassM—Dist> -k —— |)

MapPartition Reduce

Fig. 2: Flowchart of the EF-kNN

Algorithm 1 MapPartition function

Require: TR;, TR,, kMemb
1: for t = 0 to size(TR,) do
2: Clas&Dist,,; Compute kNN (TR;, TR, (t), kMemb)
3: result; + (< key : t,value : Clas&Dists j >)
4: end for
5: EMIT(result;)

The reduce stage joins all the candidates to be the k nearest
neighbors and obtains the k closest definitives samples. With
them, it reports a new T'R that adds a vector with the class
membership. It will called Fuzzy Training Set (FTS).

1) Map phase: Let us start with the training set TR read
from HDFS as a RDD object. The T'R has already been split
into m parts, as a parameter defined by the user. Thus, there
is one map task for each T'R; split (Map., Mapz, -, Mapm,
- where 1 < j < m). Therefore, each map contains approxi-
mately the same number of training samples.

To obtain an exact approach of the class membership degree,
it is necessary all the training samples in each map in order
to compare every training sample against the whole training
set. It supposes that T'R; and TR fit together in memory.
Otherwise, the T'R will be split into v chunks and it is iterated
in a sequential way to allow for being stored in memory and
properly executed.

Algorithm 1 encloses the pseudo-code of this function.
In our implementation in Spark we use the mapPartitions()
transformation, which runs the function defined on each split
of the RDD in a distributed way.

Every map j will build a vector Clas&Dist; ; of pairs
<class, distance> of dimension kMemb for each training
sample ¢ in T'R,,. Instruction 2 calculates the class and the
distance to its kM emb closest samples. To accelerate the latest
actualization of the nearest neighbors in the reducers, every
vector Clas&Dist, ; is sorted in ascending order.

Every map tasks reports a matrix of Clas&Dist that rep-
resents the candidate to be the nearest neighbors, which are
identified by ID as shown Instruction 3. With this scheme, it
could use multiple reducers to handle big training sets.

Algorithm 2 Reduce by key operation. EF-kNN

Require: resultyey, kMemb

1: contl <+ 0; cont2 < 0

2: while i < kMemb do

3: if resultyey (contl).Dist < resultycqucer(cont2).Dist then
4: out(i) + resultyey(contl)

S: contl++

6: else if resultyey (contl).Dist = resultredqucer(cont2).Dist then
7: if ¢ < kMemb then

8: i++

9: out(i) < resultyey(cont2)
10: cont2++
11: end if
12: else
13: out(i) resultye, (cont2)
14: cont2++
15: end if
16: i++

17: end while
18: EMIT(out)

Algorithm 3 Map operation. EF-kNN

Require: sample, neighborsiarems
. Initialize array membership to 0
for j < 0 to kMemb do
membership(neigh;) = +1
end for
for t = 0 to kMemb do
if sample.label = t then
membership(t) < 0.51 + (membership(t)/kMemb) x 0.49
else
membership(t) < (membership(t)/kMemb) x 0.49
10: end if
11: end for
12: EMIT sample join membership

R el S

2) Reduce phase: Multiple reducers collect from the maps
the tentative K memb nearest neighbors and they aim to obtain
the closest ones for each training sample contained in T'R,,.
To do so, all the elements are grouped by key and compute
the class membership degree as shown in 2.

The reduce tasks will update the candidates selecting the
kmemb nearest by merging the output of the map. Since the
vectors coming from the maps are ordered according to the
distance, the update process becomes faster. This consists of
merging two sorted lists ensuring that neighbors with the same
distance are conserved both if possible. So that, the complexity
in the worst case is O(kMemb). This function compares one
by one every distance. If the distance is lesser than the current
closest, the distance and the class is updated, if the distance
is higher, it will discard and if it is exactly the same and there
is enough space, it will conserve both.

At this point, we have the kM emb nearest neighbors of each
instance of the training set among the training set. After that,
another map stage will calculate the class membership degree
as show Algorithm 3. In our implementation in Spark we use
the map() transformation, which runs the function defined on
each sample of the RDD in a distributed way. To do so, it
applies the Equation 1 and changes the single label for a vector
that represents the membership of each class.

Finally, Algorithm 3 returns each original sample main-
taining the original features and changing the label for the
class membership computed. Thus, it generates a new Fuzzy
Training Set, which is the input of the Final classification stage
described in Section III-B.

——

1stiter 2nd iter Uth iter Majority VOting with
With T samples max class membership
and U iterations

1 <ClassM — Dist> k ——u__
<ClassM — Dist> - Kyamspic s
2 <ClassM — Dist> - k
Split 1/ T | T <ClassM = Dist> - Kyom siim
FTR,
)
Split 2 1 <ClassM - Dist> - k _
Fuzzy Training FTR, — 2 <clasm-iso -k SIS
Set (FTR) . 0 | —aEn <ClassM = Dist> Kyomspitm
With N samples FTR o 000
v vl
[alfal [CAEE SPitM ey G
[fea e,] - - re, [PTURRRAES P 1 <ClassM-Dist> -k !
L <ClassM = Dist> * kyomspit1
With c classes 2 <ClassM - Dist> - k
ClassM — Dist> - Kyom
U <ClassM = Dist> -k e DS Kem i

MapPartition Reduce

Fig. 3: Flowchart of the Final classification stage

Algorithm 4 Classification: Map function

Require: TR; T'S; k
1: for t = 0 to size(T'S) do
2: neighbors-memby ; <— Compute kNN (T'R;, T'S(t), k)
3: result; < (< key : t,value : neighbors; ; >)
4: end for
5: EMIT(result;)

B. Final classification stage

Figure 3 presents the flowchart of the classification stage
divided into the two basic operations of MapReduce. The
MapPartition need the corresponding split of the TR, T'S
and the parameter k. Thus, it computes for each T'R; chunk
the k& nearest neighbors taking the distance and the classes
for every sample of the T'S. The reduce stage collects all k
nearest neighbors of each split and computes the definitives
k closest samples. Finally, it reports the classification label of
each sample by majority voting.

The classification stage is computationally lighter than the
first stage because the test set is usually smaller than training
set. Thus, it needs less main memory capacity in order to
store in memory the data and the runtimes are lower due to
compute fewer samples. Thus, the classification stage focuses
on obtaining an exact result starting of the F'TR.

1) Map phase: Let us assume that F'TR and T'S can be
stored in main memory. F'TR is split into m parts, which
contain approximately the same number of samples. 7'S has
to remain unpartitioned in order to compute all the candidate
to be the k nearest neighbors in each partition of the F'TR,
calculated by distributed map operations.

Note that if the number of partitions of the F'T'R remains
as the splits of T'R, a shuffle stage is avoided and therefore,
the efficiency will be increased in terms of runtime.

Algorithm 4 shows the pseudo-code of the map function.
For each sample of the T'S computes its k nearest neighbors.
The variable neighbors-memb saves the distances and the
class membership degree vector. Finally, it adds the id of each
test sample as a key and emits them to the reduce phase.

2) Reduce phase: The reduce stage aims to aggregate all
the tentative nearest neighbors in order to finally get the

Algorithm 5 Classification: Reduce by key function
Require: candidategey,1, candidategey, 2, k

1: itCy =0, itCe; =0

2: while i < k do

3: if candidateyey,1(itC1).Dist < candidategey 2(itC2).Dist then
4: result(i) « candidateyey, 1 (itCy)

5: if candidategey,1(itC1).Dist = candidategey 2(itC2).Dist

then

6: i++

7: if i < kMemb then

8: result(i) « candidategey, 2(itC2)

9: itCo + +

10: end if

11: end if
12: itCp + +

13: else

14: result(i) « candidategey, 2(itC2)

15: itCo + +

16: end if
17: i++

18: end while

TABLE I: Description of the used datasets

Dataset #Samples #Features #w
PokerHand 1,025,010 10 10
Susy 5,000,000 18 2
Higgs 11,000,000 28 2

definitive k£ nearest neighbors of the whole F'T' R. Keeping the
distance and the class membership degree vector.

Reduce by key function performs an aggregation of two
sorted list by distance in a new sorted list of k size. Algorithm
5 shows the pseudo-code, considering that the distances could
be the same for some examples. Hence, it keeps both neighbors
in case the k parameter permit it. With this implementation, it
is achieved to join the result of two maps with an algorithmic
complexity of O(k).

Finally, with the resulting neighbors, it is applied one last
map function to calculate the predicted class label. In this map
the Equation 2 is applied to every sample of the T'S.

IV. EXPERIMENTAL FRAMEWORK AND RESULTS

In this section, we present all the questions related to the
experimental study. Section IV-A establishes the experimental
set-up and Section IV-B discusses the results achieved.

A. Experimental set-up

We will use three large datasets from the UCI machine
learning repository [15] to evaluate our model: PokerHand,
Susy and Higgs. Table I presents the number of samples
(#Samples), features (# Features), and classes (#w). In our
experiments, we follow a 5 fold cross-validation scheme.

The original Fuzzy-kNN has 2 parameters and these are
exactly the same for the proposed model:

e kMemb: We investigate 3,5 and 7 as the number of

neighbors to compute class membership.

e k: The number of neighbors to predict unseen cases.

o #Maps: An extra parameter is needed, this is the number
of map tasks that will compute in a concurrent way and
is the number of splits of the T'R set.

In this work we evaluate the scalability and the efficiency

with the following two measures:

e Accuracy: This measure reflect the efficiency of the
algorithms. It represents the number of right predictions
against the total number of predictions ([16] [17]).

TABLE II: Influence of kMemb and k with Poker dataset

k]\éeg@b MembRuntme ClasRuntime TotalRuntime Acc
3 462.2232 130.7489 592.9720 0.5257
5 484.2841 145.6419 629.9260 0.5313
7 499.0342 141.0916 640.1258 0.5336

TABLE III: Influence of map tasks with Susy dataset

kMemb Accuracy
& k 128 256 384
3 0.7338 | 0.7246 | 0.7284
5 0.7350 | 0.7292 | 0.7278
7 0.7319 | 0.7291 | 0.7238

e Runtime: We will collect the time spent by the Fuzzy-
kNN algorithm to compute the class membership of
the training set and to classify a given test set versus
the training set. The total runtime includes reading and
distributing all the data.

All the executions have been run on a cluster composed of
sixteen computing nodes managed by another master node. All
the nodes have the following features has 2 Intel Xeon CPU
E5-2620 processor, 6 cores (12 threads) per processor, 2 GHz
and and 64 GB of RAM. The network is Infiniband 40Gb/s.
This hardware was configured providing a maximum number
of current tasks to 384. Each task has 2 GB of main memory
available. Every node runs with Cent OS 6.5 as operating
system and was configured with Spark 1.6.2. Thus, we can
not explore a number of maps greater than 384 in order to
obtain realistic result to study the scalability properly.

B. Analysis of results

This section studies the results collected from the experi-
mental study. Specifically, we analyze the proposed method in
terms of runtime and accuracy.

To do this, we use the Poker, Susy and Higgs datasets with
the proposed algorithm. We could not run further of these
datasets because the runtime increases too much.

Table II shows the runtime of compute class membership
stage (MembRuntime), classification stage (ClasRuntime) and
total runtime (TotalRuntime) in seconds, and the test accuracy
(Acc) with Poker dataset. In order to simplify the results
shown, the value of kMemb and k will be the same and equal
to 3, 5 and 7. In addition, the number of maps will be set to
256 for this purpose.

Table III presents the accuracy with the number of maps
128, 256 and 384 depending on the number of neighbors to be
considered. Thus, it shows how much the accuracy is affected
w.r.t the number of map tasks.

Figure 4 shows the total runtime (in seconds) versus the
number of map tasks. In order to simplify the results shown,
the value of kMemb and k will be the same and equals to 3.

Figure 5 shows the runtime (in seconds) obtained by the
three datasets, with kMemb and k set to 3 and 384 as a
number of maps. Note that the runtime is very high with Higgs
dataset. For this reason, Higgs dataset will not set the different
values of k, kMemb or number of maps in this experimental
study.

Total Runtime (in seconds)

Fig

Runtime (in seconds)

25000 \
12000 | g

800 |- ' 1
400 L ‘
256

Number of map tasks

. 4: Influence of the number of maps in the total runtime
250000 1
15000 I 1
500 [e I]
Poker Susy Higgs
Dataset

Fig. 5: Runtime with Poker, Susy and Higgs datasets

According to these tables and plots, we can conclude that:

According to the Table II, regarding kMemb and k
parameters, the total runtime does not increase too much
in any of the three models, despite the increase in network
traffic and the calculation of the neighbors in the reduce
stage, due to the design performed.

We can observe from Table III how the accuracy changes
depending on the number of map tasks. This is because
for a test example there are several training data points
whose distances are exactly the same. When it is a
distributed execution, the definitive neighbors will depend
on the order in which they arrive from each map output.
This uncertainty arises also in the sequential version of
the algorithm, but the criterion of maintaining the first
one that arrives or to always update the last one makes
its results immutable.

Analyzing Figures 4 and 5, the scalability of the proposed
model obtains a linear behavior. However, the runtime on
Higgs dataset is pretty high, and reveals a weakness of
the proposed algorithm. More hardware will be needed
when the runtime matter.

V. CONCLUSIONS AND FURTHER WORK

In this paper, we have developed a scalable and distributed
solution for the Fuzzy k-NN algorithm based on Spark. Its
main achievement is to handle large-scale datasets with the
same accuracy results than the original Fuzzy kNN algorithm.
Thankful to Spark framework and the model designed, we
only found the dependency in the hardware capabilities. In
addition, despite generating more network transfer from the
map operations to the reducers, the number of neighbors does
not drastically increase to the total runtime. As future work,
we aim to speed up the Fuzzy-kNN by an approximate model,
focusing on the bottleneck that is the computing of the class
membership degree.

ACKNOWLEDGMENT

This work has been supported by the projects TIN2014-
57251-P and P11-TIC-7765. J. Maillo holds a FPU scholarship
from the Spanish Ministry of Education.

REFERENCES

[11 T. M. Cover, P. E. Hart, Nearest neighbor pattern classification, IEEE
Transactions on Information Theory 13 (1) (1967) 21-27.

X. Wu, V. Kumar (Eds.), The Top Ten Algorithms in Data Mining,
Chapman & Hall/CRC Data Mining and Knowledge Discovery, 2009.
J. M. Keller, M. R. Gray, J. A. Givens, A fuzzy k-nearest neighbor
algorithm, IEEE Transactions on Systems, Man, and Cybernetics SMC-
15 (4) (1985) 580-585.

J. Derrac, S. Garcia, F. Herrera, Fuzzy nearest neighbor algorithms:
Taxonomy, experimental analysis and prospects, Information Sciences
260 (2014) 98 — 119.

H. L. Chen, C. C. Huang, X. G. Yu, X. Xu, X. Sun, G. Wang, S. J. Wang,
An efficient diagnosis system for detection of parkinsons disease using
fuzzy k-nearest neighbor approach, Expert Systems with Applications
40 (1) (2013) 263 — 271.

H. L. Chen, B. Yang, G. Wang, J. Liu, X. Xu, S.J. Wang, D. Y. Liu, A
novel bankruptcy prediction model based on an adaptive fuzzy k-nearest
neighbor method, Knowledge-Based Systems 24 (8) (2011) 1348 — 1359.
J. Dean, S. Ghemawat, Mapreduce: simplified data processing on large
clusters, Communications of the ACM 51 (1) (2008) 107-113.

[8] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.
Franklin, S. Shenker, I. Stoica, Resilient distributed datasets: A fault-
tolerant abstraction for in-memory cluster computing, in: Proceedings
of the 9th USENIX conference on Networked Systems Design and
Implementation, 2012, pp. 1-14.

W. Gropp, E. Lusk, A. Skjellum, Using MPI: portable parallel program-
ming with the message-passing interface, Vol. 1, MIT press, 1999.

Z. Deng, X. Zhuand, D. Cheng, M. Zong, S. Zhang, Efficient knn
classification algorithm for big data, Neurocomputing 195 (2016) 143 —
148, learning for Medical Imaging.

J. Maillo, S. Ramirez, I. Triguero, F. Herrera, knn-is: An iterative
spark-based design of the k-nearest neighbors classifier for big data,
Knowledge-Based Systems 117 (2017) 3 — 15.

O. Hegazy, S. Safwat, M. E. Bakry, A mapreduce fuzzy techniques of
big data classification, in: 2016 SAI Computing Conference (SAI), 2016,
pp. 118-128.

J. Dean, S. Ghemawat, Map reduce: A flexible data processing tool,
Communications of the ACM 53 (1) (2010) 72-77.

A. Fernandez, S. Rio, V. Lépez, A. Bawakid, M. del Jesus, J. Benitez,
F. Herrera, Big data with cloud computing: An insight on the computing
environment, mapreduce and programming frameworks, WIREs Data
Mining and Knowledge Discovery 4 (5) (2014) 380—409.

M. Lichman, UCI machine learning repository (2013).

URL http://archive.ics.uci.edu/ml

E. Alpaydin, Introduction to Machine Learning, 2nd Edition, The MIT
Press, 2010.

I. H. Witten, E. Frank, M. A. Hall, C. J. Pal, Data Mining: Practical
machine learning tools and techniques, Morgan Kaufmann, 2016.

[2]
[3]

[4]

[5]

[6]

[7]

[9]
[10]

(1]

[12]

[13]

[14]

[15]
[16]

[17]

