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Abstract

In recent years, there has been increased research interest in generating corneal substitutes, either for use in the
clinic or as in vitro corneal models. The advancement of 3D microfabrication technologies has allowed the
reconstruction of the native microarchitecture that controls epithelial cell adhesion, migration and differentiation.
In addition, such technology has allowed the inclusion of a dynamic fluid flow that better mimics the physiology of
the native cornea. We review the latest innovative products in development in this field, from 3D microfabricated

hydrogels to microfluidic devices.
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Introduction

There is a growing clinical need for corneal grafts for use in corneal transplantation. Each year the prevalence of
patients requiring corneal transplants increases, and currently only 1 in 70 cases are treated [1]. The disparity is
worse in the developing parts of the world where prevalence of corneal blindness is greater. Donor grafts can vary
in quality and may be rejected by the host immune system [2, 3, 4]. Eye banks are unable to meet the demand and
therefore an alternative source is required. Bioengineered corneal replacements can potentially overcome this
shortage by providing tailored scaffolds with the inclusion of cells from the patient to minimize the risk of rejection.
These substitutes can be used, not only as biomimetic corneal equivalents for use in transplantation, but also to
study corneal pathologies in vitro. In recent years, several studies have focused on recreating the complex dynamic
microenvironment and here we have classified these studies into three categories: topography, microarchitecture,
3D co-culture and microscale flow (Fig. 1). The final section of this review focuses on innovative additive

manufacturing technologies, and how they could be used to develop cornea substitutes in the near future.

Physiology of the cornea and clinical issues

The cornea is a transparent window at the front of the eye, and is primarily responsible for focusing light onto the
retina. It accounts for two thirds of the focusing of light, the remainder being achieved by the crystalline lens. The
cornea is composed of five major layers: the epithelium, Bowman'’s layer, stroma, Descemet’s membrane and the
endothelium. A sixth layer, Dua’s layer, situated at the posterior stroma, was postulated in 2013 [5]. At the anterior
cornea, facing the outside environment, is the epithelium, a stratified cellular layer composed of non-keratinized
squamous epithelial cells bathed by the tear film, which gives it its final optical polish. The original source of these
epithelial cells is the limbal epithelial crypts, a stem cell niche found in the outer ring of the cornea [6, 7]. These
limbal stem cells allow the epithelium to self-renew and heal defects. The replacement of these cells has been most
successful through regenerative medicine therapies. If a patient has limbal stem cell deficiency, or if the limbus is
missing, a limbal stem cell transplant can be performed [8]. The first stem cell-based product to receive a marketing
authorization (even if conditional) by the European Medicines Agency was Holoclar (Chiesi Farmaceutici SpA), an
ex vivo cultured autologous limbal stem cell graft. However, this treatment is only currently available in Europe,

where it can be used to treat patients with severe corneal burns.



Separating the epithelium from the stroma below is the Bowman’s layer, a tough acellular layer composed
predominantly of collagen and laminin. The middle layer of the cornea, the stroma, makes up the bulk of the
thickness of the cornea, and consists primarily of lamellar sheets of collagen-I fibrils arranged in a highly-ordered
manner compatible with corneal transparency. The stroma is populated with cells of mesenchymal origin called
keratocytes, responsible for maintaining the structured extracellular matrix (ECM) of collagen and proteoglycans
[9-12]. In a healthy cornea, keratocytes exhibit a dendritic morphology, with extensive cellular contacts [13, 14].
However during trauma or disease these cells can become activated and exhibit morphological characteristics of
fibroblasts and commence tissue remodelling [15, 16]. In later stages of remodelling, a myofibroblast phenotype
also appears, expressing a-smooth muscle actin (a-SMA). This can cause scar formation, contraction and loss of
corneal transparency [14, 17, 18]. Evidence has been presented demonstrating that the limbal region of the corneal

stroma also contains a mesenchymal stem cell population that can be used to regenerate the cornea [19, 20].

The posterior two layers of the cornea are the Descemet’s membrane, a thin acellular layer composed mainly of
collagen-IV, which acts as a modified basement membrane for the final layer, the corneal endothelium. The corneal
endothelium is composed of simple cuboidal cells that maintain fluid balance within the cornea. These cells are not
related to vascular or lymphatic endothelial cells. Corneal endothelial cells have very limited proliferative capacity
in vivo, dividing rarely in the adult cornea [21, 22]. As a result, wounding and trauma of the endothelium is difficult
to reverse. A relatively increased concentration of elastin has been shown to run as an annulus along the limbus in

the peripheral cornea and in the pre-Descemet’s layer (Dua’s layer) [23].

Worldwide, corneal disease is the second most prevalent cause of blindness after cataracts [24]. Corneal blindness
is considered avoidable and treatable in many cases, as corneal transplantation surgery can be performed.
However, there is a current global shortage of donor corneas and, in many developing countries, there is no
dedicated and funded eye bank facility to procure corneas. Based on data from the World Health Organisation, it is
estimated that at least 4 million people worldwide suffer from corneal blindness. However, only 100,000 corneal
transplants are performed each year, primarily as a result of lack of access to suitable tissue. The majority (90%) of

the global cases of ocular trauma and corneal ulceration leading to corneal blindness occur in developing countries



[24]. The incidence of corneal blindness in India is 25,000-30,000 every year with a prevalence of approximately 6.8

million people who have visual acuity less than 6/60 in at least one eye due to corneal diseases [25].

For most people, corneal transplantation can restore vision with a 5 year graft survival rate of 74%. However, 1 in
6 full thickness transplants still experience some degree of rejection, predominantly due to the variable quality in
the donor tissue’s endothelial or epithelial health. In patients with alkali burns or recurrent graft failures, the chance
of transplantation success is lowered considerably [26]. These issues with donor cornea shortage and rejection
indicate that there is a need for new, innovative therapies to be developed that can be used to treat corneal

blindness worldwide.

Topography

The geometric patterns on the surface of a culture substrate, referred to as the topography, induces cells to align
or orient themselves along specific features. In addition, the topography can impact cell physiological functions by
inducing changes in cell proliferation, migration, differentiation, and by controlling cell homeostasis. The effect of
surface topography on cell behaviour, known as contact guidance, is very well known, but only in the last few years,
research has focused on its development at the nanoscale thanks to advances in manufacturing techniques. One
method that has been used to produce topographical features is lithography, a technique by which 2D patterns
with high fidelity and excellent resolution can be fabricated. Topography has been used to study cell interactions
with different surface patterns, and has been used to guide cell-extracellular matrix interactions [27-31].

In the central cornea, epithelial cells adhere to the underlying stromal layer via a basement membrane whose
topography displays a characteristic nanoscale architecture (20-400 nm). Described as “felt-like”, the mountainous
surface varies in height, pore size and fibre diameter [32]. The function of this layer is still unclear, but it may
influence cell behaviour. Using atomic force microscopy and scanning electron microscopy techniques, the height
of the elevations, pore diameters and fibre diameters were found to be in the ranges of 47-380 nm, 30-191 nm and
22-92 nm, respectively (Fig. 2A).

Teixeira and colleagues have investigated the impact of nano- and microscale features on human corneal epithelial

cell (hCEC) behaviour [33—-35]. Six patterns of grooves and ridges were produced; pitch dimensions ranged from



400 nm (70 nm ridge width) to 4000 nm (1900 nm ridge width), with a depth of 600 nm (Fig. 2B). The smallest
pattern investigated was within the range of dimensions found in the native basement membrane. hCECs were
cultured on these surfaces in two different culture media: serum-free medium (EpiLife, Thermo Fisher Scientific) or
F12 Dulbecco’s Modified Eagles Medium (DMEM). They showed that cell alighnment was parallel to the grooves and
ridges in the microscale dimension (2000-4000 nm), independent of the cell culture medium used. However, cell
response was modulated by the soluble factors in the medium when cultured on the nanoscale dimension. In
serum-free media, hCECs shifted from parallel to perpendicular alignment, as feature sizes decreased from
microscale (4000 nm) to nanoscale dimensions (400 nm), while in F12 DMEM, cells aligned parallel to the grooves
and ridges regardless of the feature size [35]. The group hypothesised that, in addition to the topography, the
transduction of cell-substrate interactions may be influenced by one of the seventeen differences found between
the compositions of the media. To evaluate the lower limit in substratum feature dimensions in which hCECs exhibit
contact guidance, Tocce et al. prepared wave-like ridge and groove features smaller than 400 nm (70 nm ridge
width). Patterns, with pitches of 60, 90 and 140 nm (30, 45, 70 nm ridge widths, respectively, and 200 nm depth)
were produced, mimicking the lower range of dimensions observed in the basement membrane. In addition, to
study the combined effect of nano- and microscale features, 70 nm ridges were overlaid on a microscale topography
(400-4000 nm). The minimum pitch dimensions in which cells displayed contact guidance were 60 nm and 90 nm,
when cells were cultured in Epilife and in epithelial medium (containing Ham’s F12, and DMEM, supplemented
with foetal bovine serum, hydrocortisone, cholera toxin, insulin, adenine, and epidermal growth factor),
respectively. Nevertheless, the percentage of cells that were alighed was only 15% in these conditions, but
increased to 50% at 90 nm and 20% at 140 nm, in EpiLife and epithelial medium, respectively. Interestingly, when
the 70 nm pitch was overlaid on 4000 nm grooves and ridges, there was an increase in the cell alignment, in
comparison to either pitch alone [36]. Yet, it would have been interesting to see if this phenomenon had been
observed using EpiLife media. This suggests that the combined effect of nano- and macroscale topography can have
an influence on cell alignment, even in the range where nanoscale features do not show any obvious effect. In
addition, cell alignment is also influenced by the depth of the patterns, a factor which should be considered [37,

38].



Eberwein et al. examined the effect of micro-pillars on the morphogenesis, proliferation and differentiation of
immortalized cornea epithelial cells, referred to by the authors as keratinocytes [39]. Micro-pillars, each 15 um in
height and 5 um in width, were printed onto PDMS with variable spacing (5, 7, 9, and 11 um). The tops of the pillars
were biofunctionalised with fibronectin to confine cell adhesion to these areas. Immortalized human corneal
keratinocytes demonstrated flattened morphology on 5 um arrays, whereas on 11 um arrays, cell morphology was
more rounded. Proliferation appeared to be attenuated at 11 um, with a lower metabolic activity in comparison to
5 um spacing. Differentiation was more pronounced at 11 um, with a higher expression of late differentiation
markers (keratin 12) and terminal cornea differentiation (involucrin and filaggrin), and lower expression of early
differentiation markers (keratin 19), compared to 5 um spacing. Curiously, the level of stem cell marker (ABCG2)
also increased on the 11 um feature. Although the article points out that the mechanism underpinning this
behaviour may be related to the increased stressful environment, which encourages differentiation by facilitating

their survival under stress, it would have been interesting to compare the results with a flat (no pillar) surface.

Similar to corneal epithelial cells, topography has also been shown to influence corneal endothelial cells. In their
native environment, the basal surface of corneal endothelium is in contact with Descemet’s membrane, a layer
consisting of nanoscale fibres and pores [32]. Yim and colleagues studied the impact of micro- and nanoscale
topographies of different geometries [40], and the combined effect of topography with ECM coatings [41]. In the
paper by Koo et al., nano-pillar structures (250 nm diameter, 250 nm height, 500 nm pitch), micro-wells (1 um
diameter, 1 um depth, 6.7 um pitch) and micro-pillars (1 um diameter, 1 um height, 6.7 um pitch) were investigated
[41]. Three biochemical cues (fibronectin-collagen |, a fibronectin collagen mix (FNC Coating Mix®; US Biological)
and laminin-chondroitin sulfate) were examined and supplemented in the form of ECM protein coatings on the
PDMS substrates. Similar to the epithelial behaviour, the combined effect of topography and biochemical cues
modulated human corneal endothelial cell line morphometry and phenotype. For example, the combination of
fibronectin coating with 1 um pillars displayed enhanced gene and protein expression of Na*K*-ATPase and junction-
associated protein Zona Occludens 1 (Z0-1) (significant markers for cornea endothelium function), the highest

circularity, and the smallest cell area (a factor relating to the maintenance of polygonal morphology), when



compared to other patterns and the unpatterned control. Nevertheless, neither the patterns nor the coatings

showed a specific trend with respect to the unpatterned surface.

Overall, the literature suggests that micro- and nanoscale topographical features, in combination with soluble
factors, control corneal epithelial and endothelial behaviour. For this reason, the incorporation of these patterns
should be considered to improve the design of scaffolds for corneal tissue engineering. Nevertheless, in the majority
of the previously described studies, cells were generally seeded on a silicon wafer or biomaterials that cannot be
used in tissue engineering applications, as they are unable to integrate with the host milieu. In this perspective, it
is necessary to recreate and investigate topographical features by using biomimetic materials suitable for cornea
transplantation, and in addition, such studies must examine the collective migration of cells opposed to single cell
migration. Photolithography, soft lithography, and microcontact printing are common techniques used to produce
topography on biocompatible materials. Lawrence et al. investigated the effect of lined patterned biomimetic silk
films (2 um width and 4 pum pitch) on collective cell migration, using an immortalized human corneal-limbal
epithelial cell line [42]. The use of silk allowed for optical transparency to be achieved and it has already been used
to support limbal epithelial cell and mesenchymal stroma cell growth [43]. The group found that the migratory
direction of individual cells and a collective epithelial sheet was influenced by the underlying topography. The
migration rate was higher in the parallel compared to the perpendicular direction. On the contrary, migration was
isotopic on the flat silk. Both, the use of serum-free media, and the pattern dimensions were comparable to the
work by Teixeira et al. [34], showing that the individual and collective cell migration was guided by the topography.
Further research investigated the use of soft lithography on silk films to replicate corneal stromal tissue architecture

[44-46].

Topographic features were also incorporated by replica-moulding onto RGD-functionalized PEGDA. Three different
topological features were prepared (grooves and ridges with either 400, 1400 or 4000 nm pitches) and human
corneal epithelial cell proliferation and migration were evaluated using a modified wound healing assay [47]. The
patterned surfaces exhibited a 50% enhancement in the rate of corneal epithelial wound closure, compared to flat

surfaces with the same chemical composition. Although isolated cells aligned parallel to the topography, confirming



the aforementioned results, no contact guide was exhibited by cells on the border of the wound. Active migration
at the wound edge and an increase in the expression of cell migration marker laminin-332 were found on the
topographic substrate [47]. In a further study, collagen-based micropatterned films were studied. The collagen,
moulded with grooves 30 um in depth, 10 um in width and 2 um in ridge width, was chemically crosslinked for
stability. Although the dimensions investigated differ from the aforementioned articles, the human cornea
keratocytes showed an orientation parallel to the grooves. However after reaching confluence, the cells adhered
to the inclined walls, and after three weeks the cell pattern was no longer observed [48]. Topography has also been
incorporated on a hydrogel composed from interpenetrating networks of recombinant human collagen type Ill and
2-methacryloyloxyethyl phosphorylcholine (RHCIII-MPC). This material, previously tested in animal models and in
a clinical study as a corneal implant, promoted epithelial, stromal cell and nerve regeneration [49-51]. The
incorporation of fibronectin patterns using a microcontact technique promoted in vitro cell adhesion, and a pattern
of 30 um wide strips separated by 60 um spaces showed higher expression of Ki67, integrin 1, and focal adhesion
kinase, and markers of proliferation [52]. Islam and colleagues showed that RHCIII-MPC could be precisely shaped
using a femtosecond laser (developed for ophthalmic surgery) and crosslinked with riboflavin/UV in situ, meaning
that the gel could be cut to match the exact defect as required. This technique, in combination with microscale
patterns, could potentially be used to enhance the speed of host integration and, due to the perfect fit, removes
the need to suture the implants [52]. This would also have the potential of building the patients’ refractive
correction into the gel to improve unaided vision.

In addition, the topography may have an impact on the transplantation outcomes of amniotic membrane (AM). AM
is the innermost layer of three layers that together form the foetal membrane. It is composed of a layer of
endothelial cells, a basement membrane and a thin connective tissue membrane. AM is widely used in
ophthalmology [53] as substrate for limbal epithelial stem cell expansion due to its ability to preserve limbal
stemness in vitro [54], and the epithelium has been found to contain a number of biological factors and proteins
[55]. However, inter- and intra-sample variation can cause unpredictable outcomes (reviewed at [56]). Beyond
mechanical properties [57], AM variation may be associated with the heterogeneity in the surface topography,
which is responsible for controlling the differentiation process. It has been demonstrated that increasing the surface

roughness from 3.4 to 13.1 nm, the gene expression of stem markers p63 and ABCG2, and protein expression of



ABCG2 increases [58], confirming the previous results reviewed above. Modification of the nanotopography was
achieved by increasing the time (0-4 hours) in which the AM was immersed in the crosslinking solution (1-ethyl-3-
(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS)). Furthermore Ma and colleagues
have showed that, when used as an epithelial basement membrane (EBM)-like substrate, carbodiimide-crosslinked
denuded AM (CLDAM) was a better substrate than denuded AM for preserving human limbal epithelial stem cells
(hLESCs) in vitro [59]. The group used this material to study the underlying mechanism of hLESCs homeostasis and
found that cultures on CLDAM displayed greater expression of p63, ABCG2, integrin 1 and integrin-linked kinase
(ILK), the latter of which was also found to be an important mediator in signal transduction. Their data suggests
that signals are transduced from integrin B1 to the master gene in hLESCs regulation, deltaNp63aq, via ILK and the
Whnt/B-catenin pathway, and that these signals are dictated by the roughness of the EBM substrate.

The importance of surface pattern was recently exploited by Wang et al [60], developing a complex 3D model that
included patterned silk as a guidance for human epithelial, stromal and neuronal cells, depicted in Fig. 3. Silk films,
either stamped or patterned, were used as substrates for human epithelial cells and human stromal cells,
respectively; the latter were differentiated into keratocytes. Epithelial layers were cultured upon stromal cell layers,
and both were surrounded by a silk sponge embedded with dorsal root ganglion cells. Different patterns of nerve
growth factor (NGF) at different concentrations were loaded into the epithelial silk film to provide guidance for
neuronal extensions. A collagen solution was cast on top of the film for scaffold integrity, and an air-liquid interface
system was designed to enhance the maturity of the epithelium. This approach allowed the group to closely mimic
the corneal anatomy and could be applied in corneal physiology research. However, to achieve a self-renewing
cornea representation, the incorporation of an enclosed area that mimics the stem cell niche, would be of interest.

In the next section, studies related to this topic will be discussed in detail.

Microarchitecture

In the treatment of corneal pathologies, when the limbus is damaged, the preferred scaffold should support a
permanent source of epithelial progenitor cells to ensure the maintenance of corneal homeostasis. Such cells, if
harvested from the human cornea, will ultimately change their phenotype and lose their stemness. Stemness may

be maintained, in part, by matching the architecture of the scaffold to the source niche. For example, limbal
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epithelial cells outgrowing from an ex vivo explant on AM scaffolds progressively lose their stemness in vitro, as the
distance from the explant increased [61]. Recently, progress in the design of corneal scaffolds has been made by
the inclusion of 3D spatially defined structures that resemble limbal niches and act as stem cell reservoirs. Fig. 3
depicts techniques that have been used to produce scaffolds which incorporate these localised, enclosed
architectures for tissue engineering applications. Ortega and colleagues used stereolithography to develop a
poly(ethylene glycol) diacrylate (PEGDA) ring with micro-pockets (150-350 nm diameter and 80-100 um depth) to
mimic the limbal niche [62]. The addition of fibronectin, in combination with the micro-pockets, enhanced cell
attachment and outward migration of rabbit limbal fibroblasts. In addition, after 6 weeks of culture, a scaffold,
seeded with rabbit limbal epithelial cells, was placed onto an ex vivo wounded cornea model. The outgrowth of
cells and the formation of a multi-layered epithelium was observed. However, only the expression of the
differentiation marker cytokeratin 3 (CK3) was analysed on the PEGDA ring and was found to be expressed by the
cells in the pockets.

In a further study, Ortega and colleagues combined stereolithography with electrospinning to reproduce the micro-
pocket ring [63, 64]. Stereolithography was first used to fabricate a PEGDA template. Poly(lactic-co-glycolic acid)
(PLGA) was then electrospun on top (Fig. 4A); the fibres adopted the shape of the microfabricated structure. This
model included micro-pockets with diameters in the range of 300-500 um. Inside the pockets, 61% of the fibres
showed high alighment, whilst outside, they were randomly orientated and presented a higher fibre density. This
conferred differential mechanical properties between the inside and the outside of the artificial niches, and guided
rabbit epithelial cells cultured inside the pockets to migrate outwards and towards the central region of the scaffold.
This method facilitated the control of the directionality of cell migration, and the control of the morphology of
rabbit cornea fibroblasts and epithelial cells, both of which were more elongated inside the pockets with respect
to the outside, where they were shorter and polygonal. This study, looking at the modulation of the mechanical
environment between different regions could be a crucial aspect as durotaxis may stimulate corneal epithelial
migration and differentiation [65]. Rabbit limbal fibroblasts were seeded on the membrane and either a rabbit
limbal epithelial cell suspension or a limbal explant was placed inside the niche [64]. Regarding differentiation,
expression of the putative stem cell marker p63 was detected in proximity to the explant, when placed inside the

pockets. Yet, the p63 marker was not detected when a rabbit limbal epithelial cell suspension was seeded inside
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the pockets, and no differences in the expression of CK3 and p63 were observed between cells inside and outside
the pockets. It is unclear whether these niche structures alone are able to recreate the limbal stem cell niche in
vitro and further investigations are required.

Another biomaterial that can be used to generate scaffolds with micro-patterns for use in tissue engineering
applications is compressed collagen. Collagen is abundant in the cornea, and many groups have used this protein
for fabricating scaffolds for cornea regeneration, especially for stroma applications (reviewed at [66]). A critical
aspect, however, is its structural weakness. Compressed collagen, which displays improved mechanical strength
with respect to its non-compressed counterpart, has been adopted for the expansion of limbal epithelial stem cells,
and shows biocompatibility comparable to AM [67, 68]. This technique has already been used to control surface
micro-topography of hydrogels [69] (Fig.4B). Using this technique, Levis et al. developed a Real Architecture for 3D
Tissue (RAFT) system, in which microscale grooves and ridges were reproduced to simulate the structure of limbal
stem cell niches [70-72]. In their model, the ridges (in the range of 100-250 um width and depth) were localised to
the external part of the scaffold, keeping the central area flat. Human limbal stromal fibroblasts were embedded in
the gel and human limbal epithelial cells were seeded on the surface. After 3 weeks of culture, the constructs
formed numerous epithelial layers and maintained a mixed population of primitive and differentiated cells, with a
high percentage of the cells lining the base of the crypts staining positive for the limbal stem cell marker p63a [71].
Their architecture well represented the interpalisadal grooves that stretch radially towards the cornea, termed
limbal crypts [73], but was less representative of the enclosed structure that, from histological analysis, is widest at
the origin and gradually narrows at its termination, extending beneath the sclera in radial, circumferential and
oblique directions, described as epithelial limbal crypts [7]. Further examination of this anatomical space in 2015

identified both structures: narrow, frequent radial structures as well as larger, wider crypts [74].

3D control of microscale flow

The surface of the cornea is under the constant influence of a dynamic microenvironment created by spontaneous
eye blinking and the spread of the tear film, which facilitates the hydration and lubrication of the cornea and
conjunctiva. Given that the volumes involved in the hydration of the cornea are in the micron scale, microfluidic

devices have aided in the creation of systems that closely mimic the in vivo cornea environment. Microfluidics is
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the study of processes and systems that are capable of controlling fluid flow, mixing and reactions in small (1-100
um) channels. They are able to manage small volumes, which are comparable to in vivo tear volumes and tear flow,
approximately 7+2 pl and 0.95-1.55 pl min™?, respectively [75, 76].

The majority of studies combining both microfluidics and the cornea have focused on the pharmacokinetics of drug
release using acellular models for a tear replenishment system [77-79], or to quantify tear proteins [80, 81]. Their
aim is to replace ex vivo and in vivo animal models which often fail to model the biological response in humans,
constantly face ethical issues, and to provide a more in vivo-like replacement for conventional in vitro static models.
Bajgrowicz and colleagues compared drug flow release from contact lenses in static and dynamic conditions. In the
conventional static model, contact lenses were immersed in cell culture media, while the dynamic model consisted
of a microfluidic device where a volume of approximately 100 ul was injected to simulate the tear process. The
results indicated that drugs were released more slowly and at a far more constant rate over 24 hours in the
microfluidic device, whilst in the static condition, drug release occurred rapidly within the first hour [78, 79].
Furthermore, a microfluidic platform was developed by Guan et al. to build a personalized assessment of lens care
solution performance [82]. This “medical device-on-a-chip” combined the microscale of tear volume (1 ul) with the
macroscale of commercial contact lenses (1 mm). They developed a system in which patient tears were used to test
the best cleaning solution and lens material. This prototype is an interesting approach towards personalized
medicine in cornea applications, however, should be confirmed by tests performed in a larger sample.

Few groups have developed microfluidic models in combination with cells. To test the effect of tear fluid on the
ocular bioavailability of topical drugs, Pretor et al. developed a model that mimicked the shear stress generated by
eyelid wiping and fluid flow of tears in vivo [83]. This aspect is considered to be determinant in the permeation of
drugs across the cornea barrier. A microchannel device (volume 15 pl), in which immortalized human corneal
epithelial cell lines were inoculated after a poly-D-lysine-coating, was exposed to colloidal drug formulations and
observed using a live cell imaging approach. The model was used as a drug uptake study, and static and dynamic
approaches were compared. Shear stress (0.1 Pa) and a flow rate of 0.1 ml min™! was applied to the cells. Cell
viability was tested before and after the application of the drugs. The shear stress did not have a substantial effect
on cell viability. Nevertheless, it will be interesting to investigate a range of shear stress closer to the in vivo value

(0.03-15 Pa) [84]. Kang et al. also attempted to replicate the micro-mechanical environment of a blinking eye [85].
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Three conditions were applied on rabbit limbal epithelial stem cells, using a custom-designed bioreactor: no flow
(static), steady flow, and intermittent flow. The flow rate was set to 0.93 mL min™%, applied for 2 hours per day (for
2 days) for steady flow and with a 1 min on/3 min off cycle for the intermittent flow. Bromodeoxyuridine staining
(to assess proliferation), real-time PCR (to investigate the expression of stem cell markers Notch-1, p63 and Bmi-1,
and differentiation markers K3 and K12), and immunofluorescence staining (to detect the presence of Bmi-1, K3
and K12), were conducted before (day 7) and after the application of the stimuli (day 10 and day 14). At day 14 the
steady flow condition appeared to have an effect on cell proliferation and on Bmi-1 expression, whilst the
intermittent flow condition induced differentiation of LESCs, via expression of K3 and K12. In general, it was
demonstrated that limbal epithelial cells responded to the mechanical stimulation generated by the flow
conditions, though further investigations are necessary. Although it is well known that it is possible to control cell
proliferation and differentiation (reviewed at [86]) by applying shear stress, this aspect has not yet been fully
investigated in limbal cells.

Puleo et al [87] increased the complexity of the system from conventional 2D culture by combining 3D tissue-like
architecture with microfluidic devices. Cornea epithelial cells were seeded on one side of vitrified collagen and
placed in-between a microfluidic device. After reaching confluence, a collagenase solution was injected within the
basal side of the microfluidic device which enzymatically degraded the underside of the collagen. Corneal
keratocytes were then seeded and cultured on the basal side of the existing epithelium. The recreation of the
corneal micro-tissue bilayer allowed the group to perform transepithelial permeability tests under different growth
conditions at a microscale level.

Microfluidics in cornea-related works also include platforms in which strain and electric stimulation are applied to
cornea cells. Winkler et al. produced a microfabricated system that studied the impact of cyclical strain (cyclical
inflate/deflate at 0.5 Hz), applied for up to 48 hours, to stretch cornea cells and to evaluate cell de novo collagen
fibre alignment [88]. Rabbit cornea cells were seeded on a polydimethylsiloxane (PDMS) membrane coated with
collagen gel. Cell and collagen fibre alignment were observed using bright-field microscopy, confocal microscopy,
and nonlinear optical imaging by removing the membrane. Precise in vivo spatial organization of collagen | fibres is
one of several factors responsible for corneal optical transparency [89, 90], including, but not limited to, fibril

diameter, fibril density, and corneal thickness [91]. Another study fabricated the first electrotaxis-on-a-chip device:
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a microfluidic platform for high-throughput electrotaxis studies. Although the application of an electrical field has
already been tested in clinical trials for the treatment of chronic wounds (reviewed at [92]), and applied to bovine
cornea epithelial cells [93] and immortalized human cornea epithelial cells [94], in combination with topographically
patterned surfaces, this work included all the components for cell migration under electrical field stimulation in a
miniaturize platform. Immortalized human cornea cell migration was studied under electrical field stimulation of
different strengths (2.1 mV mm™ to 1.6 V. mm™) [95]. The results showed that directional cell migration is
dependent on electrical field strength, and so this device could potentially be adopted to promote cell migration in
corneal wound healing applications. In all these studies, the research has mainly focused on one specific aspect of

the cornea homeostasis, and has not considered the complexity of the system.

Microfabrication technology - “tissue-like structures” - future development

In the past few years, research groups have proposed innovative methods to exploit additive manufacturing
techniques for studying cell-material interaction, and to control the arrangement of cells and biomolecules in
defined scaffold geometries.

Printing structures, with the specific size and shape of the target organ, which include cells from the patient or
induced Pluripotent Stem Cells (iPSCs), could be used in replacement therapies to decrease the risk of rejection,
which is an issue over the long term [96]. These techniques would face the problem of the limited number of donor
cells available for transplantation.

These attempts aimed to recreate controlled 3D architectures, better mimicking in vivo 3D microenvironments and
dimensions, facilitating the regenerative process, as it has been recently demonstrated for example by printing
embryonic stem cells and materials in a spatially controlled manner [97].

Nevertheless, reports of additive manufacturing for eye-related applications are still scarce and mostly unexplored.
Additive manufacturing, also known as 3D printing, refers to a technique in which 3D digital models are created
using Computer Aided Design (CAD) software, and then manufactured by the deposition of successive layers of
materials to generate 3D objects [98]. The additional complexity of 3D bioprinting in comparison to non-biological
printing is given by the need to carefully select materials, cell lines, and growth factors. Although additive

manufacturing comprises several techniques, the most common in the field of bioprinting are inkjet printing,
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extrusion-based bioprinting, laser-assisted printing and stereolithography. Here we will discuss current techniques

and how they may be applied towards cornea-related applications.

During inkjet bioprinting, droplets of liquid, often picolitre in volume, containing biological materials are delivered
to specific locations on a substrate by means of thermal or acoustic forces. In thermal inkjet systems, the droplet is
forced out from the nozzle by air pressure pulses generated by electronically heated elements in the print-head. In
acoustic inkjet systems, the pulses are generated by ultrasound or piezoelectric actuators. Advantages of this
technique are high fabrication speeds, high resolution (20—100 um), low cost and wide availability, whilst drawbacks
include both thermal and mechanical stresses, low accuracy of droplet localization, and low cell densities. The inkjet
approach has been used to create stem cell patterning on polymer substrates [99], to print a single cell type [100]

or a precise arrangement of multiple cell types [101].

Extrusion-based bioprinting usually allows the deposition of biological materials layer-by-layer by means of a
pneumatic or mechanical extrusion system. This technology permits the deposition of very high cell densities and
the fabrication of larger structures at greater speed, at the expense of resolution (200 um) and cell viability. In
general, cell viability has been shown to be lower than inkjet-based bioprinting, due to shear stresses induced by
pressure and nozzle gauge [102], although it depends on multiple parameters, such as the material properties and
the cell type. Examples of cell-laden tissue constructs developed by using extrusion-based bioprinter included stem
cells encapsulated in decellularised extracellular matrix of adipose, cartilage and heart tissues [103], human
mesenchymal stem cells to engineer bone and cartilage architectures [104] and embryonic stem cells [97]. To our
knowledge, only one study reported in the literature has demonstrated the bioprinting of human cornea epithelial
cells using an extrusion-based printer [105]. In this study, 94.6% of cells survived, following extrusion in a
collagen/gelatine/alginate-based hydrogel. These cells went on to proliferate and express the cornea epithelial-
specific marker cytokeratin 3. Nevertheless, a 3D shape unrepresentative of cornea was printed, suggesting that

further studies are required.
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In laser-assisted bioprinting, a laser is focused on an absorbing substrate that overlays a layer of biological material.
The laser indirectly induces a droplet of the biological material towards a collecting substrate. Laser-assisted
bioprinting is advantageous as it avoids clogging and mechanical stresses, thus facilitating high cell viability post-
printing. Furthermore, the spatial accuracy is below 5 um [106]. Despite these advantages, this technique is time-
consuming and more costly in comparison to the other strategies. Laser-assisted bioprinting has been used
successfully to print layered patterns of human osteoprogenitor cells in 2D and 3D [107], mesenchymal stem cells

[108], and multiple cell types simultaneously [109], but has yet to be used for cornea applications.

Stereolithography was the first developed additive manufacturing technique. In this technology, a photo-sensitive
material is solidified by means of light. Single or multi-photon methods allow 2D or 3D structures to be printed. A
related technique, called two photon polymerization (2PP) is a promising method for 3D nanofabrication, as it
allows the generation of complex geometries while precisely controlling scaffold topography and, due to its
nanoscale resolution, allows fabrication at a subcellular scale (1-10 um). The potential of 2PP techniques has begun
to show in some recent studies, and has been used in combination with preosteoblast cells [110], adipose stem

cells [111], human adipose-derived stem cells, and human bone marrow stem cells [112].

Among the 3D printing techniques investigated, inkjet printing, due to its resolution, high speed and cost-
effectiveness, may be suitable for the fabrication of the limbal region and for the recreation of the native
microtopography. Extrusion-based printing may be suitable for the deposition of multiple cell types, at a high cell
density, and materials to fabricate a layered cornea structure using multiple print-heads. On the contrary, this
technique may be inappropriate for fabricating finer microstructures such as the limbus. The high resolution of
laser-assisted printing, despite being time consuming, and two photon stereolithography could allow the replication
of limbal niches with the incorporation of micropatterns on the material surface to control stem cell fate. For these

reasons, these technologies need to be further investigate in this area.

Conclusion

To build functional in vitro models or cornea substitutes destined for the clinic, it will be necessary to more
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accurately replicate the native tissue structure to build more architecturally and biologically relevant constructs.
Current and upcoming techniques, such as those offered by additive manufacturing, are promising for cornea tissue

engineering strategies and may aid in the advancement of this research field.
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Legend to figures
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Fig.1: Schematic representation of the cornea, including the limbus. The red arrows indicate the three aspects of

corneal bioengineering explored in this review.
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Fig.2: A) Representation of basement membrane, adapted from [32]; B) Surface pattern replicated by Teixeira et al.
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Fig.3: Model developed by Wang et al. [60] (with permission of Elsevier).
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Fig.4: Representation of the techniques used to develop cornea carriers for tissue engineering applications with the
insertion of a protective limbus microarchitecture. A) The combination of stereolithography and electrospinning
techniques were used to reproduce scaffolds with microfabricated pockets [63]. B) RAFT technique for the

development of bioengineered limbal crypts in a collagen construct [71].
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