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4 Abstract—As one of the most comprehensive and objective ways to describe facial expressions, the Facial Action Coding System

5 (FACS) has recently received significant attention. Over the past 30 years, extensive research has been conducted by psychologists

6 and neuroscientists on various aspects of facial expression analysis using FACS. Automating FACS coding would make this research

7 faster and more widely applicable, opening up new avenues to understanding how we communicate through facial expressions. Such

8 an automated process can also potentially increase the reliability, precision and temporal resolution of coding. This paper provides a

9 comprehensive survey of research into machine analysis of facial actions. We systematically review all components of such systems:

10 pre-processing, feature extraction and machine coding of facial actions. In addition, the existing FACS-coded facial expression

11 databases are summarised. Finally, challenges that have to be addressed to make automatic facial action analysis applicable in real-

12 life situations are extensively discussed. There are two underlying motivations for us to write this survey paper: the first is to provide an

13 up-to-date review of the existing literature, and the second is to offer some insights into the future of machine recognition of facial

14 actions: what are the challenges and opportunities that researchers in the field face.

15 Index Terms—Action Unit analysis, facial expression recognition, survey

Ç

16 1 INTRODUCTION

17 SCIENTIFIC work on facial expressions can be traced back to
18 at least 1862with thework by the French researcherDuch-
19 enne [54], who studied the electro-stimulation of individual
20 facial muscles responsible for the production of facial expres-
21 sions, followed closely by the work by Charles Darwin who
22 in 1872 published his second-most popular work ‘The Expres-
23 sion of the Emotions in Man and Animals’ [48]. He explored the
24 importance of facial expressions for communication and
25 described variations in facial expressions of emotions. Today,
26 it is widely acknowledged that facial expressions serve as a
27 primary nonverbal means for human beings to regulate their
28 interactions [59]. They communicate emotions, clarify and
29 emphasise what is being said, and signal comprehension, dis-
30 agreement and intentions [130].
31 Two main approaches for facial expression measurement
32 can be distinguished: message and sign judgement [36].
33 Message judgement aims to directly decode the meaning
34 conveyed by a facial display (such as being happy, angry or

35sad), while sign judgement aims to study the physical sig-
36nal used to transmit the message instead (such as raised
37cheeks or depressed lips). Paul Ekman suggested that the
38six basic emotions, namely anger, fear, disgust, happiness,
39sadness and surprise, are universally transmitted through
40prototypical facial expressions [56]. This relation underpins
41message-judgement approaches. As a consequence, and
42helped by the simplicity of this discrete representation,
43prototypic facial expressions of the six basic emotions are
44most commonly studied and represent the main message-
45judgement approach. The major drawback of message
46judgement approaches is that it cannot explain the full
47range of facial expressions. Message judgement systems
48often assume that facial expression and target behaviour
49(e.g., emotion) have an unambiguous many-to-one corre-
50spondence, which is not the case according to studies in
51psychology [7] and in general, relations between messages
52and their associated displays are not universal, with facial
53displays and their interpretation varying from person to
54person or even from one situation to another.
55The most common descriptors used in sign-judgement
56approaches are those specified by the Facial Action Coding
57System (FACS). The FACS is a taxonomy of human facial
58expressions. It was originally developed by [58], and
59revised in [57]. The revision specifies 32 atomic facial mus-
60cle actions, named Action Units (AUs), and 14 additional
61Action Descriptors (ADs) that account for head pose, gaze
62direction, and miscellaneous actions such as jaw thrust,
63blow and bite. In this survey, we will limit our discussion to
64AUs, because it is they that describe the muscle-based
65atomic facial actions.
66The FACS is comprehensive and objective, as opposed to
67message-judgement approaches. Since any facial expression
68results from the activation of a set of facial muscles, every
69possible facial expression can be comprehensively described
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of70 as a combination of AUs [58] (as shown in Fig. 1). And while

71 it is objective in that it describes the physical appearance of
72 any facial display, it can still be used in turn to infer the sub-
73 jective emotional state of the subject, which cannot be
74 directly observed and depends instead on personality traits,
75 context and subjective interpretation.
76 Over the past 30 years, extensive research has been con-
77 ducted by psychologists and neuroscientists using FACS for
78 various aspects of facial expression analysis. For example, it
79 has been used to demonstrate differences between polite
80 and amused smiles [5], deception detection [63], facial sig-
81 nals of suicidal and non-suicidal depressed patients [76],
82 and voluntary or evoked expressions of pain [59], [214].
83 Given the significant role of faces in our emotional and
84 social lives, automating the analysis of facial signals would
85 be very beneficial [131]. This is especially true for the analy-
86 sis of AUs. A major impediment to the widespread use of
87 FACS is the time required both to train human experts and
88 to manually score videos. It takes over 100 hours of training
89 to achieve minimal competency as a FACS coder, and each
90 minute of video takes approximately one hour to score [53],
91 [58]. It has also been argued that automatic FACS coding
92 can potentially improve the reliability, precision, reproduc-
93 ibility and temporal resolution of facial measurements [53].
94 In spite of these facts, message-judgement approaches
95 have been the most popular automatic approaches. This is
96 unsurprising, however, given the complexity of the AU
97 detection problem—a high number of classes (32 AUs versus
98 six basic emotions), more subtle patterns, and small between-
99 class differences. It is also less laborious to collect a data-set

100 of prototypic expressions of the six basic emotions. In fact,
101 automatic message judgement in terms of basic emotions is
102 considered a solved problem nowadays, whilemachine anal-
103 ysis of AUs is still an open challenge [184], [186], [189].
104 Historically, the first attempts to automatically encode
105 AUs in images of faces were reported by [17], [100] and [134].
106 The focus was on automatic recognition of AUs in static

107images picturing frontal-view faces, displaying facial expres-
108sions that were posed on instruction. However, posed and
109spontaneous expressions differ significantly in terms of their
110facial configuration and temporal dynamics [6], [130].
111Recently the focus of the work in the field has shifted to auto-
112matic AUdetection in image sequences displaying spontane-
113ous expressions (e.g., [130], [189], [214]). As a result, new
114challenges such as head movement (including both in-plane
115and out-of-plane rotations), speech and subtle expressions
116have to be considered. The analysis of other aspects of facial
117expressions such as facial intensities and dynamics has also
118attracted increasing attention (e.g., [100], [177], [191]).
119Another trend in facial action detection is the use of 3D infor-
120mation (e.g., [156]). However, we limit the scope of this sur-
121vey to 2D, and refer the reader to [151], [185] for an overview
122of automatic facial expression analysis in 3D.
123Existing works surveying methods on automatic facial
124expression recognition either focus on message-judgement
125approaches [61], [133], or contain just a limited subset of
126works on automatic AU detection [174], [214], or focus on
127the efforts of particular research groups [50], [131]. Further-
128more, during the last 5-7 years, the field of automatic AU
129detection produced a dramatic number of publications, and
130the focus has turned to spontaneous expressions captured
131in naturalistic settings. More recent surveys include [154]
132and [43]. However, Sariyanidi et al. [154] focus mostly on
133face representation methodologies, and touch only lightly
134on the inference problems and methodologies. Furthermore,
135their work is not AU-specific; since it discusses different
136affect models. Similarly, [43] includes different data modali-
137ties, different affect models and historical considerations on
138the topic. Other works providing an overview of the field
139include [35], [110], and [194], which focus primarily on
140applications and problems related to facial AUs. This work
141provides a comprehensive survey of recent efforts in the
142field and focuses exclusively on automatic AU analysis
143from RGB imagery.
144We structure our survey intoworks on three different steps
145involved in automatic AU analysis: 1) image pre-processing
146including face and facial point detection and tracking, 2) facial
147feature extraction, and 3) automatic facial action coding based
148on the extracted features (see Fig. 2).
149The remainder of the paper is structured as follows.
150Section 2 presents a brief review of relevant issues regarding
151FACS coding as introduced by [57]. Section 3 provides a
152summary of research on face image pre-processing. Section 4
153contains a detailed review of recent work on facial feature
154extraction. Section 5 summarises the state of the art in
155machine analysis of facial actions. An overview of the
156FACS-annotated facial expression databases is provided in

Fig. 1. Examples of upper and lower face AUs defined in the FACS.

Fig. 2. Configuration of a generic facial action recognition system.
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158 opportunities in machine analysis of facial actions.

159 2 FACIAL ACTION CODING SYSTEM (FACS)

160 Here we summarise important FACS-related notions. Inter-
161 ested readers can find more in-depth explanations on the
162 FACS manuals [57], [58], which formally define them.
163 The Facial Action Coding System [57], [58] defines 32
164 atomic facial muscle actions named Action Units (AUs) (as
165 shown in Fig. 3). Additionally it encodes a number of mis-
166 cellaneous actions, such as eye gaze direction and head
167 pose, and 14 Action Descriptors for miscellaneous actions.
168 With FACS, every possible facial expression can be objec-
169 tively described as a combination of AUs. Table 1 shows a
170 number of expressions with their associated AUs.
171 Voluntary versus Involuntary: The importance of distin-
172 guishing between involuntary and deliberately displayed
173 (often referred to as “posed”) facial expressions is justified
174 by both the different semantic content of the facial expres-
175 sion, and the different physical realisation of the expres-
176 sions ([59], [119], [142]). While one will be able to find the
177 same AU occurrences in both voluntary and involuntary
178 expressions, they will differ in terms of dynamics. In partic-
179 ular the duration of temporal phases of FACS (onset, apex,
180 offset), the interaction between AUs (timing and co-occur-
181 rence), and the symmetry of individual AUs is different
182 between the two categories of expressions.
183 AU Intensity: AU intensity scoring is done on a five-point
184 ordinal scale, A-B-C-D-E, where A refers to a trace of the
185 action and E to maximum evidence.

186Morphology and dynamics are two dual aspects of a facial
187display. Face morphology refers to facial configuration,
188which can be observed from static frames. Dynamics reflect
189the temporal evolution of one facial display to another, and
190can be observed in videos only. For example, dynamics
191encode whether a smile is forming or disappearing. Facial
192dynamics (i.e., timing, duration, speed of activation and
193deactivation of various AUs) can be explicitly analysed by
194detecting the boundaries of the temporal phase (namely neu-
195tral, onset, apex, offset) of each AU activation. They have
196been shown to carry important semantic information, useful
197for a higher-level interpretation of the facial signals [6], [38].
198Dynamics are essential for the categorisation of complex
199psychological states like various types of pain and mood
200[55], [200]. They improve the judgement of observed facial
201behaviour (e.g., affect) by enhancing the perception of
202change and by facilitating the processing of facial configura-
203tion. They represent a critical factor for interpretation of
204social behaviours like social inhibition, embarrassment,
205amusement and shame ([45], [59]). They are also a key
206parameter in differentiating between posed and spontane-
207ous facial displays ([65], [64], [38], [56]), and the interpreta-
208tion of expressions in general [6].
209AU combinations: More than 7,000 AU combinations have
210been observed in everyday life [158]. Co-occurring AUs can
211be additive, in which the appearance changes of each sepa-
212rate AU are relatively independent, or non-additive, in
213which one action masks another or a new and distinctive set
214of appearances is created [57]. When these co-occurring
215AUs affect different areas of the face, additive changes are
216typical. By contrast, AUs affecting the same facial area are
217often non-additive. Furthermore, some AU combinations
218are more common than others due to latent variables such
219as emotions. For example, happiness is often expressed as a
220combination of AU12 and AU6.

2213 PRE-PROCESSING

222Data pre-processing consists of all processing steps that are
223required before the extraction of meaningful features can
224commence. The most important aim of the pre-processing
225step is to align faces into a common reference frame, so that
226the features extracted from each face correspond to the
227same semantic locations. It removes rigid head motion and,
228to some extent, antropomorphic variations between people.
229We distinguish three components; face localisation, facial
230landmark localisation, and face normalisation/alignment.

Fig. 3. A list of upper and lower face AUs and their interpretation.

TABLE 1
Lists of AUs Involved in Some Expressions

AUs

FACS: upper face: 1, 2, 4-7, 43, 45, 46;
lower face: 9-18, 20, 22-28; other: 21, 31, 38, 39

anger: 4, 5, 7, 10, 17, 22-26
disgust: 9, 10, 16, 17, 25, 26
fear: 1, 2, 4, 5, 20, 25, 26, 27
happiness: 6, 12, 25
sadness: 1, 4, 6, 11, 15, 17
surprise: 1, 2, 5, 26, 27

pain: 4, 6, 7, 9, 10, 12, 20, 25, 26, 27, 43
cluelessness: 1, 2, 5, 15, 17, 22
speech: 10, 14, 16, 17, 18, 20, 22-26, 28

MARTINEZ ET AL.: AUTOMATIC ANALYSIS OF FACIAL ACTIONS: A SURVEY 3
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232 The first step of any face analysis method is to detect the
233 face. The Viola & Jones (V&J) face detector [196] is by far the
234 most widely employed one. The public availability of pre-
235 trained models (e.g., in OpenCV or Matlab), its reliability
236 for frontal faces and its computational simplicity makes it
237 the reference face detection algorithm. Another popular
238 open-source face detector is the one provided with the dlib
239 library.1 Current automatic AU analysis methods assume a
240 frontal head pose and a relatively controlled scenario. How-
241 ever, multi-view face detection algorithms will be necessary
242 for more general scenarios.
243 Some recent works have successfully adapted the
244 deformable parts model (DPM) [62] to perform face detec-
245 tion. This resulted in a much improved detection robustness
246 and localisation accuracy, usually to the expense of higher
247 computational cost. For example, [227] proposed an algo-
248 rithm capable of jointly performing reliable multi-view
249 (from �90 to 90 degree yaw rotation) face detection, head
250 pose estimation and facial point detection. Alternatively,
251 [128] and [112] noted that the focus on facial landmarking
252 results in sub-optimal performance of the face detection
253 task, proposing face-detection-specific DPM. A further
254 speed-up was attained in [128] by adopting a cascaded
255 detection strategy. Notably, [112] reached similar perfor-
256 mance employing V&J-like rigid-template detectors over
257 feature channels. Source code for these works is publicly
258 available from the respective authors’ websites. Other inter-
259 esting ideas have recently been proposed, as for example
260 the use of deep learning for face detection [97]. See [211] for
261 a recent survey on face detection. However, the current
262 absence of publicly-available implementations detracts
263 from their interest for those focusing on facial AU analysis.
264 Some face detection examples are shown in Fig. 4.

265 3.2 Facial Landmark Localisation

266 Facial landmarks are defined as distinctive face locations,
267 such as the corners of the eyes, centre of the bottom lip, or
268 the tip of the nose. Taken together in sufficient numbers
269 they define the face shape. While facial expression recogni-
270 tion can be attained only using the face detection, further
271 localising the face shape results in better performance. It
272 allows for better face registration, as well as being necessary
273 to extract some types of features (see Section 4.2). It is com-
274 mon to distinguish between generative and discriminative
275 facial landmarking algorithms, a distinction we keep here.

276We further discuss facial landmark tracking algorithms,
277and include a discussion with a number of practical aspects.
278Please note that we do not provide an exhaustive overview
279of facial landmark detection algorithms. Instead, we discuss
280here common trends in the research on this topic. For a
281more exhaustive, if slightly dated, survey of facial landmark
282detection and tracking techniques, please see [32].

2833.2.1 Generative Models

284Generative models are tightly identified with the active
285appearance models (AAM) [41], [113]. The AMM finds the
286optimal parameters for both the face shape and face appear-
287ance that optimally reconstruct the face at hand. The land-
288marks are provided by the reconstructed face. To this end,
289the shape is parametrised through the widely-used Point
290Distribution Model (PDM) [40], which relies on a PCA
291decomposition of the shape. Then, the face shape is used to
292define a triangular mesh, and appearance variations within
293each triangle is again encoded using PCA. Both shape and
294appearance can be reconstructed back-projecting their PCA
295coefficients, and the aim is to minimise the difference
296between the reconstructed face and the original image.
297AAMs can be very efficient due to the use of the inverse
298compositional for the parameter search [113]. However,
299there has been a long-standing discussion regarding the
300capability of AAMs to generalise to unseen faces, i.e., faces
301of subjects not included in the training set. The performance
302reported is often lower than for other methods in this set-
303ting. As a consequence, several works in the AU literature
304apply AAM in person-specific scenarios and with careful
305landmarking initialisation, where AAM offers excellent per-
306formance (e.g., [228]). However, recent works, such as [181],
307[183], have shown that generic AAM can offer state-of-the-
308art performance provided that an adequate minimisation
309procedure is used and a good initial shape estimate is avail-
310able. Further improvements were attained by substituting
311the triangular mesh to represent appearance with a part-
312based model [182], and by adopting a cascaded regression-
313like minimisation procedure [180].
314While AAM can be computationally efficient and pro-
315vide very accurate alignments, they are not as robust as dis-
316criminative models, and require a better initial shape
317estimate. Furthermore, if the initial shape is outside the
318basin of attraction of the ground truth minimum, the algo-
319rithm might converge to a totally wrong solution.

3203.2.2 Discriminative Models

321Discriminative models typically represent the face appear-
322ance by considering small patches around the facial land-
323marks. For each of such patches, a feature descriptor such as
324HOG [46] is applied, and all of the resulting descriptors are
325concatenated into a single vector to create the face represen-
326tation. Discriminative methods proceed by training either a
327classifier or a regressor on these features. There is a wide
328variety of discriminative facial landmarking algorithms. In
329here we distinguish three sub-families, response-map fitting,
330deformable parts model and regression-based approaches.
331Response map fitting: which includes the popular Active
332Shape Model [42] and its variants, have been very popular
333due to their early success and the availability of well-

Fig. 4. Green: [196] (Matlab’s implementation). Red: [128]. Blue: [227]
(bounding box definition is different for each method). [196] shows less
detection stability, and fail for non-frontal head poses. [227] fails to
detect low quality faces.

1. Available at: http://dlib.net/
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334 optimised public implementations of some of its most popu-
335 lar variants [120], [153]. These methods divide the land-
336 marking process into two distinct steps. In the first step,
337 model responses are computed in the vicinity of the current
338 landmark location, encoding the belief of the appearance
339 model of each evaluated location being the true landmark
340 location. The second step consists of finding the valid shape
341 that maximises the combined individual responses. These
342 two steps are alternated iteratively until convergence.
343 Responses have traditionally been computed using classi-
344 fiers trained to distinguish between the true landmark loca-
345 tion and its surroundings, using either a probabilistic output
346 (e.g., logistic regression) or some confidence measure like
347 the SVM margin [153]. However, some recent works have
348 shown it is possible to construct similar responses from
349 regressors, providing better performance ([39], [111]). This
350 can be done by training a regressionmodel to predict the dis-
351 placement from the test location to the true landmark loca-
352 tion. Then, at test time, the regressor is evaluated on a set of
353 test locations (e.g., a regular grid), and the resulting predic-
354 tions are combined to create the responses.
355 The second step consists of finding the valid shape that
356 maximises the sum of the individual responses. This is how-
357 ever very challenging, with frequent convergence to local
358 minima. Thus, much of the research drive has been focused
359 on improving the shape fitting step. For example, [20] pro-
360 posed a shape fitting step that used exemplars in a RAN-
361 SAC manner, while [12] proposed to use a regression
362 strategy to directly find increments to the shape parameters
363 that maximise the combined responses.
364 More recently, CNN methods have shown significant
365 success when used to produce the response maps. The
366 response map creation and the shape fitting can then both
367 be combined into an end-to-end training [78].
368 Regression-based methods bypass the construction of the
369 response maps by directly estimating the difference
370 between the current shape estimate and the ground truth.
371 This estimation is carried out by discriminative regression
372 models, trained with large quantities of ground-truth shape
373 perturbations. The excellent performance attained by
374 regression-based methods relies on two factors. First, they
375 incorporate the cascaded regression approach [52], so that
376 the shape estimation results from the application of a fixed
377 succession of regressors, each one tuned to the output of the
378 previous regressor. Second, the direct estimation of the
379 shape is targeting, bypassing the construction of response
380 maps. Thus, the complex constrained response map maxi-
381 misation step is avoided.
382 Initially proposed by [24], [25], much of the popularity of
383 regression-based approaches is due to the Supervised
384 Descent Method (SDM) [203]. This is due to the simplicity
385 of the method, as the final estimate is computed using only
386 four matrix multiplications, feature computation and face
387 detection aside. Other variants of this methodology subse-
388 quently attained remarkable results. For example, [25], [93],
389 [140] proposed extremely efficient variants relying on
390 regression forest for inference. An extension of SDM to deal
391 with large head pose variation, including profile views, was
392 proposed in [204]. Yan et al. [205] proposed an algorithm
393 capable of robustly combining multiple SDM-based fittings,
394 of particular importance on more challenging scenarios.

395Jeni et al. proposed a cascade regression approach that
396makes predictions of 3D shapes from 2D images [85].
397Finally, Burgos-Artizzu et al. [23] focused on improving
398performance under partial occlusion. Tzimiropoulos [180]
399proposed instead to use the discriminatively-trained regres-
400sion cascade with the generative model proposed in [182],
401resulting in a large performance gain. The most accurate
402facial point localisation technique at time of writing is incre-
403mental Continuous Cascaded Regression (iCCR, [149]),
404which replaces sampling-based regression with an analyti-
405cal solution that integrates over all evidence in an area of
406the image approximated by a Taylor expansion of the
407appearance descriptors.
408Deep learning methods have also been successfully
409applied to face alignment. For example, [168] proposed a
410cascaded regression deep-learning landmarking methodol-
411ogy. Subsequently, [220] further leverages auxiliary face
412analysis tasks such as smile detection and head pose estima-
413tion to improve upon the prediction accuracy. Instead, [226]
414proposed a methodology for dealing with larger non-frontal
415head pose variation by probing the space shape to find a
416good shape to regress from rather than using a pre-defined
417mean shape as the starting point. Finally, [178] cast the cas-
418caded regression as a Recurrent CNN and performed end-
419to-end training of the cascade.
420Deformable Parts Models, first introduced by [227] for
421facial landmarking, are strongly related to the response-
422map fitting methods. However, they boast a unique prop-
423erty: they reach globally optimal fittings. This is achieved
424by using a tree graph to perform a soft constraint on the
425face shape, e.g., flat chain [227] or a hierarchical tree [67].
426Both shape and appearance are integrated into a single loss
427function which can be minimised efficiently and exactly for
428inference. However, the sheer number of possible outputs
429makes detection very slow if the image is large. Further-
430more, the soft shape constrains results in lower detection
431precision when compared to other state-of-the-art methods.
432Thus, these methods can be used for initialising regression-
433based landmarking methods, provided there are no real-
434time performance constraints [180].

4353.2.3 Facial Landmark Tracking

436When facial landmark localisation on a full sequence is
437desired, a landmark detection algorithm can be applied on
438each individual frame. This however neglects important
439temporal correlations between frames. The previous detec-
440tion can be used as the initial shape on the current frame,
441leading to a much better estimate. Also, models can be
442trained specifically for the tracking case, leading to
443improved performance, as shown in for the standard SDM
444case [203], and in [204] for the global SDM, which can
445include up-to-profile head rotation. Furthermore, sequen-
446tial data allows for the on-line update of the appearance
447models. In this way, the appearance model is incremen-
448tally adapted to the specific characteristics of the test
449sequence. This was exploited by [11], which proposed an
450extension of [203] capable of performing incremental
451learning. [138] proposed an alternative adaptation strategy
452based on subspace learning. Further advances were
453attained by Sanchez Lozano et al. [149], who use a variant
454of linear regression in iCCR that is used to reduce the
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456 resulting in what is to date the only real-time tracking
457 with incremental learning.
458 Finally, for applications where an offline analysis is pos-
459 sible, techniques such as image congealing can be applied
460 in order to remove tracking errors [147]. CNNs have also
461 been applied to this problem, notably in [137], which relies
462 on Recurrent NN. However, the performance improvement
463 is limited for near-frontal head poses (typical for current
464 AU analysis problems), so that the increased computational
465 resources required might be an important drawback in this
466 case. The 300 Videos in the Wild [163] is currently the best-
467 established benchmark on this topic. It provides perfor-
468 mance in three categories corresponding to different levels
469 of complexity.

470 3.3 Face Registration

471 Face registration aims at registering each face to a common
472 pre-defined reference coordinate system. The information
473 obtained on the face alignment stages can be used to com-
474 pute such a transformation, which is then applied to the
475 image to produce the registered face. The rationale is that
476 misalignments produce large variations in the face appear-
477 ance and result in large intra-class variance, thus hindering
478 learning. In here we provide a short overview of the possi-
479 ble approaches. We refer the interested reader to [154] for
480 further details, as it already provides a complete and ade-
481 quate coverage of this topic.
482 Procrustes. A Procrustes transformation can be used to
483 eliminate in-plane rotation, isotropic scaling and transla-
484 tion. While translation and scaling can be computed using
485 only the face bounding box, this result can be imprecise,
486 and the use the facial landmarks can provide much better
487 results (e.g., [176], [88], [228]).
488 Piecewise Affine.After detecting the facial landmarks, they
489 are put in correspondence to some pre-defined shape (e.g., a
490 neutral face). By defining a triangular mesh over face
491 shapes, each triangle can be transformed according to the
492 affine transformation define by its vertices. This yields a
493 strong registration, although it produces the loss of some
494 expressive information. In some cases, data corruption can
495 be introduced (see Fig. 5). Face frontalisation is currently
496 receiving a lot of attention [74], [124], [148], and some of the
497 novel methods might lead to improvements.
498 Finally, some works report performance improvements
499 using piecewise affine face registration when compared to a
500 standard Procrustes registration by combining the resulting
501 appearance with some geometric information capturing the
502 landmark configuration prior to the registration (see
503 Section 4) [10], [30], [31].

5043.4 Discussion

505Very recent advances on face detection can yieldmuch better
506performance than the Viola and Jones algorithm. For exam-
507ple, [112] is publicly available from the authors’ web pages
508and offers excellent performance and is computationally
509light. When it comes to facial landmarking, a tracking algo-
510rithm is desired, as it can offer much more stable detections.
511Regression-based methods are nowadays the most robust
512ones. While other methods can achieve better performance
513in more complex scenarios, [203] offers an excellent trade-off
514of implementation simplicity and effective inference for up
515to 30 degree of head rotation. The authors of [11] also offer a
516publicly available implementation of their incremental track-
517ing algorithm. If extremely low computational cost is
518desired, then [140] can yield reliable detection at up to 3,000
519fps, although its implementation is far from straightforward.
520Implementing a Procrustes registration is straightfor-
521ward. More complex models aiming to remove non-frontal
522head poses are more complex and artefact prone. It is how-
523ever an interesting component for ongoing research.
524Constructing an integrated and robust system that per-
525forms real facial landmark tracking in (near) real time was
526the most recently solved problem. Notably, iCCR has pre-
527sented a faster than real-time tracker with incremental
528learning, code for which is available for research [149].
529OpenFace [14] also constitutes an effort along these lines. It
530is an open source real-time software implementing the full
531pipeline for facial AU recognition from video, including
532face alignment and head pose estimation.
533Temporally smoothing the predictions, and model adap-
534tation are other interesting aspects that require more atten-
535tion. A working system under occlusions is also an open
536problem. While some landmarking methods are robust to
537occlusions, further work is required in this direction. The
538ideal method would not only be accurate under occlusions,
539but also explicitly detect them, so that this information can
540be taken into account by subsequent processing layers.

5414 FEATURE EXTRACTION

542Feature extraction converts image pixel data into a higher-
543level representation of motion, appearance and/or the spa-
544tial arrangement of inner facial structures. It aims to reduce
545the dimensionality of the input space, to minimise the vari-
546ance in the data caused by unwanted conditions such as
547lighting, alignment errors or (motion) blur, and to reduce
548the sensitivity to contextual effects such as identity and
549head pose. Here, we group the feature extraction methods
550into four categories: appearance-based, geometry-based,
551motion-based and hybrid methods. Another thorough sur-
552vey of face features was presented by Sariyanidi et al. [154].

5534.1 Appearance Features

554Appearance features describe the colour and texture of a
555facial region and are nowadays themost commonly used fea-
556tures. They can be used to analyse any given AU, and they
557encompass a wide range of designs of varying properties.
558This offers researchers flexibility and room for methodologi-
559cal improvements. However, appearance features can be
560sensitive to non-frontal head poses and to illumination
561changes. Appearance features can be characterised in terms

Fig. 5. Original face (left), AAM tracking result (centre), result of texture
warping to the mean shape (right). The right part of the nose and face
are not reconstructed properly due to self-occlusions. There is residual
expression texture (right). Images taken from UNBC-McMaster shoulder
pain database, tracking results by [90].
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563 resent), the feature type (which features are used to represent
564 it), and whether the features are static (encode one single
565 frame) or dynamic (encode a spatio-temporal volume).
566 Representation strategy: Appearance features can be
567 extracted from the whole face (holistic features) or from spe-
568 cific face regions defined by inner facial structures (local fea-
569 tures). More precisely, we define holistic features as those
570 that extract information according to a coordinate system
571 relative to the entire face (e.g., [215]). In contrast, local meth-
572 ods consider locations relative to a coordinate system
573 defined by inner-facial features such as facial components
574 or facial points (e.g., [177]).
575 The most typical local approach considers small patches
576 centred around each of the facial landmarks or a subset of
577 them. Then, for each of the patches, a feature descriptor is
578 applied, and the resulting descriptors are concatenated into
579 the final feature vector. Instead, holistic approaches repre-
580 sent the whole face region, for example as given by the
581 bounding box. However, many approaches use a block-
582 based representation, by which the face region is divided
583 into a regular grid of non-overlapping blocks, and features
584 are then extracted from each block and concatenated into a
585 single vector (e.g., [88]). This process is sometimes also
586 referred to as tiling. Many feature descriptors use histo-
587 grams taken over the contents of the blocks to increase shift
588 robustness, as histograms eliminate the spatial arrange-
589 ments. However, histogramming over the whole face region
590 would eliminate too much information regarding spatial
591 arrangements of the features, thus the resorting to tiling. It
592 is interesting to note that according to our definition, block-
593 based methods are still holistic, as they do not use inner
594 facial structures to define what to represent. Fig. 6 shows an
595 illustration of the different approaches.
596 The desired properties of the features vary when using
597 holistic or local approaches. For holistic methods, the level
598 of correspondence between two faces is relatively poor, i.e.,
599 each feature dimension will typically relate to a different
600 point in the face. Instead, local methods show better regis-
601 tration properties. Thus, robustness to misalignment is
602 more important for the former. Local representations have
603 other important advantages; illumination changes can
604 locally be approximated as homogeneous, which enables
605 them to be normalised easily, and non-frontal head poses
606 can be locally approximated by an affine transformation.
607 Instead, holistic approaches have the more complex task of
608 dealing with the global effect of these changes. With face
609 registration now being very accurate, local representations
610 are generally to be preferred.
611 Appearance feature types in the automatic AU analysis lit-
612 erature can be divided into five categories: intensity, filter

613banks, binarised local texture, gradient-based, and two-
614layer descriptors. Each comprises several different related
615feature types, and shares important properties.
616Image intensity: Some works have advocated for the use of
617raw pixel intensities as the preferred appearance feature
618(e.g., [31], [106], [108]). They proposed to overcome the sen-
619sitivity to head-pose variation by performing precise facial
620landmarking, and then applying a piecewise affine transfor-
621mation, obtaining a strong registration (e.g., by [30]) (see
622Section 3.3). An extension was proposed in [121], where a
623feature representation based on pixel intensities was learnt.
624To this end, the authors used a discriminative sparse dictio-
625nary learning technique based on a piecewise affine strong
626registration for intensity estimation. However, pixel intensi-
627ties are sensitive to all kinds of distractor variation. While
628reported experiments show that image intensity offers com-
629petitive performance, the evaluation datasets used do not
630contain illumination variations and these results might not
631generalise (something forewarned by [30]). Non-frontal
632head poses are in this case problematic as the registration
633often produces artefacts. Since the piecewise affine registra-
634tions eliminates important shape information, the authors
635advise combining intensity and geometric features (see
636below) to compensate the information loss.
637Filter banks: These features result from convolving every
638location of a region with a set of filters. While they have
639strong expressive power, they lack some robustness to
640affine transformations and illumination changes.
641Gabor wavelets are common in the field of automatic AU
642analysis (especially in early works), as they are sensitive to
643fine wave-like image structures such as those corresponding
644to wrinkles and bulges. Only Gabor magnitudes are typi-
645cally used (i.e., Gabor orientation is discarded), as they are
646robust to small registration errors. Being sensitive to finer
647image structures, they can be a powerful representation,
648provided that the parametrisation is correct, i.e., filters have
649to be small enough to capture more subtle structures. How-
650ever, the resulting dimensionality is very large, especially
651for holistic approaches and the high computational cost is a
652burden for real-time applications.2 A typical parametrisa-
653tion consists of 8 orientations, and a number of frequencies
654ranging from 5 to 9. Due to their representational power,
655Gabor filters have recently been used as a component of
656two-layer feature representations (see below).
657Other filters within this category include the Discrete
658Cosine Transform (DCT) features [1] and Haar-like features
659[136]. DCT features encode texture frequency using prede-
660fined filters that depend on the patch size. DCTs are not sen-
661sitive to alignment errors, and their dimensionality is the
662same as the original image. However, higher frequency
663coefficients are usually ignored, therefore potentially losing
664sensitivity to finer image structures such as wrinkles and
665bulges. Furthermore, they are not robust to affine transfor-
666mations. Haar-like filters, employed in [199] for facial AU
667detection, fail to capture finer appearance structures, and
668their only advantage is their computational efficiency. Thus,
669their use should be avoided, or limited to detecting the
670most obvious AUs (e.g., AU12).

Fig. 6. Different ways to apply appearance descriptors. Left to right:
whole face, block-based, Region Around Points (RAPs) and Region Of
Interests (ROIs) defined by points. The first two representations are
holistic, while the second two are local.

2. If only inner products of Gabor responses are needed, then very
significant speed ups can be attained [9].
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671 Binarised local texture: Local Binary Patterns (LBP) [125]
672 and Local Phase Quantisation (LPQ) [127] are popular for
673 automatic AU analysis. Their properties result from two
674 design characteristics: 1) real-valued measurements
675 extracted from the image intensities are quantised to
676 increase robustness, especially to illumination conditions, 2)
677 histograms are used to increase the robustness to misalign-
678 ment, at the cost of some spatial information loss. Their
679 strong robustness to illumination changes and misalign-
680 ment makes them very suitable for holistic representations,
681 and they are typically used in a block-based manner.
682 The standard LBP descriptor [125] is constructed by con-
683 sidering, for each pixel, an 8-dimensional binary vector.
684 Each binary value encodes whether the intensity of the cen-
685 tral pixel is larger than each of the neighbouring pixels. A
686 histogram is then computed, where each bin corresponds to
687 one of the different possible binary patterns, resulting in a
688 256-dimensional descriptor. However, the so called uniform
689 LBP is often used. It results from eliminating a number of
690 pre-defined bins from the LBP histogram that do not encode
691 strong edges [126].
692 Many works successfully use LBP features for automatic
693 facial AU analysis in a block-based holistic manner (e.g.,
694 [29], [88], [202]), and the latter found 10� 10 blocks to be
695 optimal in their case for uniform LBPs. The main advan-
696 tages of LBP features are their robustness to illumination
697 changes, their computational simplicity, and their sensitiv-
698 ity to local structures while remaining robust to shifts [162].
699 They are, however, not robust to rotations, and a correct
700 normalisation of the face to an upright position is necessary.
701 Many variants of the original LBP descriptor exist, and a
702 review of LBP-based descriptors can be found in [79].
703 The LPQ descriptor [127] uses local phase information
704 extracted using 2D short-term Fourier transform (STFT)
705 computed over a rectangular M-by-M neighbourhood at
706 each pixel position. It is robust to image blurring produced

707by a point spread function. The phase information in the
708Fourier coefficient is quantised by keeping the signs of the
709real and imaginary parts of each component. LPQs were
710used for automatic AU analysis in [88], which found that
711when applied in a block-based holistic manner, 4� 4 blocks
712performs the best.
713Gradient-based descriptors, such as HOG [46], SIFT [104] or
714DAISY [175], use a histogram to encode the gradient infor-
715mation of the represented patch. Each image patch is
716divided into blocks, and a histogram represents the orienta-
717tion and magnitude of gradients within each block. The
718resulting histogram is normalised to 1, thus eliminating the
719effect of uniform illumination variations. These features are
720robust to misalignment, uniform illumination variations,
721and affine transformations. However, larger gradients cor-
722responding to facial component structures can be grouped
723together with smaller gradients such as those produced by
724wrinkles and bulges. Therefore, these features should be
725applied locally to avoid larger gradients dominating the
726representation. They offer very good robustness properties
727when used as local features, make them one of the best (and
728preferred) choices in the literature [33], [164], [224], [228]).
729As an exception, [31] used HOG features in a holistic man-
730ner, showing comparable performance to Gabor filters and
731raw pixel information. However, the face was normalised to
73248� 48 pixels in this study, meaning smaller structures
733could not be captured by the alternative representations.
734Two-layer appearance descriptors result from the applica-
735tion of two traditional feature descriptors, where the second
736descriptor is applied over the response of the first one. For
737example, [161] and [4] used Local Gabor Binary Pattern
738(LGBP) [216]. They result from first calculating Gabor mag-
739nitudes over the image and then applying an LBP operator
740over the multiple resulting Gabor response maps. Gabor
741features are applied first to capture local structures, while
742the LBP operator increases the robustness to misalignment
743and illumination changes and reduces the feature
744dimensionality. In fact, [161] won the FERA2011 AU detec-
745tion challenge with a combination of LGBP and geometric
746features [189], making a strong case for their use. Alterna-
747tively, [202] used two layers of Gabor features (G2) to
748encode image textures that go beyond edges and bars. They
749also compared single layer (LBP, Gabor) and dual layer (G2,
750LGBP) architectures for automatic AU detection, and con-
751cluded that two-layer architectures provide a small but con-
752sistent improvement.
753Spatio-temporal appearance features encode the appearance
754information of a set of consecutive frames rather than only
755that of a single frame. Such features can be used to represent
756a single frame, typically the frame in the middle of the spa-
757tio-temporal window [88]. This results in an enhanced
758representation of the frame including its temporal context.
759This strategy has been shown to work well in practice, and
760its use is particularly justifiable since the inference target is
761an action. Note that this category is distinct from motion fea-
762tures, which are described in Section 4.3.
763Different spatio-temporal extensions of frame-based fea-
764tures have been devised. Notably, LBPs were extended to
765represent spatio-temporal volumes by [222]. To make the
766approach computationally simple, a spatio-temporal vol-
767ume is described by computing LBP features only on Three

Fig. 7. Example of MHI and FFD techniques. (a) First frame. (b) Last
frame. (c) MHI for the entire sequence. (d) The motion field sequence
from the FFD method applied to a rectangular grid. (e) The motion field
sequence from the FFD method applied to the first frame. (f) Difference
between (b) and (e). [94]. Image taken from Koelstra et al. [94].
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768 Orthogonal Planes (TOP): XY, XT, and YT. The so-called
769 LBP-TOP descriptor results from concatenating these three
770 feature vectors. The same strategy was subsequently fol-
771 lowed to extend other features, such as LPQ [88] and LGBP
772 features [4]. The resulting representations tend to be more
773 effective, as shown by the significant performance improve-
774 ment consistently reported [4], [88], [222]. A notable prop-
775 erty of TOP features is that the spatio-temporal features are
776 computed over fixed-length temporal windows, so that dif-
777 ferent speeds of AUs produce different patterns.
778 An alternative strategy was used to extend Haar-like fea-
779 tures to represent spatio-temporal volumes in [208]. In this
780 case, a normal distribution models the values of each Haar-
781 like feature per AU. Then the Mahalanobis distance for each
782 feature value in a temporal window is computed and
783 thresholded to create a binary pattern. The authors showed
784 a significant performance increase when using dynamic
785 descriptors compared to the static Haar features. However,
786 the AU dataset used to report their results is not publicly
787 available and is of unknown characteristics.
788 It is possible to abandon the frame-based representation
789 and use spatio-temporal descriptors to analyse full facial
790 actions, in a strategy often called segment-level analysis.
791 This implies representing the event as a fixed length feature
792 vector, which constrains the representation. For example,
793 [164] and [51] use a histogram of temporal words [123], a
794 temporal analogy to the classical bag-of-words representa-
795 tion [165]. In particular, [51] successfully combines feature-
796 level and segment-level classifiers, arguing that both models
797 are likely to behave in a complementary manner. Segment-
798 level features have the potential to capture more global pat-
799 terns. However, it is not clear how to effectively represent a
800 video segment of varying length, despite some recent efforts
801 regarding temporal alignment [83], [87].

802 4.2 Geometric Features

803 Geometric features capture statistics derived from the loca-
804 tion of facial landmarks, with most facial muscle activations
805 resulting in their displacement. For example, facial actions
806 can raise/lower the corner of the eyebrows or elongate/
807 shorten the mouth. Reliably obtaining facial point locations
808 has traditionally been a major problem when using geomet-
809 ric features. However, recent breakthroughs on facial land-
810 marking mean that geometric features in realistic scenarios
811 can now be computed reliably.
812 Geometric features are easy to register, independent of
813 lighting conditions, and yield particularly good perfor-
814 mance for some AUs. However, they are unable to capture
815 AUs that do not cause landmark displacements. Thus, com-
816 bining geometric features with appearance features nor-
817 mally results in improved performance (see Section 4.5).

818 4.3 Motion Features

819 Motion features capture flexible deformations of the skin
820 caused by the contraction of facial muscles. As opposed to
821 geometric features, they are related to dense motion rather
822 than to the motion of a discrete set of facial landmarks.
823 They are also different from (dynamic) appearance features
824 as they do not capture appearance but only appearance
825 changes, so they would not respond to an active AU if it is

826not undergoing any change (e.g., at the apex of an expres-
827sion). Motion features are less person specific than appear-
828ance features. However, they require the full elimination of
829rigid motion. This means that they are affected by misalign-
830ment and varying illumination conditions.
831We distinguish two classes of motion-based features:
832those resulting from image subtraction, and those where a
833dense registration at the pixel level is required.
834Image subtraction: d�images are defined as the difference
835between the current frame and an expressionless-face frame
836of the same subject. In the early AU literature, d�images
837were commonly combined with linear manifold learning to
838eliminate the effect of noise; for example [16], [53], [60], and
839[19] combined d�images with techniques such as PCA or
840ICA. Alternatively, [53] and [19] used Gabor features
841extracted over d�images. More recently, [95] and [156] com-
842bined d�images with variants of Non-negative Matrix Fac-
843torization (NMF). Finally, [195] used head-pose-normalised
844face images to construct the d-images. Again, the use of
845d�images relies on the first frame of the sequence being
846neutral, which was a common bias in early databases. Some
847very recent works have given a spin to this idea and intro-
848duce a module predicting the neutral face at test time [13],
849[72]. This approach [13] won the FERA 2015 pre-segmented
850AU intensity estimation sub-challenge.
851Motion History/Energy Images (MHI/MEI) [22] use
852image differences to summarise themotion over a number of
853frames. MEIs are binary images that indicate whether any
854pixel differences have occurred over a given fixed number of
855frames. In MHI, recent motion is represented by high inten-
856sity values, while the pixels where motion was detected lon-
857ger ago fade to zero intensity linearly over time. This was
858first applied to AU analysis in [192], whereMHI summarised
859window-based chunks of video. An extension of MHI-based
860representation was applied for automatic AU analysis in
861[94], where the authors approximate themotion field by find-
862ing the closest non-static pixel. The authors claim that this
863results in amore dense and informative representation of the
864occurrence and the direction of motion. The main advantage
865of MHI-based methods is that they are robust to the inter-
866sequence variations in illumination and skin colour. How-
867ever they cannot extract motion directions, and are very sen-
868sitive to errors in face registration.
869Non-rigid registration: Methods based on non-rigid image
870registration consider the direction and intensity of the
871motion for every pixel. Motion estimates obtained by optical
872flow (OF) were considered as an alternative to d�images in
873early works ([53], [101]). Koelstra et al. substituted the OF by
874a free form deformation (FFD, [94]), and used a quadtree
875decomposition to concentrate on the most relevant parts of
876the face region, resulting in a large performance increase.
877However, non-rigid registration approaches rely on the qual-
878ity of the registration, they are complex to implement, and
879have very high computational cost. Their use in practical
880applications is thus not straightforward.

8814.4 Deeply Learnt Features

882While most CV problems have seen revolutionary perfor-
883mance increases from adopting deep learning, automatic
884AU analysis has only seen moderate benefits. Potential
885explanations include the lack of large quantities of training
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886 data, and that there is no standard face-specific ImageNet-
887 like pre-trained model to start fine-tuning from. The fact
888 that deep learning has been successful for prototypical facial
889 expression recognition [89] is promising. However, this suc-
890 cess relied on the authors annotating very large amounts of
891 data. An alternative to dealing with a low quantity of
892 labelled examples is the use of transfer learning techniques
893 [122]. While dealing with prototypical expressions, these
894 works underpin both the potential of deep learning meth-
895 ods for AU analysis and the associated challenges.
896 Yet, some recent works have leveraged deep learning for
897 AU analysis with increasing success. For example, [71]
898 attained reasonable performance on the FERA 2015 chal-
899 lenge using standard deeply learnt features, and Jaiswal
900 et al. who presented a novel deep learning-based represen-
901 tation encoding dynamic appearance and face shape [81]
902 attained state-of-the-art results on that database.

903 4.5 Combining Different Features

904 Several works investigate whether geometric or appearance
905 features are more informative for automatic AU analysis
906 [193], [221]. However, both types convey complementary
907 information and would therefore be best used together, and
908 experimental evidence consistently shows that combining
909 geometric and appearance features is beneficial [73], [95],
910 [228]. In particular, [160] won the FERA 2011 AU detection
911 challenge with this approach. Combining these features is
912 even more important when using a piecewise-affine image
913 registration (see Section 3.3), which eliminates the shape
914 information from registered face image. Geometric features
915 can then add back some of the information eliminated by
916 the registration [106], [108].
917 Different approaches can be used to combine features of
918 a diverse nature. Feature-level fusion is the most common
919 [70], [73], [108], [195], [224]. It consists of concatenating dif-
920 ferent feature vectors containing different feature types into
921 a single vector, which is then directly used as input to the
922 learning algorithm. Decision-level fusion (e.g., [106]) pro-
923 ceeds instead by applying a learning algorithm to each type
924 of features independently, and then combining the different
925 outputs into a final prediction. For example, [106] trained
926 two linear SVMs, over appearance and geometric features
927 respectively, and then used the SVM margins and linear
928 logistic regression to fuse the two outputs.
929 Instead, [161] recently applied the Multi-Kernel SVM
930 framework for automatic AU analysis, and combined LGBP
931 features with AAM shape coefficients. In this framework a
932 set of non-linear classification boundaries are computed for
933 each of the feature types, and the resulting scores are com-
934 bined linearly in a manner typical of decision-level fusion.
935 However, the parameters of the classifiers and the linear
936 combination of the individual outputs are jointly minimised.
937 In the absence of overfitting, the resulting performance will
938 be equal or higher to that of a single feature type for every
939 AU. This is a great advantage over feature-level fusion or
940 decision-level fusion, where an under-performing feature
941 typewill most likely penalise the combined performance.

942 4.6 Discussion

943 Fuse heterogeneous features: It is in general advised to use
944 both appearance and geometric features. Simple strategies

945like feature-level fusion or even decision-level fusion per-
946form well in practice. The Multiple Kernel Learning frame-
947work is particularly well-suited for their combination.
948Best appearance features: LBP or LPQ as a holistic represen-
949tation, or HOG as a local representation are both good
950choices. Gabor can be used in either of the representations,
951but they are more computationally expensive. LGBP fea-
952tures can be very effective too. Spatio-temporal appearance
953features provide a consistent and significant advantage, and
954they can be relatively efficient too.
955Best geometric features: Little evidence has been presented
956about this. Geometric features do not offer much room for
957new feature types. Thus, optimising the set of geometric fea-
958tures has received very little attention in the literature. After
959face tracking, geometric features are inexpensive to com-
960pute, so they can be attractive for problems requiring low
961computational cost solutions.
962Opportunities and directions: Further use of Deep Learn-
963ing, in particular CNNs, is an obvious current research
964focus. Some of the new directions on feature design point to
965the inclusion of spatio-temporal context (and other sources
966of context) in the feature construction. How to best combine
967different features, including mixtures of learned and hand-
968crafted features is an open question. Finally, what features
969are best for low-intensity expressions is another interesting
970open question.

9715 MACHINE ANALYSIS OF FACIAL ACTIONS

972In this section we review different machine learning techni-
973ques applied to various AU-related problems. We distin-
974guish four problems: AU detection, AU intensity
975estimation, AU temporal segment detection and AU classifi-
976cation (see Table 2). The aim of AU detection methods is to
977produce a binary frame-level label per target AU, indicating
978whether the AU is active or not. Both AU intensity estima-
979tion and temporal segment detection aim at inferring frame-
980level labels of these concepts as described in the FACS man-
981ual (see Section 2). AU classification was a problem targeted
982early in the field, uncommon nowadays, and deals with
983sequences containing pre-segmented AU activation epi-
984sodes. The problem is then simplified to performing per-
985sequence labelling.
986AU problems are characterised by important temporal
987and spatial correlations. Spatial correlations refer to the
988well-known fact that some AUs tend to co-occur. Temporal

TABLE 2
Division of Methods According to Their Output

Problem Variants Output space

Class.
No AU Co-ocur. Y ¼ f1 : kg per seq.
AU Co-ocurence Y ¼ f�1gk per seq.

Detection
Frame-based inf. Y ¼ f�1gk per fr.Segment-based inf.

Intensity
Multiclass Y ¼ f0 : 5gk per fr.
Ordinal reg.
Regression Y ¼ 0; 5½ �k per fr.

Temp. seg. Class. Y ¼ f0 : 3gk per fr.
k indicates the number of AUs considered.
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989 correlations instead relate to the constraints resulting from
990 the temporal nature of the data. However, most techniques
991 capturing these correlations build on frame-level inference
992 methods. Thus, we first review frame-based learning tech-
993 nique (Section 5.1), listing problem-specific approaches. We
994 devote Section 5.2 to techniques that harness the temporal
995 correlations in the output space derived from analysing
996 video sequences. Methods that capture the so-called spatial
997 relations are the subject of Section 5.3. Some techniques pro-
998 pose a single model capturing both spatial and temporal
999 relations (Section 5.4). We further review some techniques

1000 that do not align with this taxonomy as they tackle comple-
1001 mentary aspects, devoting a section to dimensionality
1002 reduction (Section 5.5), transfer learning (Section 5.6) and
1003 unsupervised learning of facial events (Section 5.7). A broad
1004 overview of different learning methodologies for AU analy-
1005 sis can be found in Fig. 3 in [43].

1006 5.1 Analysis of Individual AU

1007 Contemporary datasets are composed of video sequences,
1008 and we consider the analysis of still images to be a sub-opti-
1009 mal approach. In truly challenging data videos are not pre-
1010 segmented, so that the target AU can occur at any time in
1011 the video, or may not appear at all. Two approaches can be
1012 distinguished for detecting and temporally localising an
1013 AU: frame-level approaches and segment-level approaches.
1014 Frame-level labelling methods perform inference at each
1015 frame of the sequence, assigning one of the target labels to
1016 each of them. However, labels obtained through frame-level
1017 inference typically result in temporally inconsistent label
1018 sequences (e.g., isolated single frames labelled as active are
1019 in all likelihood incorrect). Thus, a performance improve-
1020 ment can be attained by combining frame-level information
1021 with temporal consistency information, which is typically
1022 done through the use of graphical models.
1023 Segment-based approaches focus instead on localising
1024 events as a whole, taking as input a representation of a spa-
1025 tio-temporal data segment. If this is deemed to be a positive
1026 instance, then each frame within it is assigned the associated
1027 label. This approach has an inherent mechanism for produc-
1028 ing temporally-consistent predictions. Yet, segment-based
1029 approaches are uncommon, mostly due to the complex
1030 nature of this type of algorithms, and the challenge of repre-
1031 senting video segments of variable length.
1032 We start by describing how to deal with frame-level
1033 inference, considering the different AU-related problems in
1034 the literature. Then we describe different approaches for
1035 incorporating temporal consistency on the predicted labels.
1036 Finally, we describe works in segment-based learning.
1037 Frame-based AU detection aims to assign a binary label
1038 per target AU indicating activation to each of the frames in
1039 the sequence. Common binary classifiers applied to this
1040 problem include Artificial Neural Networks (ANN),
1041 Boosting techniques, and Support Vector Machines (SVM).
1042 ANNs were the most popular method in earlier works,
1043 e.g., [19], [53], [173]. However, ANNs are hard to optimise.
1044 While the scalability of ANN to large datasets is one of its
1045 strongest aspects, the amount of available data for AU
1046 analysis remains relatively scarce. It would nonetheless be
1047 interesting to study their performance given the recent
1048 resurgence of ANN, specially as some promising works

1049have recently appeared [71], [81]. Boosting algorithms,
1050such as AdaBoost and GentleBoost, have been a common
1051choice for AU recognition, e.g., [73], [208]. Boosting algo-
1052rithms are simple and quick to train. They have fewer
1053parameters than SVM or ANN, and can be less prone to
1054overfitting. They implicitly perform feature selection,
1055which is desirable for handling high-dimensional data and
1056speeding up inference, and can handle multiclass classifi-
1057cation. However, SVM are nowadays the most popular
1058choice, e.g., [31], [108], [202], [209]. SVMs provide good
1059performance, can be non-linear, parameter optimisation is
1060relatively easy, efficient implementations are readily avail-
1061able (e.g., the libsvm library, [26]), and a choice of kernel
1062functions provides extreme flexibility of design.
1063AU Intensity Estimation. Estimating AU intensity is of
1064interest due to its semantic value, allowing higher level
1065interpretation of displayed behaviour for which the inten-
1066sity of facial gesture is informative (e.g., discrimination
1067between polite and joyful smiles). The goal in this scenario
1068is to assign, for each target AU, a per-frame label represent-
1069ing an integer value from 0 to 5. This problem can be
1070approached using either a classification or a regression.
1071Some approaches use the confidence of a binary frame-
1072based AU detection classifier to estimate AU intensity. The
1073rationale is that the lower the intensity is, the harder classi-
1074fying the example will be. For example, [15] used the dis-
1075tance of the test sample to the SVM separating hyperplane,
1076while [73] used the confidence of the decision given by Ada-
1077Boost. It is however more natural to treat the problem as 6-
1078class classification. For example, [108] employed six one-
1079versus-all binary SVM classifiers. Alternatively, a single
1080multi-class classifier (e.g., ANN or a Boosting variant) could
1081be used. The extremely large class overlap means however
1082that such approaches are unlikely to be optimal.
1083AU intensity estimation is nowadays most often posed as
1084a regression problem. Regressionmethods penalise incorrect
1085labelling proportionally to the difference between ground
1086truth and prediction. Such structure of the label space is
1087absent in the most common classification methods. The large
1088overlap between classes also implies an underlying continu-
1089ous nature of intensity that regression techniques are better
1090equipped to model. Examples include Support Vector
1091Regression, [86], [157], or Relevance Vector Regression so
1092that a probabilistic prediction is obtained [90]. Furthermore,
1093[69] shows performance comparisons between binary classi-
1094fication-based, multi-class and regression-based intensity
1095estimation, showing that the latter two attain comparable
1096performance, but improve significantly over the former for
1097the task of smile intensity estimation. An alternative is the
1098use of Ordinal Regression. Ordinal regression maps the
1099input feature into a one dimensional continuous space, and
1100then finds some binning thresholds tasked with splitting the
1101n classes. During training, both the projection and the bin-
1102ning values are estimated jointly [144].

11035.2 Temporal Consistency

1104Temporal phase modelling. Temporal consistency can be
1105enforced through themodelling and prediction of AU tempo-
1106ral phases (neutral, onset, apex or offset) and their transitions
1107(see Section 2 for their definition). It constitutes an analysis of
1108the internal dynamics of an AU episode. Temporal phases
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1110 as all labels should occur in a specific order.
1111 Temporal segment detection is a multi-class problem,
1112 and is typically addressed by either using a multi-class clas-
1113 sifier or by combining several binary classifiers. Early work
1114 used a set of heuristic rules per AU based on facial land-
1115 mark locations [132]. More recent approaches use discrimi-
1116 native classifiers learnt from data. Among them, [191] uses
1117 one-versus-one binary SVMs (i.e., six classifiers) and a
1118 majority vote to decide on the label, while [88], [94] trained
1119 GentleBoost classifiers for each temporal segment ([94]
1120 excluded apex as it used motion-based features). These
1121 works use a score measure provided by the classifier to rep-
1122 resent the confidence of the label assignments.
1123 It is important to note however that reliably distinguish-
1124 ing the temporal segments based on the appearance of a sin-
1125 gle frame is impossible. Appearance relates to the AU
1126 intensity, and apex, onset or offset frames can be of practi-
1127 cally any intensity. Temporal segments are characterised
1128 instead by the intensity evolution (i.e., its derivatives). There-
1129 fore, the use of temporal information is mandatory. The
1130 aforementionedworks encode this information at the feature
1131 level and through the use of graphical models (see below).
1132 Graph-based methods: In frame-based approaches, temporal
1133 consistency is typically enforced by employing a graphical
1134 model. Somemethods divide the problem into two steps. First
1135 a frame-level ML method of choice is used to obtain soft per-
1136 frame predictions, and then a (typically Markov chain) transi-
1137 tion model is used to encode how likely each label change is.
1138 Then, the Viterbi decoding algorithm can be used to find the
1139 most likely sequence of predictions [88], [94], [187], [191]. This
1140 approach can be used irrespective of the problem targeted,
1141 and has for example been used for AU detection using the
1142 margin of an SVM classifier to perform the soft assignment
1143 [191], and for AU temporal segment detection using the prob-
1144 ability yielded by a GentleBoost algorithm [88], [94]. This
1145 model is similar to an HMM, but a discriminative classifier
1146 substitutes the generativemodel relating data and labels. This
1147 results in the topology of the Maximum Entropy Markov
1148 model (MEMM, [116], see Fig. 8), where the classifier and the
1149 temporal consistencymodels are trained independently.
1150 It can however be advantageous to jointly optimise the
1151 transition model and the frame-level classifier. For example,
1152 [114] propose to use a Hidden Markov Model for AU inten-
1153 sity estimation. Discriminative methods such as Conditional
1154 Random Fields (CRF) (see Fig. 8) might however be more
1155 effective [195]. CRF is an undirected graph, and the associ-
1156 ated potentials are discriminatively trained. A chain CRF is
1157 its simplest topology. Each label node indicates the per-
1158 frame output label. The state of the label node depends on
1159 the immediate future and past labels and on the data term.

1160CRFs restrict the frame-level learning algorithm to log-lin-
1161ear models. Several extensions of CRF have been applied to
1162AU-related problems, aiming to incorporate even more
1163information in the model. For example, the kernel Condi-
1164tional Ordinal Random Fields was applied to the AU tem-
1165poral segment detection problem in [144], and makes use of
1166the temporal ordering constraints of the labels. Another
1167extension was proposed in [197], where the authors pro-
1168posed a Latent CRF where the latent variables can switch
1169between nominal to ordinal types. Instead, [27] proposed a
1170modified version of the Hidden Conditional Random Field
1171(HCRF, see Fig. 8). This model assumes known AU labels
1172for the start and end frame. Observations provide evidence
1173of AU activation (the hidden variables), while facial expres-
1174sions are simultaneously inferred from the binary informa-
1175tion on AU activations. In this way, the detection of AU and
1176prototypical expressions is learnt jointly.
1177Most graphical models are trained by maximising the
1178empirical log-likelihood. However, some AU-related prob-
1179lems (specially AU intensity estimation) suffer greatly from
1180label unbalance. Introducing label-specific weights on the
1181loss function is complicated in this case, andmodels may suf-
1182fer from a bias towards more common classes. The most
1183immediate way to tackle this problem is to train a frame-level
1184discriminative classifier beforehand using class weights, and
1185to feed the output of this model to the graph (hence the suc-
1186cess of the two-step approach). A more complex solution
1187might involve using alternative graph formulations, e.g.,
1188Max-margin graphs [170].
1189Segment-based methods: Early datasets were composed of
1190short (10-100 frames) pre-segmented sequences with well-
1191defined AU activations. This particular case can be addressed
1192by using a sequence classifier, for example an HMM (see
1193Fig. 8). For example, [101] trained a different HMM per class.
1194At test time, each HMM is evaluated and the class assigned is
1195the one yielding the highest likelihood. Alternatively, all
1196frames of the sequence can be analysed using a per-frame
1197binary classifier (see Section 5.1), and a majority vote is cast to
1198assign a sequence label [193]. However, the availability of
1199pre-segmented AU episodes at test time is unrealistic in any
1200practical scenario and nowadays this problem is basically
1201discontinued.
1202Most segment-based methods deal instead with unseg-
1203mented data, and the problem consists of finding the start-
1204ing and end point to the event maximising a score. As
1205opposed to frame-based methods, learning uses patterns
1206representing the whole event at once. This is also different
1207in nature to graph-based models, which typically relate
1208data and labels through frame-level patterns. The need to
1209describe segments of varying length through a feature of
1210the same dimensionality imposes a strong restriction on the

Fig. 8. Graphical illustration of (a) Hidden Markov Model, (b) Maximum entropy Markov model, (c) Conditional random field, (d) Hidden conditional
random field, (e) Dynamic bayesian network. X is the observation sequences, Z is the hidden variables and Y is the class label.
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1211 possible data representations used. Furthermore, features
1212 should be robust against variations on the action temporal
1213 patterns such as the speed of execution. The output of seg-
1214 ment-based methods consists of a single label for a whole
1215 section of the test sequence, but it can be directly translated
1216 into frame-level labelling.
1217 One such approach was proposed by [164]. The authors
1218 proposed a segment-based classifier, coined kSeg-SVM, that
1219 uses a bag of temporal words to represent the segments.
1220 The structured-output SVM framework [179] is used for
1221 inference and learning, drawing a clear parallelism with the
1222 work in [21]. Alternatively, [51] proposed to combine
1223 frame-level with segment-level methodologies in what they
1224 call a cascade of classifiers. They show that the use of seg-
1225 ment information in a step subsequent to frame-based infer-
1226 ence leads to better performance. While these methods are
1227 compared against frame-level equivalents, the authors omit
1228 a comparison with graph-based models, which constitutes
1229 the most logical alternative.
1230 An alternative problem formulation is that of performing
1231 weakly-supervised learning. In this scenario, training
1232 instances are sequences, and the labels indicate whether an
1233 AU occur within the sequence but without indicating where
1234 exactly. This problem was considered by [171], where a
1235 Multiple Instance Learning (MIL) approach was used to
1236 tackle AU detection. A similar problem was tackled in [145],
1237 where the authors propose a new MIL framework to deal
1238 with multiple high-level behaviour labels. The interest in
1239 these techniques stems from the ease of manual sequence-
1240 based annotation, and from its use for problems where
1241 labelling is more subjective.

1242 5.3 Spatial Relations

1243 It is well-known that some AUs frequently co-occur (see
1244 Section 2). Thus, it is only natural to exploit these correlations
1245 and to perform joint inference ofmultipleAUs. In herewedis-
1246 tinguish between methods that exploit correlations by learn-
1247 ing a joint feature representation, and methods that impose
1248 correlations among labels, typically by employing graphs.
1249 Finally, temporal correlations can also be taken into account
1250 to extend frame-level models, thus incorporating both co-
1251 occurrence and temporal consistency correlations.
1252 Joint representation: The early seminal work by [172]
1253 already exploited the flexibility of ANN, defining the output
1254 layer to have multi-dimensional output units. Each output
1255 can fire independently, indicating presence of a specific AU,
1256 but all AUs share an intermediate representation of the data
1257 (the values on the hidden layer). More recently, [229] used a
1258 Multi-Task Feature Learning technique to exploit common-
1259 alities in the representation of multiple AUs. The same strat-
1260 egy was followed by [217], but in this case the tasks are
1261 organised in a hierarchical manner, with AU at the leaf
1262 nodes and groups of AU at higher levels (the hierarchy is
1263 hand-crafted rather than data driven).
1264 Label-space correlations: Graphical models can be employed
1265 in a similar manner as for temporally-structured inference.
1266 However, the graph topology in the latter case arise more nat-
1267 urally from the temporal ordering. In this case, which AU cor-
1268 relations are considered by the topology will result in
1269 different performances, and there is no standard way of
1270 selecting them. Approaches include [177], which proposed to

1271use a directed graph, Bayesian networks (BN). BN capture
1272pairwise correlations between AUs, do not need to explicitly
1273select the AU correlations to be modelled, and they can scale
1274to a large number of correlations. Alternatively, [150] pre-
1275sented a methodology for joint AU intensity estimation based
1276on Markov random fields (MRF). First, frame-based regres-
1277sionmodelswere trained for eachAU, and their outputs were
1278used as inputs to a MRF with pairwise potentials. Since MRF
1279is an undirected graph, the topology is restricted to a tree
1280structure to achieve fast and exact inference. Loopy graphs
1281could be used too, but then they would require approximate
1282inference, and thus it is unclear whether it would result in a
1283performance gain. Several different hand-crafted topologies
1284were evaluated.
1285While capturing pairwise relations can significantly
1286improve performance, some of the relations involve larger
1287sets of AU. For example, some AUs are connected due to
1288their co-occurrence in frequently occurring facial expres-
1289sions (e.g., AU6 and AU12 in smiles). Thus, capturing
1290higher-order relations (beyond pairwise) can yield further
1291benefits. One such model was proposed in [198], where a
1292variant of Restricted Boltzmann Machines (RBM, [77]) was
1293used to capture more complex relations, and to jointly incor-
1294porate reasoning regarding prototypical facial expressions.
1295Instead, [146] proposed to combine the learning of AU and
1296facial expressions together. Prior knowledge of the correla-
1297tions between AU and expressions (found through manual
1298labelling) are also incorporated. A hierarchical approach
1299was followed in [91], which greedily constructed a genera-
1300tive tree with labels and features at the leaf nodes. Each
1301node on the upper layer joins a pair of lower-level nodes.
1302The resulting trees are used to perform AU intensity estima-
1303tion. Finally, [166] employed a graphical model, a variant of
1304the Bayesian compressed sensing framework, capable of
1305grouping AU (where an AU can be on more than one
1306group), and imposing sparsity so few AU can be active at a
1307time. While this captures correlations beyond pairwise, they
1308need to resort to complex variational inference.
1309An alternative encoding which avoids the use of graphi-
1310cal models was proposed in [223]. Label correlations were
1311imposed in a discriminative framework. Regularisation
1312terms for each of the AU pairs considered were introduced
1313in the learning loss function, penalising (dis)agreement
1314between correlated AUs.

13155.4 Spatio-Temporal Relations

1316Capturing both spatial and temporal correlations has the
1317potential for further performance benefits. Factors such as
1318facial expressions, head or body movements and poses, or
1319higher-level interpretations of the data, can also be inte-
1320grated into a single inference framework. If directed graphs
1321are used, the complexity of the inference grows very quickly
1322due to the appearance of loops in graphs, leading to approx-
1323imate inference and a potential performane loss. It is thus
1324only natural that works within this category focus on
1325directed graphs.
1326Existing efforts include [177], where temporal correlations
1327were captured by means of a Dynamic Bayesian Network
1328(DBN). DBNs extend BNs by incorporating temporal infor-
1329mation, with each time slice of a DBN being a BN. Similarly,
1330DBNs extend HMMs by being able to handle multiple
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1331 interacting variables at a given time frame. Therefore, this
1332 model combines both the temporal correlations of HMM-like
1333 methods, and the joint AU estimation of BN. A further exten-
1334 sion was presented in [176], where the authors integrate
1335 “non-AU” factors, such as head pose, into a joint probabilis-
1336 tic model. The same approach was followed by [99], but in
1337 this case the DBN was applied to perform AU intensity esti-
1338 mation. One-vs-one SVMswere used as input to the DBN.

1339 5.5 Dimensionality Reduction

1340 Due to the typically high dimensionality of the input fea-
1341 tures, it is often recommended (but not strictly necessary) to
1342 reduce the input dimensionality prior to the application of
1343 other learning techniques. This can be done through feature
1344 selection, manifold learning or pooling. Feature selection
1345 aims to find a subset of the original features that are repre-
1346 sentative enough, and it is typically a supervised approach.
1347 Manifold learning methods, such as PCA, find underlying
1348 lower-dimensional structures that preserve the relevant
1349 information from the original data. Pooling combines fea-
1350 tures from neighbouring (spatial) locations into a single fea-
1351 ture, for example by computing their average or their
1352 maximum. These techniques have been well covered in a
1353 recent survey on facial AU analysis, and we refer the
1354 reviewer to it for further discussion [154].

1355 5.6 Transfer Learning

1356 One of the important aspects of AU-related data is that nui-
1357 sance factors can greatly affect AU representation and thus
1358 hinder the generalisation capability of the models learnt.
1359 One way of dealing with this problem is to use transfer
1360 learning or domain adaptation. These are most commonly
1361 applied when there is a significant difference between the
1362 distribution of the training data and the test data, so that
1363 models learnt on the training data (e.g., containing frontal
1364 head pose videos only) might be sub-optimal for the test
1365 data (e.g., presenting multiple head poses).
1366 Transfer learning encompasses a wide range of techni-
1367 ques designed to deal with these cases [129]. In the transfer
1368 learning literature, inductive learning refers to the case
1369 where labelled data of the target domain (where we want to
1370 apply the learnt methods) is available. Transductive learn-
1371 ing makes no such assumption, with the target domain data
1372 being purely unsupervised [129]. Transfer learning has only
1373 very recently been applied to automatic AU analysis. For
1374 example, [33] proposed a new transductive learning
1375 method, referred to as Selective Transfer Machine (STM).
1376 Because of its transductive nature, no labels are required for
1377 the test subject. At test time, a weight for each training
1378 example is computed as to maximise the match between the
1379 weighted distribution of training examples and the test dis-
1380 tribution. Inference is then performed using the weighted
1381 distribution. The authors obtained a remarkable perfor-
1382 mance increase, beating subject-specific models. However,
1383 reduced availability of subject-specific training examples
1384 might partially explain this. [152] and [212] proposed a dis-
1385 criminative regression method tasked with predicting sub-
1386 ject-specific model parameters. The input consisted of the
1387 distribution of frame-level features corresponding to the
1388 subject (e.g., extracted from a video), and different measures
1389 for comparing distributions are studied. Instead, [213]

1390decoupled the problem of AU detection into the detection
1391for easy and hard frames. The easy detector provides a set
1392of confident detections on easy frames, which are then used
1393to adapt a second classifier to the specific test-time subject
1394in order to facilitate the finder-grained detection task.
1395In contrast, [29] evaluated standard methodologies for
1396both inductive and transductive transfer learning for AU
1397detection, finding that inductive learning improved the per-
1398formance significantly while the transductive algorithm led
1399to poor performance. Multi-task learning (MTL) can also be
1400used to produce person-specific AU models. For example,
1401[143] proposed an inductive tensor-based feature learning
1402MTL method simultaneously capturing correlations among
1403AU and correlations among subjects. Alternatively, [3] built
1404upon a MTL algorithm capable of estimating tasks related-
1405ness. The task relations were designed to encode subject
1406similarity, being thus shared across AU, and AU-specific
1407dictionaries translating these latent relations into model
1408parameters were learnt. Current Deep Learning methodolo-
1409gies rely systematically on transfer learning, typically using
1410ImageNet pre-trained models and typically fine-tuning the
1411models to the task at hand. Features at lower layers are
1412shown to be of general applicability and well-posed for
1413transfer to other tasks. This allows successful training with
1414much less training data. See Section 4.4 for further discus-
1415sion on deep learning for AU analysis.
1416Transfer learning is a promising approach when it comes
1417to AU analysis. Appearance variation due to identity are
1418often larger than expression-related variations. This is aggra-
1419vated by the high cost of AU annotation and the low number
1420of subjects in datasets. Therefore, techniques that can capture
1421subject-specific knowledge and transfer it at test time to
1422unseen subjects are highly suitable for AU analysis.

14235.7 Unsupervised Discovery of Facial Events

1424In order to overcome the scarcity of training data, which
1425impedes development of robust and highly effective
1426approaches to machine analysis of AUs, some recent efforts
1427focus on unsupervised approaches. The aim is in this case
1428to segment a previously unsegmented input sequence into
1429relevant facial events, but without the use of labels during
1430training [49], [224]. The facial events might not be coincident
1431with AU, although some correlation with them is to be
1432expected, as AUs are distinctive spatio-temporal events.
1433Existing works apply a sequence-based clustering algorithm
1434to group events of similar characteristics. For example, [224]
1435used a dynamic time alignment kernel to compare sub-
1436sequences in a manner invariant to the speed of the facial
1437action. Instead, [210] used Slow Feature Analysis to learn, in
1438an unsupervised manner, a latent space that correlates with
1439the AU temporal segments. In this case, a quantitative per-
1440formance evaluation of this correlation was provided.
1441Despite its interesting theoretical aspects, the practical
1442applicability of purely unsupervised learning is not clear. A
1443semi-supervised learning setting [28], [215] might result in a
1444more sensible approach, as it uses all the annotated data
1445together with potentially useful unannotated data. Such an
1446approach is not immediate and has not been explored yet.
1447Finally, [34] proposed an unsupervised methodology for,
1448given two or more video streams containing persons inter-
1449acting, detecting events of synchrony between the subjects,

14 IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, VOL. 8, NO. X, XXXXX 2017



IEE
E P

ro
of

1450 understood as overlapping segments of the video where the
1451 subjects present similar facial behaviour. Another interest-
1452 ing discussion on the topic, including references to similar
1453 works on different domains, can be found in [96].

1454 5.8 Discussion

1455 What model works best?: Techniques requiring little training
1456 data are still useful for AU problems. The scarcity of data
1457 means that high-capacity models, with more flexible ker-
1458 nels, hidden layers or model variables might not necessary
1459 perform better. Using the temporal and spatial structure of
1460 the problem is more likely to yield a performance gain. A
1461 graphical depiction of the relations between different meth-
1462 ods depending on the correlations considered is shown in
1463 Fig. 9. Moving in any direction on the graph shown adds (or
1464 removes) a new source of correlations. We further sketch a
1465 third dimension: the correlation with “non-AU” informa-
1466 tion. Performing an adequate feature fusion strategy can
1467 also yield solid performance. Models capable of creating
1468 personalised models are very interesting, although they are
1469 at an early stage of research.
1470 How can correlations be used in practice?: The most effective
1471 and studied way is to use graphs. Temporal correlations
1472 are easy to obtain and provide important performance
1473 improvements. Due to severe label imbalance, it is a good
1474 idea to pre-train your (typically discriminative) frame-based
1475 model of choice, and then use a graphical model taking the
1476 output confidence as the input to the graph.
1477 Why not include everything in one graph?: This approach
1478 was the one followed by [176], although they were restricted
1479 to using directed graphs. Instead, adding spatial and tem-
1480 poral correlations together in an undirected graph can lead
1481 to loops. Loopy graphs result in slow and approximate
1482 inference. How to include all of this information into an
1483 undirected graph and yet attain fast and exact solution (or
1484 even a good approximation) is not clear. Thus, more com-
1485 plex graphs do not necessarily lead to better performances.
1486 Opportunities and directions An important direction of
1487 research is the aforementioned problem of how to incorpo-
1488 rate more information in graphs without resorting to slow
1489 and approximate inference. Furthermore, transfer learning
1490 and domain adaptation are well suited to AU-related

1491problems, and are very relevant nowadays in the CV andML
1492fields in general. Temporal models are often restricted to
1493Markov chains. This might result in a lot of missing temporal
1494correlations, and non-Markov (e.g., multi-scale) models
1495could be of use. However, temporal patterns might be
1496domain dependent andmuch more data would be needed to
1497obtain models generalisable to unseen test conditions.
1498Graphs capturing higher-order correlations (involving more
1499than two nodes), or the design of discriminative graphs capa-
1500ble of handling data imbalance, could be interesting steps too.
1501Combining ML models: Given the subtle signals that AU
1502analysis depends on, and given the low number of training
1503examples available, the use of specialized ML models focus-
1504ing on easier, better-posed problems seems like a natural
1505research direction. For example, [51] used frame-level,
1506segment-level and onset/offset detector models in combina-
1507tion (a similar approach was successfully proposed for
1508facial expression recognition in [47]). Alternatively, other
1509methods focused on combining ML models trained to
1510respond to specific parts of the face, e.g., [80], [103]. In this
1511way, the spatially localized nature of AUs can be exploited,
1512and the features used for learning contain less variation
1513than when encoding the whole face.

15146 DATA AND DATABASES

1515The need for large, AU labelled, publicly available data-
1516bases for training, evaluating and benchmarking has been
1517widely acknowledged, and a number of efforts to address
1518this need have beenmade. In principle, any facial expression
1519database can be extended with AU annotation. However,
1520due to the very time-consuming annotation process, only a
1521limited number of facial expression databases are FACS
1522annotated, and even fewer are publicly available. They can
1523be divided into three groups: Posed facial expression data-
1524bases, spontaneous facial expression databases and 3D facial
1525expression databases. Although the scope of this survey is
1526restricted to automatic 2D AU analysis, 3D databases enable
1527the rendering of 2D examples in arbitrary head poses.
1528For completeness, we provide a summary of existing
1529facial AU-annotated databases in Table 3. However, a more
1530in-depth coverage of this topic can be found in [43].

15316.1 Training Set Selection

1532The choice of training examples is a relatively neglected
1533problem when it comes to automatic AU analysis. Most of
1534the existing works use one of two simple approaches. One
1535approach assigns fully expressive frames to the positive
1536class and frames associated with other AUs to the negative
1537class. This approach maximises the differences between
1538positive and negative classes, but results in a large imbal-
1539ance between them, especially for infrequent AUs [228]. In
1540this case, peak frames may provide too little variability to
1541achieve good generalisation, and faces with active but not
1542fully expressive AUs might have patterns unseen in the
1543training set. The other approach reduces imbalance between
1544classes by including all target frames from onset to offset in
1545the positive class (e.g., [31], [161], [66]). However, because
1546frames near the beginning of the onset and the end of the
1547offset phases often differ little from neutral ones, separabil-
1548ity of classes is compromised and the number of false posi-
1549tives might increase accordingly.

Fig. 9. Relations between some of the methodologies. Arrows indicate
relations in terms of the output correlations considered. Nodes indicate a
grouping of methodologies considering the same output correlations.
Sections containing works within a category are shown in green.
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1550 Apart from these standard approaches, [88] proposed a
1551 heuristic approach for training example selection. They take
1552 the first apex frame of each target AU, plus any apex frames
1553 where any other AUs are active independently of its current
1554 temporal phase. The idea is that appearances of AU combi-
1555 nations are different than those of AUs happening in isola-
1556 tion, so they should be properly represented on the training
1557 set. However, in order to avoid repetitive patterns, the train-
1558 ing set only includes one frame where all AUs are in their
1559 apex phase. An adapted version of this heuristic was used
1560 in [188], as no annotations of the temporal segments were
1561 available. [88] also defines a different heuristic to extract
1562 dynamic appearance features. They first define salient
1563 moments, to wit, the transition times between the different
1564 temporal segments and the midpoint of every AU phase.
1565 Then a temporal window centred at these points is used to
1566 compute the training patterns.
1567 Zhu et al. [228] propose dynamic cascades with bidirec-
1568 tional bootstrapping, which combines an Adaboost classi-
1569 fier with a bootstrapping strategy for both positive and
1570 negative examples. Wrongly classified negative examples
1571 are re-introduced in the training set, and the set of positives
1572 is enhanced with less obvious examples correctly detected
1573 by the classifier (what the authors call spreading). The clas-
1574 sifier is then retrained, leading to an iterative procedure
1575 that is repeated until convergence.

1576 6.2 Discussion

1577 While researchers now have a much wider range of AU
1578 annotated databases at their disposal than 10 years ago,
1579 when basically only the Cohn-Kanade and MMI databases
1580 were available [92], [190], lack of high-quality data remains
1581 a major issue. Recent advances in statistical machine learn-
1582 ing such as CNNs require data volumes orders in magni-
1583 tude larger than currently available. In addition, there is an
1584 issue with the reliability of manual AU labelling in a num-
1585 ber of databases. While FACS is touted to be an objective
1586 human measurement system, there remain subjective

1587interpretations, and the quality of labelling is highly depen-
1588dent on the amount of experience a FACS annotator has.
1589Ideally, the inter-rater reliability of AU annotation should
1590be reported for each database.
1591Another issue relates to ethical considerations. Some
1592excellent spontaneous facial action databases are not pub-
1593licly available due to human-use considerations (e.g., [2],
1594[37], [159]). In general, many contemporary issues for which
1595automatic AU detection would be a great benefit (e.g., auto-
1596matic analysis of depression or other medical conditions)
1597will use that that is hard to share with other researchers.
1598These datasets represent a potentially valuable trove of
1599training and testing data. Developing methods to allow
1600other researchers benefit from these data without having
1601direct access to them would greatly benefit the community.

16027 CHALLENGES AND OPPORTUNITIES

1603Although the main focus in machine analysis of AUs has
1604shifted to the analysis of spontaneous expressions, state-of-
1605the-art methods cannot be used in fully unconstrained envi-
1606ronmental conditions effectively. Challenges preventing
1607this include handling occlusions, non-frontal head poses,
1608co-occurring AUs and speech, varying illumination condi-
1609tions, and the detection of low intensity AUs. Lack of data is
1610another nagging factor impeding progress in the field.
1611Non-frontal head poses occur frequently in naturalistic
1612settings. Due to the scarceness of annotated data, building
1613view-specific appearance-based approaches for automatic
1614AU analysis is impractical. The existence of 3D databases
1615may ease this problem, although rendering examples of
1616AU activations at multiple poses is challenging as it
1617involves simulating realistic photometric variance. Using
1618head-pose-normalised images for learning and inference is
1619a more feasible alternative. However, many challenges are
1620associated with this approach. For example, the learning
1621algorithms should be able to cope with partially corrupted
1622data resulting from self-occlusions. More importantly,

TABLE 3
FACS-Annotated Facial Expression Databases

Database Elicitation method Size Camera View S/D Act oao Int

AM-FED [117] Induced N/A Various head poses D 10 N N
Bosphorous [155] On command 105 subjects 3D multi-pose S 25 N Y
BP4D [218] Induced 41 subjects 3D multi-pose D 27 N Y
CASME [207] Induced (micro) 35 subjects Near frontal D F Y N
CASME II [206] Induced (micro) 26 subjects Near frontal D F Y N
Cohn-Kanade [92] On command 97 subjects Frontal D F Y N
Cohn-Kanade+ [105] Naturally occurring 26 subjects Frontal & 15� side view D 8 N N
D3DFACS [167] On command 10 subjects 3D multi-pose D F N N
DISFA [115] Induced 27 subjects Near-frontal D 12 N Y
GEMEP-FERA [188] Acted 10 subjects Significant head movement D 12 N N
ICT-3DRFE [44] On command 23 subjects 3D multi-pose S F N Y
MMI (Part I-III) [135] On command 210 subjects Frontal & Profile SD F Y N
MMI (Part IV-V) [190] Induced 25 subjects Frontal D F N N
ISL Frontal [177] On command 10 subjects Near frontal D 14 Y N
ISL Multi-view [176] On command 8 subjects Frontal, 15� & 30� side D 15 Y N
Sayette GFT [68] Naturally occurring 96 subjects Frontal D 20 N Y
SEMAINE [118] Induced 150 subjects Frontal & Profile D 6 N N
UNBC-McMaster [107] Induced(Pain) 129 subjects Frontal D 10 N Y

Elicitation method: On command/Acted/Induced/Interview. Size: number of subjects. Camera view: frontal/profile/3D. S/D: static (image) or dynamic (video)
data. Act: AU activation annotation (number of AUs annotated, F-fully annotated). oao: onset/apex/offset annotation. Int: intensity (A/B/C/D/E) annotation.
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1624 sion changes is still an open problem that needs to be
1625 addressed.
1626 Because AUs cause only local appearance changes, even a
1627 partial occlusion of the face can be problematic. So far, very
1628 limited attention has been devoted to this problem [102]. A
1629 possible solution is to rely on the semantics of AUs so that
1630 occluded AUs can be inferred from the visible ones or from
1631 models of AU temporal co-occurrence and consistency.
1632 It is rare that AUs appear in isolation during spontane-
1633 ous facial behaviour. In particular, the co-occurrences of
1634 AUs become much harder to model in the presence of non-
1635 additive AUs (see Section 2). Treating these combinations as
1636 new independent classes [109] is impractical given the num-
1637 ber of such non-additive AU combinations. On the other
1638 hand, when treating each AU as a single class, the presence
1639 of non-additive combinations of AUs increases the intra-
1640 class variability, potentially reducing the performance [88].
1641 Also, the limited number of co-occurrence examples in
1642 existing AU-coded databases makes this problem really dif-
1643 ficult. Hence, the only way forward is by means of model-
1644 ling the “semantics” of facial behaviour, i.e., temporal co-
1645 occurrences of AUs. This is an open problem that has not
1646 received proper attention from the research community.
1647 Beyond data-driven approaches, it is a well-known anatom-
1648 ical fact that some AU cannot co-occur together. Incorporat-
1649 ing this domain knowledge can help constrain the problem
1650 further [198]. An interesting associated problem is learning
1651 with annotations of a subset of AU [201], as most datasets
1652 annotate different AU subsets.
1653 While the importance of facial intensities and facial
1654 dynamics for the interpretation of facial behaviour has been
1655 stressed in the field of psychology (e.g., [65], [5]), it has
1656 received limited attention from the computer science com-
1657 munity. The detection of AU temporal segments and the
1658 estimation of their intensities are unsolved problems. There
1659 is some degree of class overlap due to unavoidable labeller
1660 noise and unclear specifications of the class boundaries.
1661 Clearer annotation criteria to label intensity in a continuous
1662 real-valued scale may alleviate this issue. Building tools to
1663 improve performance in the presence of inter-labeller dis-
1664 agreement is therefore important.
1665 All AU-coded databases suffer from various limitations,
1666 the most important being the lack of realistic illumination
1667 conditions and naturalistic head movements. This might
1668 mean that the field is driving itself into algorithmic local
1669 maxima [199]. Creating publicly available “in-the-wild”
1670 dataset is therefore of importance.

1671The absence of an adequate benchmark dataset has also
1672been a detrimental factor for the evolution of the field. The
1673facial expression and analysis challenge (FERA), organised
1674in 2011, was the very first attempt [188], [189] to address
1675this. A protocol was set in [188] where the training and test-
1676ing sets were pre-defined and a performance metric was
1677defined. This was followed by the FERA 2015 [186] and
16782017 [184] challenges, focussing on intensity estimation and
1679AU detection under varying head-pose. The performance of
1680the participants for FERA 2017 is shown in Table 4.
1681Researchers can continue to submit their systems for evalu-
1682ation on FERA 2017 to the organisers, who will update their
1683website with new scores for as long as that remains relevant.
1684The extended CK+ database has a similar function [105].
1685Reporting performance of proposed methodologies on these
1686databases should be encouraged and other benchmarks
1687with different properties are needed. Furthermore, the
1688inclusion of cross-database experiments in the benchmark-
1689ing protocol should be considered.
1690While many papers do report performance measures on
1691publicly available datasets, this does not necessarily lead
1692to a true comparison between methods. The way in which
1693systems are trained and evaluated can differ significantly,
1694leading to incomparable results. FERA and CK+ have
1695helped somewhat by providing detailed evaluation proce-
1696dures, but both datasets suffer from limited size and/or
1697non-spontaneous expressions. Finally, the issue of unbal-
1698anced data makes comparisons harder even further, as
1699detailed by [84]. For all the above reasons, this survey
1700does not include a quantitative performance comparison
1701of existing systems.
1702Building personalised models using online and transfer
1703learning methodologies ([33], [29]) is the way forward in
1704our opinion. This is due to several reasons, as the lack of
1705training data, the large subject differences, and the depen-
1706dency of the displayed expressions on a large number of
1707factors such as the environment, the task or the mood,
1708which would be hard to cover exhaustively even if much
1709larger amount of training data was available.
1710Low intensity AUs might be of special importance for sit-
1711uations where the subject is intentionally controlling his
1712facial behaviour. Scenarios as deceit detection would benefit
1713greatly from the detection of subtle facial movements. The
1714first research question relates to features that capture such
1715changes [139].
1716Existing work deals mostly with classification or process-
1717ing of the currently observed facial expressive behaviour.
1718Being able to predict the subject’s future behaviour given
1719the current observations would be of major interest. This is
1720a novel problem that can be seen as a long-term aim in the
1721field. It is closely related to the already mentioned problem
1722of modelling the semantics of AUs (facial behaviour) and
1723should be studied in conjunction with it.
1724An interesting variant to the problem of AU detection
1725was proposed in [141]. The authors propose to predict facial
1726AU, but solely based on acoustic information. The authors
1727use a Recurrent Neural Network to effectively capture tem-
1728poral information, and test their models on a subset of the
1729GEMEP database. This is an interesting idea, and opens up
1730the possibility of tackling the AU problem from the audio-
1731visual fusion perspective.

TABLE 4
Performance on the FERA 2017 Challenge Benchmark Dataset

Team Occurrence detection Intensity estimation

Amirian et al. [8] - 0.295
Batista et al. [18] 0.506 0.399
He et al. [75] 0.507 -
Li et al. [98] 0.495 -
Tang et al. [169] 0.574 -
Zhou et al. [225] - 0.445
Baseline [184] 0.452 0.217

Occurrence performance is measured in terms of F1, and intensity in terms of
ICC (see [184] for details).
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1732 Another interesting problem relates to the use of non-
1733 RGB modalities to either attain AU recognition, or to aid
1734 RGB-based AU recognition. For example, [82] performs
1735 AU recognition from thermal imagery by capturing differ-
1736 ences in temperature related to muscle activation.
1737 Similarly, audio information can complement RGB-based
1738 recognition by distinguishing some sound-related expres-
1739 sions, like blowing or laughter. Depth information
1740 obtained from structured light or time of flight sensors
1741 forms another obvious opportunity for non-RGB based
1742 AU detection. Databases for analysis of this are now start-
1743 ing to come out [219].
1744 Overall, although a major progress in machine recogni-
1745 tion of AUs has been made over the past years, this field of
1746 research is still underdeveloped and many problems are
1747 still open waiting to be researched. Attaining a fully auto-
1748 matic and real-time AU recognition system capable of deal-
1749 ing with unconstrained environmental conditions would
1750 open up tremendous potential for new applications in
1751 games, security, and health industries and investing in this
1752 filed is therefore worthy all the effort. We hope that this sur-
1753 vey will provide a set of helpful guidelines to all those car-
1754 rying out the research in the field now and in the future.
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