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Abstract

This report explores the direct conversion of biomass to activated carbons in one step. We

demonstrate the successful conversion of a range of biomass sources, namely, sawdust, the

flowering plant Paeonia Lactiflora and seaweed (Sargassum fusiforme), to activated carbons via

a direct activation process that negates the need for hydrothermal carbonisation or pyrolysis.

This is a departure from established practice that requires that biomass sources be firstly

enriched to carbonaceous matter via hydrothermal carbonisation or pyrolysis prior to activation.

The direct activation, with KOH as activating agent, generated activated carbon at yields that are

comparable or higher than those of conventional activation routes. The directly activated

carbons, whilst offering the advantage of simplicity, lower cost and a greener more sustainable

synthesis route, have properties that are similar or superior to those of analogous carbons

prepared via conventional methods. In particular the textural properties, surface functionality and

level of graphitic ordering was found to be similar to that of conventionally generated activated

carbons. Depending on the activation conditions, the porosity of the directly activated carbons

may be tailored towards pore channels of size 5 – 7 Å pores, which favour post-combustion CO2

uptake and thus the carbons capture up to 1.3 and 4.6 mmol g-1 of CO2 at 0.15 and 1 bar,

respectively, and 25 oC with high selectivity. On the other hand, at higher levels of activation,

the directly activated carbons can be tailored towards possessing a greater proportion of larger

micropores (10 – 20 Å pores) and small mesopores (20 – 30 Å pores) so as to optimize CO2

uptake at moderate to high pressure, for example up to 22 mmol g-1 (at 25 oC) and 31 mmol g-1

(at 0 oC) and 20 bar.
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1. Introduction

The discovery of new materials is a central requirement in many anticipated advances in the

energy and sustainability arena.1-3 For new materials to be interesting they need to fit into one of

three categories; (i) exhibit new or improved desirable properties, (ii) be easier or cheaper to

prepare, and (iii) be sustainable. Improved or new properties may be achieved by careful

material design based on deep understanding of underlying phenomena, while lower cost and

ease of preparation may be possible by the use of new starting (raw) materials or simple

reduction of the number of steps required. In this regard, nanostructured carbons prepared via

simple processes and which use readily available and low cost precursors are now considered as

key materials for the generation and storage of sustainable energy and for environmental

remediation.4,5 This is typified by the broad class of nanostructured carbons that are currently

under intense study for use as, amongst other applications, gas (hydrogen, CO2, methane, etc)

storage materials4,6,7 or as electrode materials for supercapacitors.4,8 For the next generation of

nanostructured carbons, the drive is towards materials that are simple to prepare via cost

effective routes, and which may involve use of renewable resources as precursors wherein there

is the possibility of valorisation of the starting (raw) materials. Amongst nanostructured carbons,

activated carbons are attracting a great deal of interest due to their tuneable pore size, porosity

and good chemical stability.4-8 A particular attraction of activated carbons is that their ‘green’

credentials may be enhanced if they are prepared from sustainable biomass resources that would

normally be considered as waste.

Recently, we have reported on new synthesis routes to activated carbons generated from

sustainable precursors or renewable biomass.9-15 The carbons have improved gas (CO2 and

hydrogen) storage capacity9-14 and are excellent electrode materials for supercapacitors.15 In

general, activated carbons are traditionally synthesized via physical or chemical activation.4-8

The former involves gasification of a carbon precursor with oxidizing gases such as steam or air
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at high temperature (800 – 1100 oC), while for the later, the carbon precursor is thermally treated

under inert conditions in the presence of an activating agent (KOH, NaOH or ZnCl2 etc.). For

conversion of biomass to activated carbons, the conventional process is to first convert the

biomass into carbon-rich carbonaceous matter, which is then activated.4-15 The two main

processes for the conversion of biomass to activateable carbonaceous matter are; (i)

hydrothermal carbonisation (HTC)16-20 and (ii) pyrolysis.21-24 Hydrothermal carbonization

proceeds via thermochemical decomposition of biomass into so-called hydrochar in the presence

of superheated water,16-20 while pyrolysis occurs via processes that increase the carbon content of

biomass precursors during heating in the absence of oxygen.21-24 In the search for sustainable and

cheaper biomass-derived activated carbons it is desirable to simplify the synthesis process and in

particular to negate the need for hydrothermal carbonisation or pyrolysis prior to activation. In

other words, it is desirable to directly activate biomass to activated carbons that have similar or

improved yield and/or properties compared to those that are prepared via the conventional, and

longer, two-step route incorporating HTC or pyrolysis prior to activation. As far as we know,

there are hardly any reports of such direct activation of biomass and no comprehensive data

exists on how they compare to conventionally activated carbons. In this report, therefore, we

explore the direct activation of several forms of biomass and establish whether such a direct,

simpler and cheaper process offers advantages with respect to carbon yield, properties and

application as energy materials in gas (CO2) storage. We compare the characteristics of directly

activated biomass-derived carbons and their CO2 uptake properties to carbons generated via a

conventional two-step (HTC + activation) process.

2. Experimental Section

2.1 Material Synthesis
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The carbons were derived from a variety of biomass sources including (i) Eucalyptus wood

sawdust, (ii) the flowering plant Paeonia Lactiflora and (iii) seaweed (Sargassum fusiforme)

although a number of other biomass precursors may also be utilized. The sawdust, Paeonia

Lactiflora or Sargassum fusiforme were either activated directly or first converted to hydrochar,

via hydrothermal carbonisation, prior to activation.

For direct activation, the required amount of KOH was added to sawdust, Paeonia Lactiflora or

Sargassum fusiforme and thoroughly mixed. The resulting KOH/biomass mixture was placed in

a ceramic boat and inserted into a tubular furnace and heated (at a ramp rate of 5o C min-1) to

between 600 and 800 oC and held at the target temperature for 1 h. The resulting carbonaceous

matter was recovered and washed with 2M HCl at room temperature until all inorganic

impurities were removed as confirmed by thermogravimetric analysis. The directly prepared

activated carbons were then filtered, washed with deionised water and dried in an oven at 120 oC

for 6 h. The directly activated carbons were designated as SDxTD (from sawdust), PLFxTD

(from Paeonia Lactiflora), or SWxTD (from seaweed Sargassum fusiforme) where x is the

KOH/biomass mass ratio (2 or 4) and T is the activation temperature (600, 700 or 800 oC).

For conventional activation, the sawdust, Paeonia Lactiflora or Sargassum fusiforme was first

converted to hydrochar via hydrothermal carbonisation as follows; an aqueous dispersion of

biomass (sawdust, Paeonia Lactiflora or Sargassum fusiforme) at a concentration of 320 g l-1

was placed in a stainless steel autoclave and heated up to 250 ºC and the temperature held for 2

h. The resulting solid (the hydrochar) was recovered by filtration and washed thoroughly with

distilled water and then dried at 120 ºC for 4 h. The hydrochar was then activated as described

above. The hydrochar-derived activated carbons were designated as SDxT (from sawdust),

PLFxT (from Paeonia Lactiflora) or SWxT (from seaweed Sargassum fusiforme) where x is the

KOH/carbon mass ratio (2 or 4) and T the activation temperature (600, 700 or 800 oC).

2.2 Characterisation of samples
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Thermogravimetric analysis (TGA) was performed using a TA Instruments SDT Q600 analyser

under flowing air conditions (100 mL/min). Powder XRD analysis was performed using a

PANalytical X’Pert PRO diffractometer with Cu-K light source (40 kV, 40 mA) with step size

of 0.02o and 50 s time step. CHN elemental analysis was performed using an Exeter Analytical

CE-440 Elemental Analyser. Inorganic (metal) content was determined via ICP-OES analysis

using a Perkin Elmer Optima 2000 DV ICP-OES analyser. Raman spectra were recorded using a

Horiba-Jobin-Yvon LabRAM Raman microscope with a 532 nm laser operating at ca. 4 mW

(10%) and a 600 lines/mm grating. Spectra were collected by averaging 8 acquisitions of 60 s

duration. The Raman shift was calibrated using the Rayleigh peak and the 520.7 cm-1 Si line

from a Si (100) reference sample. Analysis of porosity and determination of textural properties

was performed via nitrogen sorption using a Micromeritics ASAP 2020 or 3FLEX sorptometer.

Prior to analysis (at -196 oC), the carbon samples were degassed under vacuum at 200 oC for 12

h. Surface area was calculated using the Brunauer-Emmett-Teller (BET) method applied to

adsorption data within the relative pressure (P/Po) range of 0.02 – 0.22. The total pore volume

was determined from the nitrogen uptake at close to saturation pressure (P/Po ≈ 0.99). The 

micropore surface area and micropore volume were determined via t-plot analysis. Non-local

density functional theory (NL-DFT) was applied to nitrogen adsorption isotherms to determine

pore size distribution. SEM images were recorded on a FEI Quanta200 microscope at 5 kV

accelerating voltage. Transmission electron microscopy (TEM) images were obtained using a

JEOL 2100F instrument operating at 200 kV equipped with a Gatan Orius CCD for imaging. The

samples were suspended in distilled water or propanal and dispersed onto lacey carbon support

film prior to analysis.

2.3 CO2 uptake measurements

CO2 uptake was determined using a Hiden Isochema Intelligent Gravimetric Analyser (IGA-

003). Before CO2 uptake measurements, the carbon samples were degassed at 200 C under
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vacuum for several hours. Adsorption-desorption isotherms were measured at 25 oC or 0 oC over

CO2 pressure range of 0 – 20 bar.

3. Results and Discussion

The aim of this study was to demonstrate a general route for the direct conversion of biomass to

activated carbon. For this reason, we used several types of biomass as precursor, and herein

discuss the findings for three precursors, namely; (i) Eucalyptus sawdust, (ii) the flowering plant

Paeonia Lactiflora and (iii) seaweed Sargassum fusiforme. To avoid unnecessary duplication,

our discussions are mainly on data obtained for the Eucalyptus sawdust (which is hereinafter

referred to as sawdust) although similar results were obtained for the other biomass precursors.

Prior to activation, we determined the carbon content of the sawdust compared to the sawdust-

derived hydrochar (SD hydrocahr) as shown in Table 1. As expected the carbon content (given

as wt%) increases following hydrothermal carbonisation (HTC) from 46.4% for the sawdust to

57.4% for the hydrochar. The H content remains unchanged, with the effect that the O content

reduces following hydrothermal carbonisation.

Table 1. Elemental
composition

of sawdust, SD
hydrochar

and activated
carbons (aAtomic
ratio).

Sample C [%] H [%] O [%] (O/C)a (H/C)a

Sawdust 46.4 5.8 47.8 0.773 1.500

SD Hydrochar 57.4 5.6 37.0 0.483 1.171

SD2600D 71.4 0.7 27.9 0.293 0.118

SD2600 72.3 0.7 27.0 0.280 0.116

SD2700D 75.6 0.3 24.1 0.239 0.048

SD2700 72.4 0.3 28.3 0.293 0.049

SD2800D 85.6 0.4 14.0 0.123 0.056

SD2800 85.2 0.1 14.8 0.130 0.014
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We monitored the activated carbon yield to ascertain whether the direct activation route

offered any disadvantages or otherwise. For conventional activation via HTC, the carbon yield

from sawdust to hydrochar was ca. 43%, which is similar to what has previously been

reported.19,25-27 The yield of activated carbons from the hydrochar (at KOH/carbon ratio of 2)

varied between 32% (at 800 oC) and 47% (at 600 oC), which is in agreement with previous

studies.9,14,28-31 Thus the yield of activated carbon with respect to the sawdust was between 14%

(at 800 oC) and 20% (at 600 oC). On the other hand the carbon yield via the direct activation

route was between 22% (at 800 oC) and 30% (at 600 oC). Thus the activated carbon yields (with

respect to the sawdust biomass) are higher for direct activation than for the conventional route.

Similar trends in yield were observed for activated carbons derived from Paeonia Lactiflora and

seaweed (Sargassum fusiforme).

We confirmed that the activated carbons prepared directly were fully carbonaceous by

performing thermogravimetric analysis (TGA). The TGA curves of the directly synthesised

(SD2800D and SD4800D) and analogous conventionally prepared (SD2800 and SD4800)

activated carbons are very similar and both show virtually no residual mass at 700 oC

SD4800D 85.8 0.3 13.9 0.122 0.042

SD4800 89.7 0.1 10.3 0.086 0.013
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(Supporting Figure S1). Additionally both the directly and conventionally synthesised activated

carbons have a similar level of thermal stability which suggests similar levels of graphitisation.

Furthermore, in both cases the carbons prepared at higher activation temperature show greater

resistance to combustion as expected. We also determined the metal content of the carbons via

ICP-OES analysis using a Perkin Elmer Optima 2000 DV ICP-OES with S10 autosampler. We

analysed for K, Na, Ca, Fe, Mn, Ba, Mg, and found only trace amounts of Ca (ca. 0.2 wt%), and

hardly detected amounts of K, Mg and Na, all of which were typically less than 0.1 wt%. The

amounts were similar for analogous directly and conventionally activated carbons. It appears

therefore that direct activation does not have any effect on the nature of the carbon. This was

confirmed by both powder XRD patterns (Supporting Figure S2) and elemental analysis data

(Table 1). The XRD patterns suggest a similar level of graphitic ordering for the conventional

and directly synthesised samples. The elemental analysis data in Table 1 shows that the C, H and

O content is very similar, and that for all sample sets, the C content in the activated carbons

increases for samples prepared at higher activation temperature.

To further ascertain the similarity between the directly activated and conventionally

prepared activated carbons, we performed Raman analysis. The Raman spectra are shown in

Figure 1. The carbons exhibit bands at 1340 - 1350 cm-1 and 1586 - 1590 cm-1 that are the D-

peak (disordered carbon) and the G-peak (graphitic domains), respectively.32 The spectra

show no discernible differences between the two sets of samples. The ratio of peak intensity

(i.e., area) of the D-peak to G-peak (ID/IG), based on the two-band fitting model is very

similar for the two sets of samples (Supporting Table S1). The ID/IG ratio is 0.78 and 0.79 for

samples SD2600 and SD2600D, respectively, increases to 0.81 and 0.83 for SD2700 and

SD2700D, respectively, is similar (0.84) for samples prepared at 800 oC and KOH/carbon

ratio of 2 (SD2800 and SD2800D) and highest at 0.86 and 0.87 for SD4800 and SD4800D,

respectively. The similar ID/IG ratio confirms that direct activation does not alter the nature of
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or level of graphitisation in activated carbons, which is consistent with the XRD patterns

(Supporting Figure S2). ID/IG ratio of 0.78 - 0.87 is consistent with the amorphous (i.e., non-

graphitic) nature of the carbons.32 The ratio increases for carbons prepared at higher

temperature, suggesting that greater activation disrupts any graphitic domains that are

present.
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Figure 1. Raman spectra of sawdust-derived directly activated (SDxTD) and conventionally

generated (SDxT) carbons. See experimental section for sample designation.

To probe the nature and similarity of functional groups on the conventional and directly

prepared activated carbons, we used IR spectroscopy. The IR spectra of both sets of carbons

(Supporting Figure S3) show the C–OH stretch band at ca. 3430 cm-1, and C–OH bend band at

ca. 1630 cm-1.9,19,29 The IR spectra also exhibit peaks attributable to C–O vibrations at ca. 1385
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cm-1 (sharp peak), and a C=O peak at 1710 cm-1.9,19,29 For both sets of samples, the intensity of

the peaks decreases at higher activation temperature and at higher KOH/carbon ratio, i.e., at

higher levels of activation. This decrease in peak intensity, which signifies a decrease in O-

functional groups, is consistent with the trend in elemental composition (i.e., reduction in O

content) as shown in Table 1. Thus the IR spectra of samples SD2600D and SD2600, which are

prepared at 600 oC and KOH/carbon ratio of 2 and have O content of 27 – 28 wt% (Table 1),

exhibit the most prominent peaks (Figure S3A). The intensity of the O-functional groups

decreases for samples SD2800D and SD2800 (Figure S3B), which are prepared at 800 oC and

KOH/carbon ratio of 2 and have lower O content of 14 – 15 wt% (Table 1). This trend in

decrease of the intensity of IR peaks continues for the most activated samples SD4800D and

SD4800 (Figure S3B), which have lowest O content of 10 – 14 wt%. It is, however, noteworthy

that there is no difference in the IR spectra of the directly prepared carbons when compared to

the conventional samples. This confirms that direct activation does not alter the surface

functionality of activated carbons.

The nitrogen sorption isotherms of sawdust-derived directly activated and conventionally

synthesised carbons, prepared at KOH/carbon ratio of 2, are shown in Figure 2 and the

corresponding pore size distribution (PSD) curves are given in Figure 3. At any given activation

temperature (600, 700 or 800 oC), the isotherms of the two sets of samples are generally similar

implying that comparable levels of porosity are generated via either direct or conventional

synthesis. Only at 800 oC does the conventional sample (SD2800) appear to adsorb more

nitrogen at higher relative pressures (P/Po > 0.3) compared to the equivalent directly activated

carbon (SD2800D). In all cases, however, both sets of carbons have similar adsorption at low

relative pressure (P/Po < 0.2). It is interesting to observe from the PSD curves in Figure 3 that, at

any given activation temperature, the two sets of samples have very similar micropore pore size

distribution. Furthermore, the mesopore and macropore size distribution (20 – 4000 Å) of both
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sets of samples prepared under identical conditions is also similar as shown by wide pore size

distribution plots (Supporting Figure S4). This confirms that the size of pores, and the overall

pore channel system generated via direct activation is virtually identical to that from

conventional synthesis. Overall, therefore, direct activation causes no disadvantages with respect

to the nature of the porosity in the carbons

Figure 2. Nitrogen sorption isotherms of sawdust-derived directly activated (SD2TD) and

conventionally generated (SD2T) carbons prepared at KOH/carbon ratio of 2 and various

temperatures (T). See experimental section for sample designation.
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Figure 3. Pore size distribution (PSD) curves of sawdust-derived directly activated (SD2TD) and

conventionally generated (SD2T) carbons prepared at KOH/carbon ratio of 2 and; (A) 600 oC,

(B) 700 oC and (C) 800 oC. See experimental section for sample designation.
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synthesised) are summarised in Table 2. In general, the surface area and pore volume of the

directly activated carbons is comparable to that of equivalent conventional samples. This is an

important observation, which confirms that porosity is not compromised when activation is

performed via the more environmentally friendly direct route. Indeed, in some cases the surface

area and the level of microporosity (i.e., micropore surface area and pore volume) is higher for

the directly activated carbons. The pore size data in Table 2 confirms that there is virtually no
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change in the size of pores generated in directly activated carbons when compared to equivalent

conventional samples. All samples possess small micropores along with some larger micropores

wherein the proportion of the later increases at higher activation temperature. Similar trends that

confirm comparable porosity are observed for samples prepared at 800 oC and KOH/carbon ratio

of 4 either via the direct (SD4800D) or conventional (SD4800) route (Supporting Figure S5 and

S6, and Table 2). It is worth noting that for both synthesis routes, activation of the carbonaceous

matter using KOH first proceeds according to the following equation; KOH + C  2K + 3H2 +

2K2CO3. The generated K is intercalated within the carbon layers, while K2CO3 decomposes at

high temperature yielding K2O + CO2. Porosity in the activated carbon is generated via C etching

according to the equation given above, and also via the generated CO2 poring through the carbon

substrate during the activation process. Furthermore, the carbon substrate reacts with the CO2,

yielding CO whilst generating microporosity. After activation, washing with water to remove

any inorganic salts and residues generates or releases further porosity in the activated carbon.

Table 2. Textural properties and CO2 uptake of directly activated or conventionally activated

carbons derived from sawdust biomass

Sample Surface areaa

(m2 g-1)
Pore volumeb

(cm3 g-1)
Pore sizec

(Å)
CO2 uptaked

(mmol g-1)

0.15 bar 1 bar 20 bar

SD2600D 1281 (1119) 0.57 (0.45) 6/7/9 1.3 4.5 10.3

SD2600 1202 (1133) 0.65 (0.49) 5/7/9 1.3 4.4 9.7

SD2700D 1575 (1535) 0.80 (0.70) 8/9/12 1.3 4.6 12.3

SD2700 1557 (1294) 0.75 (0.53) 6/8/12 1.3 4.6 12.1

SD2800D 2274 (1923) 1.20 (0.90) 7/12/20 0.8 3.6 17.5

SD2800 2377 (1512) 1.40 (0.70) 7/12/25 0.8 3.6 18.1

SD4800D 2980 (478) 2.10 (0.30) 8/12/30 0.5 2.7 21.8

SD4800 2783 (694) 1.80 (0.36) 8/12/30 0.6 3.0 21.7

The values in the parenthesis refer to: amicropore surface area and bmicropore volume. cPore size
distribution maxima obtained from NLDFT analysis. eCO2 uptake at 25 oC and various pressures
(i.e., 0.15 bar, 1 bar and 20 bar).
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To test the general applicability of the direct biomass activation process, we used two

other precursors, namely, the flowering plant Paeonia Lactiflora and seaweed Sargassum

fusiforme. Paeonia Lactiflora derived activated carbons generated via the HTC route (sample

PLF2800) or directly (sample PLF2800D) at a KOH/carbon ratio of 2 and activation temperature

of 800 oC exhibited very similar nitrogen sorption isotherms and pore size distribution curves

(Supporting Figure S7). The directly activated PLF2800D sample has higher surface area and

pore volume of 2349 m2/g and 1.48 cm3/g, respectively, compared to 1908 m2/g and 1.20 cm3/g

for the conventional PLF2800 sample (Supporting Table S2). Nevertheless, the extent of

microporosity (as indicated by micropore surface area and pore volume) is similar for the two

samples at ca. 80% of surface area and 60% of pore volume, which is consistent with their

almost identical pore size distribution (Supporting Figure S7 and Table S2). For seaweed

(Sargassum fusiforme) derived activated carbons, the direct route appears to generate samples

with higher levels of porosity compared to the conventional route (Supporting Figure S8 and

Table S3). For example, at KOH/carbon ratio of 2 and 800oC, the directly activated SW2800D

sample has a surface area of 3095 m2/g and pore volume of 1.68 cm3/g, which are respectively

50% and 80% higher than for the conventional SW2800 sample (2085 m2/g and 0.93 cm3/g).

However, the pore size distribution remains largely similar for the two classes of activated

carbons (Supporting Figure S9 and Table S3). It is interesting that despite possessing higher

porosity, the directly activated samples exhibit PSD that is very similar to that of the equivalent

conventionally prepared carbon. The overall picture that emerges from the porosity data of

carbons from all three precursors, and from their XRD patterns (Supporting Figure S2 and S10)

is that direct activation offers a viable route to activated carbons that offer some advantages in

terms of greater porosity but with little or no variation in pore size.
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The direct activation process was explored further by observing SEM images of directly

activated carbons and comparing them to those prepared via the conventional route. For sawdust

derived carbons, we firstly note that the morphology of the raw sawdust (Supporting Figure S11)

is similar to what has previously been reported.33 For both direct and conventional activation, the

morphology of the activated carbons, as shown in Figure 4 (and Supporting Figure 12), is

radically different from the fibrous nature of the sawdust (Supporting Figure S11). In both cases

the morphology of the activated carbons is dominated by particles with smooth surfaces and

large conchoidal cavities, which is consistent with what has previously been reported for

hydrochar-derived activated carbons.7,9,33 However, there is an important difference between

the two sets of carbons wherein the directly activated carbons show much greater connectivity

giving the impression of larger monolith-like particles. This greater connectivity in the directly

activated carbons (Figure 4 and Supporting Figure S12) may be a preserved characteristic from

the sawdust particles (Supporting Figure S11) as opposed to the conventionally prepared samples

that are derived from hydrochar that has a significant proportion of stand-alone spherical

particles.9,33 The SEM images of activated seaweed (Sargassum fusiforme) also show similar

trends with the directly activated carbons exhibiting much greater connectivity with particle

morphology akin to monoliths as opposed to distinct standalone particles for the conventionally

activated samples (Supporting Figure S13).

The pore channel ordering of both sets of activated carbons was observed by TEM

analysis as shown in Figure 5. Both sets of samples have wormhole type pores that are typical

for activated carbons.34,35 From the TEM images it is clear that there is no difference in the pore

channel type meaning that direct activation does not alter the nature of the pores. The TEM

images for both sets of activated carbons show no evidence of the presence of graphitic domains,

which is consistent with the XRD patterns (Supporting Figure S2).
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Figure 4. Representative SEM images of sawdust-derived directly activated (SDxTD) and

conventionally generated (SDxT) carbons. See experimental section for sample designation.
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Figure 5. TEM images of sawdust-derived directly (SDxTD) and conventionally (SDxT)

activated carbons. See experimental section for sample designation.

SD4800 SD4800

SD4800D

SD2700 SD27000

SD2700D SD2700D



19

Activated carbons derived from biomass have recently attracted a great deal of attention

as solid state stores for energy related gases such as CO2 and H2.
4,9-12 However, in previous

studies, the activated carbons have been prepared via routes that include either hydrothermal

carbonisation or pyrolysis prior to the activations step.4,9-12 Given that the textural properties of

the directly activated carbons are similar to those of samples prepared via the longer

hydrothermal carbonisation route, we determined their CO2 uptake and compared it to that of

analogous conventionally activated samples. The capacity for CO2 capture and storage was

performed at room temperature (25 oC) and 0 oC and pressure range of 0 to 20 bar. The CO2

uptake isotherms for conventionally synthesised (SDxT) and directly activated (SDxTD) carbons

are shown in Figure 6 (and Supporting Figure S14) and the storage capacity at various pressures

(0.15, 1 and 20 bar) is stated in Table 2. For SD2 samples prepared at KOH/carbon ratio of 2, the

storage capacity at 1 bar (Figure 6B) ranges from 3.6 mmol g-1 for samples prepared at 800 oC

(SD2800 and SD2800D), to between 4.4 and 4.6 mmol g-1 for samples prepared at 600 and 700

oC. It is also clear that the uptake of the directly activated samples very closely matches that of

analogous conventionally activated carbons. Thus despite being prepared via a simpler, cheaper

and more direct route, the directly activated carbons are able to achieve very high gravimetric

CO2 uptake that is amongst the highest ever reported for porous carbons (Table S4).9-12,34-48 A

similar trend is observed for SD4 samples (Table 2), which however show lower CO2 uptake at 1

bar due to their more mesoporous nature (i.e., possess lower levels of microporosity). We also

report in Table 2 the CO2 uptake at 0.15 bar so as to mimic post-combustion flue gas streams

from power stations which typically consist of ca. 15% CO2 with the remainder being mainly N2

(70–75%), and water (5–7%).49,50 The CO2 uptake at 0.15 bar ranges between 0.8 and 1.3 mmol

g-1 for SD2 samples and is ca. 0.6 mmol g-1 for SD4 samples. Uptake of 1.3 mmol g-1 at such low

pressure is at the high end of what has previously been observed and correlates well with the

microporosity of the samples.9-12,34-48 On the other hand, at 20 bar (Figure 6A), the CO2 uptake
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correlates with the total surface area, which means that for sawdust-derived carbons, the directly

activated samples generally have greater storage capacity (Table 2) that reaches a high of ca. 22

mmol g-1 for SD4 carbons.
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Figure 6. CO2 uptake isotherms at 25 oC and 0 - 20 bar (A) and 0 – 1 bar (B) for sawdust-

derived directly (SD2TD) and conventionally (SD2T) activated carbons. See experimental

section for sample designation.

We assessed the selectivity of one of the better performing directly synthesised

samples (SD2700D) for CO2 uptake by comparing the relative amounts of CO2 and N2 stored

at 25 oC and 1 bar as shown in Figure 7. At 1 bar, sample SD2700 has CO2 storage capacity

of 4.6 mmol g-1, which is far greater than the N2 uptake of 0.22 mmol g-1 (Figure 7), which

translates to an equilibrium CO2/N2 adsorption ratio of 21. The CO2/N2 adsorption ratio of 21

for sample SD2700D is higher than values of between 5 and 11 that are typically observed for
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carbon materials,26,43,51,52 and comparable to that of heavily doped N-rich carbons,53 or highly

microporous organic salt-derived carbons.41 We also estimated the selectivity for CO2

adsorption from simulated post-combustion flue gas streams in which the proportion of CO2

is ca. 15% with the remainder being mainly nitrogen by considering the relative uptake of

CO2 at 0.15 bar and N2 uptake at 0.85 bar. This is based on the fact that flue gas streams from

fossil fuel power stations contain only ca. 15% CO2, with the rest being mainly N2, and thus

comparison of the CO2 uptake of the carbons at 0.15 bar with their N2 uptake at 0.85 bar

gives a realistic estimation of selectivity for CO2. Selectivity analysis was determined using

the ideal adsorbed solution theory (IAST) model, which is often used to estimate the relative

uptake (or selectivity) of adsorbents for any two gases in a binary gas mixture.54 The

selectivity for CO2 from the IAST model was derived from the following aquation;

S = n(CO2) p(N2)/(n(N2) p(CO2), where S is selectivity for CO2, n is uptake of CO2 and N2 in

mmol g-1 at 0.15 bar and 0.85 bar, respectively, p(N2) is 0.85 and p(CO2) is 0.15).

This comparison yielded high to very high selectivity factors (Table S5) of between 23 and

47, with the selectivity decreasing at higher levels of activation and therefore larger pore size.

The selectivity of the directly synthesised samples was similar to that of analogous

conventional samples. Overall, therefore, the present directly activated carbons are at the top

end of carbon materials with respect to selectivity for CO2 uptake under post-combustion

conditions. The direct synthesis does not compromise the selectivity for CO2 uptake. The data

presented above demonstrates a clear advantage for our more direct and simple synthesis

routes, which is generally desirable in materials synthesis.55-58
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Figure 7. Comparison of CO2 and N2 uptake at room temperature for sample SD2700D. The

CO2/N2 adsorption ratio is 21 at 1 bar.

We also determined the CO2 uptake of the carbons at 0 oC and pressure of up to 20 bar.

The CO2 uptake isotherms are shown in Figure 8 (and Supporting Figure S15) and the storage

capacity at various pressures (0.15, 1 and 20 bar) are summarised in Table S6. The storage

capacity at 1 bar (Figure 8B) ranges from 5.8 mmol g-1 to 7.3 mmol g-1, with samples prepared at

700 oC showing the highest capacity. The uptake of the directly activated samples is very similar

to that of analogous conventionally activated carbons. The level of uptake at 1 bar of up to 7.3

mmol g-1 places the directly synthesised samples at the high end of what has been reported for

carbons (Table S7) despite their being prepared via a simpler, cheaper and more direct route.9-

12,34-48 At 20 bar (Figure 8A), the CO2 uptake correlates with the total surface area, and thus the

directly activated samples generally have greater storage capacity (Table S6) with the highest

uptake of 30.7 mmol g-1 exhibited by sample SD4800D (Supporting Figure S15). The CO2

uptake of the directly prepared samples is much higher than that of previously reported carbons

(Table S7).
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Figure 8. CO2 uptake isotherms at 0 oC and 0 - 20 bar (A) and 0 – 1 bar (B) for sawdust-

derived directly (SD2TD) and conventionally (SD2T) activated carbons. See experimental

section for sample designation.

The CO2 uptake of carbons derived from the flowering plant Paeonia Lactiflora and

seaweed Sargassum fusiforme were also assessed. The CO2 uptake of the directly activated

carbons from Paeonia Lactiflora and seaweed Sargassum fusiforme were found to be

comparable to those of conventionally prepared samples ((Table S2 and S3 and Supporting

Figure S16 and S17). Overall, therefore, using the simpler, cheaper and more direct activation

route generates carbons with CO2 uptake that is comparable or better than benchmark activated

carbons that are prepared via routes that include the extra step of hydrothermal carbonisation or

pyrolysis.
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4. Conclusions

Activated carbons were successfully produced from a range of biomass sources via direct

activation that negates the need for hydrothermal carbonisation or pyrolysis. The direct

carbonisation, with KOH as activating agent, generated activated carbon yields that are

comparable or higher than those of conventional activation routes. A range of characterisation

techniques confirmed that the directly activated carbons, whilst offering the advantage of

simplicity, lower cost and a greener route, have properties that are similar to those prepared via

conventional methods. In particular the textural properties and level of graphitic ordering was

found to be similar to that of conventionally generated activated carbons. The nature of the direct

activation, however, generated carbons with a monolith-like particle morphology. Depending on

the activation conditions, the porosity of the directly activated carbons can be tailored to arise

primarily from pore channels of size 5 – 7 Å, which favour post-combustion CO2 uptake and

thus the carbons capture up to 1.3 and 4.6 mmol g-1 at 0.15 and 1 bar, respectively, and 25 oC. At

higher levels of activation, directly activated carbons with greater proportion of larger

micropores (10 – 20 Å pores) and small mesopores (20 – 30 Å pores) can be generated that have

optimized CO2 uptake at moderate to high pressure, for example up to 22 mmol g-1 at 20 bar and

25 oC or 31 mmol g-1 at 20 bar and 0 oC.

Supporting Information

seven tables with porosity and CO2 uptake for carbons derived from sawdust, the flowering plant

Paeonia Lactiflora or seaweed (Sargassum fusiforme), and comparative data from previous
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reports. Seventeen additional figures; TGA curves, XRD patterns, nitrogen sorption isotherms

and pore size distribution curves, SEM images, and gravimetric CO2 uptake isotherms for

carbons derived from sawdust, the flowering plant Paeonia Lactiflora or seaweed (Sargassum

fusiforme).
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Graphical Abstract

The direct conversion of biomass to activated carbons in a simple and lower cost one step

process, which negates the need for hydrothermal carbonisation or pyrolysis, generates

activated carbon with properties and CO2 uptake comparable or superior to conventionally

prepared activated carbons.
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Table S1. The ratio of peak intensity of the D-peak to G-peak (ID/IG) of directly activated or

conventionally activated carbons derived from sawdust biomass.

Sample ID/IG

SD2600D 0.78

SD2600 0.79

SD2700D 0.83

SD2700 0.81

SD2800D 0.84

SD2800 0.84

SD4800D 0.87

SD4800 0.86



Table S2. Textural properties and CO2 uptake of directly activated or conventionally

activated carbons derived from Paeonia Lactiflora biomass

Sample Surface areaa

(m2 g-1)
Pore volumeb

(cm3 g-1)
Pore sizec

(Å)
CO2 uptaked

(mmol g-1)

0.15 bar 1 bar 20 bar

PLF2800D 2349 (1915) 1.48 (0.86) 8.5/11/20 0.9 3.9 17.5

PLF2800 1908 (1471) 1.20 (0.67) 8/11/20 0.6 2.8 16.0

The values in the parenthesis refer to: amicropore surface area and bmicropore volume. cPore
size distribution maxima obtained from NLDFT analysis. dCO2 uptake at 25 oC and various
pressures (i.e., 0.15 bar, 1 bar and 20 bar).



Table S3. Textural properties and CO2 uptake of directly activated or conventionally

activated carbons derived from seaweed (Sargassum fusiforme).

Sample Surface areaa

(m2 g-1)
Pore volumeb

(cm3 g-1)
Pore sizec

(Å)
CO2 uptaked

(mmol g-1)

0.15 bar 1 bar 20 bar

SW2600D 976 (692) 0.50 (0.27) 6/8/12 1.0 2.7 8.0

SW2600 1034 (923) 0.46 (0.37) 6/8/12 1.3 3.8 7.8

SW2700D 1986 (1350) 0.96 (0.53) 6/8/12/19 0.8 2.6 11.4

SW2700 1624 (1442) 0.73 (0.58) 6/8/9/12 1.2 4.2 12.4

SW2800D 3095 (1009) 1.68 (0.39) 6/8/12/24 0.5 2.2 13.5

SW2800 2085 (1667) 0.93 (0.66) 6/8/12/19 0.8 3.4 15.5

The values in the parenthesis refer to: amicropore surface area and bmicropore volume. cPore
size distribution maxima obtained from NLDFT analysis. dCO2 uptake at 25 oC and various
pressures (i.e., 0.15 bar, 1 bar and 20 bar).



Table S4. CO2 uptake of various porous carbons at 25 °C and 0.15 bar or 1 bar (Table adapted from

ref. 41)
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CO2 uptake (mmol/g) Reference

1 bar 0.15 bar

Sawdust-derived activated carbon 4.8 1.2 1

KOH-activated templated carbons 3.4 ~1.0 2

Hierarchical porous carbon (HPC) 3.0 ~0.9 3

Petroleum pitch-derived activated carbon 4.55 ~1.0 4

Activated carbon spheres 4.55 ~1.1 5

Phenolic resin activated carbon spheres 4.5 ~1.2 6

Poly(benzoxazine-co-resol)-derived carbon 3.3 1.0 7

Fungi-derived activated carbon 3.5 ~1.0 8

Chitosan-derived activated carbon 3.86 ~1.1 9

Polypyrrole derived activated carbon 3.9 ~1.0 10

Soya bean derived N-doped activated carbon 4.24 1.2 11

N-doped ZTCs 4.4 ~1.0 12

Activated templated N-doped carbon 4.5 1.4 13

Polyaniline derived activated carbon 4.3 1.38 14

N-doped activated carbon monoliths 5.14 1.25 15

Activated N-doped carbon 3.2 1.5 16
Activated hierarchical N-doped carbon 4.8 1.4 17

Activated N-doped carbon from algae 4.5 ~1.1 18



Table S5. Selectivity (S) for CO2 of directly activated or conventionally activated carbons

derived from sawdust biomass calculated using the IAST model.

Sample IAST selectivity (S)

SD2600D 46

SD2600 47

SD2700D 42

SD2700 41

SD2800D 30

SD2800 29

SD4800D 23

SD4800 25

Selectivity (S) was calculated according to the equation; S = n(CO2) p(N2)/(n(N2) p(CO2), where
S is selectivity for CO2, n is uptake of CO2 or N2 in mmol g-1 at 0.15 bar and 0.85 bar,
respectively, p(N2) is 0.85 and p(CO2) is 0.15).



Table S6. CO2 uptake at 0 oC of directly activated or conventionally activated carbons

derived from sawdust biomass

Sample CO2 uptakea

(mmol g-1)

0.15 bar 1 bar 20 bar

SD2600D 2.4 6.1 10.4

SD2600 2.5 6.6 11.2

SD2700D 2.6 7.3 13.4

SD2700 2.2 6.8 13.8

SD2800D 1.7 6.1 23.8

SD2800 1.5 5.8 21.7

SD4800D 1.1 4.8 30.3

SD4800 0.9 4.1 30.7
aCO2 uptake at 0 oC and various pressures (i.e., 0.15 bar, 1 bar and 20 bar).



Table S7. CO2 uptake at 0 oC and 1 bar of various carbons compared to study carbons.

Sample CO2 uptaked

(mmol g-1) at 1 bar
Reference

SD2600D 6.1 This work

SD2600 6.6 This work

SD2700D 7.3 This work

SD2700 6.8 This work

SD2800D 6.1 This work

SD2800 5.8 This work

SD4800D 4.8 This work

SD4800 4.1 This work

N-Doped microporous carbon 2.7 1

Microporous carbon 2.3 2

Microporous organic polymer 3.5 3

Covalent organic framework 4.0 4

Hollow octahedral carbon cage 4.0 5

Hierarchically porous carbon 4.6 6

N-Doped carbon monolith 4.2 7

Porous carbon sheets 4.3 8

NPCNS carbon 4.4 9
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Supporting Figure S1. Thermogravimetric analysis (TGA) curve of sawdust-derived directly

activated (SDxTD) or conventionally generated, via hydrothermal carbonisation, (SDxT)

carbons.
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Supporting Figure S2. Powder XRD patterns of sawdust-derived directly activated (SDxTD) or

conventionally generated, via hydrothermal carbonisation, (SDxT) carbons prepared at

KOH/carbon ratio of (a) 2 or (b) 4.
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Supporting Figure S3. IR spectra of sawdust-derived directly activated (SD2TD) and

conventionally generated (SD2T) carbons prepared at KOH/carbon ratio of 2 (A and B) or 4 (C)

and various temperatures; (A) 600 oC, (B and C) 800 oC.
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Supporting Figure S4. Pore size distribution of sawdust-derived directly activated (SD2TD) and

conventionally generated (SD2T) carbons prepared at KOH/carbon ratio of 2 and (A) 600 oC or

(B) 800 oC.
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Supporting Figure S5. Nitrogen sorption isotherms (A) and corresponding pore size distribution

curves (B) of sawdust-derived directly activated (SD4800D) or conventionally generated, via

hydrothermal carbonisation, (SD4800) carbons prepared at 800 oC and KOH/carbon ratio of 4.
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Supporting Figure S6. Pore size distribution curves of sawdust-derived directly activated

(SD4800D) or conventionally generated, via hydrothermal carbonisation, (SD4800) carbons

prepared at 800 oC and KOH/carbon ratio of 4.
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Supporting Figure S7. Nitrogen sorption isotherms (A) and corresponding pore size distribution

curves (B) of directly activated (PLF2800D) or conventionally generated, via hydrothermal

carbonisation, (PLF2800) carbons derived from the flowering plant Paeonia Lactiflora. The

carbons were prepared at 800 oC and KOH/carbon ratio of 2.
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Supporting Figure S8. Nitrogen sorption isotherms of directly activated (SW2TD) or

conventionally generated, via hydrothermal carbonisation, (SW2T) carbons derived from

seaweed (Sargassum fusiforme). The carbons were prepared at KOH/carbon ratio of 2.



Pore size (Å)
10 20 30 40

P
o

re
v
o

lu
m

e
(
c
m

3
g

-1
)

0.00

0.02

0.04

0.06

0.08

0.10

SW2600D
SW2600

(A)

Pore size (Å)
10 20 30 40

P
o

re
v
o

lu
m

e
(
c
m

3
g

-1
)

0.00

0.05

0.10

0.15

0.20

SW2700D
SW2700

(B)

Pore size (Å)
10 20 30 40

P
o

re
v
o

lu
m

e
(
c
m

3
g

-1
)

0.00

0.05

0.10

0.15

0.20

SW2800D
SW2800

(C)

Supporting Figure S9. Pore size distribution curves of directly activated (SW2TD) or

conventionally generated, via hydrothermal carbonisation, (SW2T) carbons derived from

seaweed (Sargassum fusiforme). The carbons were prepared at KOH/carbon ratio of 2 and

various temperatures; (A) 600 oC, (B) 700 oC and (C) 800 oC.
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Supporting Figure S10. Powder XRD patterns of directly activated (SW2TD) or conventionally

generated, via hydrothermal carbonisation, (SW2T) carbons derived from seaweed (Sargassum

fusiforme). The carbons were prepared at KOH/carbon ratio of 2.



Supporting Figure S11. SEM images of raw sawdust.
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Supporting Figure S12. SEM images of sawdust-derived directly activated (SDxTD) or

conventionally generated, via hydrothermal carbonisation, (SDxT) carbons.
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Supporting Figure S13. SEM images of directly activated (SW2TD) or conventionally

generated, via hydrothermal carbonisation, (SW2T) carbons derived from seaweed (Sargassum

fusiforme). The carbons were prepared at KOH/carbon ratio of 2.
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Supporting Figure S14. CO2 uptake isotherms at 25 oC and 0 - 20 bar (A) and 0 – 1 bar (B) for

sawdust-derived directly activated (SD4800D) or conventionally generated, via hydrothermal

carbonisation, (SD4800) carbons prepared at 800 oC and KOH/carbon ratio of 4.
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Supporting Figure S15. CO2 uptake isotherms at 0 oC and 0 - 20 bar (A) and 0 – 1 bar (B) for

sawdust-derived directly activated (SD4800D) or conventionally generated, via hydrothermal

carbonisation, (SD4800) carbons prepared at 800 oC and KOH/carbon ratio of 4.
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Supporting Figure S16. CO2 uptake isotherms at 25 oC and 0 - 20 bar (A) and 0 – 1 bar (B) for

directly activated (PLF2800D) or conventionally generated, via hydrothermal carbonisation,

(PLF2800) carbons derived from the flowering plant Paeonia Lactiflora. The carbons were

prepared at 800 oC and KOH/carbon ratio of 2.
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Supporting Figure S17. CO2 uptake isotherms at 25 oC and 0 - 20 bar (A) and 0 – 1 bar (B) for

directly activated (SW2TD) or conventionally generated, via hydrothermal carbonisation,

(SW2T) carbons derived from seaweed (Sargassum fusiforme). The carbons were prepared at

KOH/carbon ratio of 2.


