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44801 Bochum, Germany
Corresponding author. Tel.: +49-234-32-29061, Fax.: +49-234-32-14149,
email: steffen.freitag@sd.rub.de

2Institute for Structural Mechanics, Ruhr University Bochum, Universitätsstr. 150,
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Abstract

A surrogate modelling strategy for predictions of interval settlement fields in real
time during machine driven construction of tunnels, accounting for uncertain geotech-
nical parameters in terms of intervals, is presented in the paper. Artificial Neural
Network and Proper Orthogonal Decomposition approaches are combined to approx-
imate and predict tunnelling induced time variant surface settlement fields computed
by a process-oriented finite element simulation model. The surrogate models are gen-
erated, trained and tested in the design (offline) stage of a tunnel project based on
finite element analyses to compute the surface settlements for selected scenarios of
the tunnelling process steering parameters taking uncertain geotechnical parameters
by means of possible ranges (intervals) into account. The resulting mappings of time
constant geotechnical interval parameters and time variant deterministic steering pa-
rameters onto the time variant interval settlement field are solved offline by optimisa-
tion and online by interval analyses approaches using the midpoint-radius representa-
tion of interval data. During the tunnel construction, the surrogate model is designed
to be used in real-time to predict interval fields of the surface settlements in each
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stage of the advancement of the tunnel boring machine for selected realisations of the
steering parameters to support the steering decisions of the machine driver.

Keywords: surrogate model; recurrent neural networks; proper orthogonal decompo-
sition; interval analysis; mechanised tunnelling; real-time prediction

1 Introduction

Mechanised tunnelling is an efficient tunnelling technology for the construction of
new underground infrastructures, in particular in urban environments. During the
construction process, it is required to reduce the tunnelling induced settlements or
to avoid that tolerances with respect to settlements, which eventually may result in
damage of existing structures, are exceeded. The settlements can be controlled by
adjusting the process parameters such as the face support pressure at the tunnel face,
the grouting pressure of the grouting material injected into the gap between the tunnel
lining and the surrounding soil, and the advance speed during the tunnel advancement
[1]. Currently, decisions affecting the steering of tunnel boring machines (TBMs)
are based upon engineering expert knowledge and monitoring data. However, using
monitoring data implies that information (data) related to already passed situations
is used to extrapolate on the future behaviour of the soil-tunnel interactions. In this
paper, an approach is presented, in which a computational model is used to support
TBM steering by providing predictions on the expected settlement field in real time
during the construction. Epistemic uncertainties of the geotechnical parameters are
taken into account by means of interval data.

In recent years, numerical methods, in particular the finite element method, have
become a standard tool for predictions of interactions between the tunnel construc-
tion and the surrounding soil in the design phase of mechanised tunnelling projects. A
large number of 3D finite element simulation models have been developed to represent
the staged tunnelling process, characterised by a repeated sequence of soil excavation,
advancement of the TBM and the installation of a new ring of lining segments (see
[2, 3, 4, 5] and references therein). More recently, a process oriented 3D numeri-
cal model for shield-supported tunnel excavation in fully saturated soft soils has been
developed in [6], taking into account the most important components of mechanised
tunnelling and their mutual interactions. In this computational model, a realistic repre-
sentation for the soil excavation process following arbitrary alignments is enabled by
means of an adaptive re-meshing technique [7]. Using this numerical model, uncertain
geotechnical conditions and the interaction of the relevant components involved in the
construction process have been investigated in [8, 9]. Considering the large compu-
tational effort for realistic tunnelling models, parallelisation techniques are addressed
in [10].

Information on the geotechnical situation, such as the topology and specification
of the soil layers and the soil material parameters, can only be obtained from a few

2



borehole data in the design stage of a project. This uncertainty resulting from limited
information has to be adequately considered, when mechanised tunnelling simula-
tions are used as the basis for the tunnel design. Stochastic numbers can be used to
quantify aleatoric uncertainty considering spatial variability of geotechnical parame-
ters by random fields, see e.g. [11] and [12]. However, a sufficiently large number
of samples is required to select an adequate stochastic model and estimate the corre-
sponding model parameters. In geotechnical reports of tunnelling projects, however,
often only a few number of samples are provided to quantify the uncertainty of soil
parameters. Moreover, the correlation function and the correlation length within ran-
dom field approaches must be defined, which, due to insufficient data, are often based
on assumptions without physical meaning. An alternative to stochastic approaches are
non-stochastic or polymorphic uncertainty models, see e.g. [13]. Non-stochastic ap-
proaches such as methods based upon ranges (intervals) of parameters are frequently
used in geotechnical engineering and tunnelling in the context of rock mass classifi-
cations within the rock mass rating system [14] or by means of fuzzy models [15].
A comparison of geotechnical analysis using stochastic numbers and intervals is con-
tained in [16]. Polymorphic uncertainty models using probability boxes (p-boxes)
have been applied within a random set finite element analysis for reliability assess-
ment of tunnel construction according to the New Austrian Tunnelling Method in
[17]. A holistic concept for reliability analyses in mechanised tunnelling with poly-
morphic uncertain data based on stochastic, interval, fuzzy, and imprecise probability
approaches is presented in [8] and applied to a mechanised tunnelling simulation with
fuzzy stochastic and fuzzy soil parameters in [9].

In this paper, a non-stochastic approach based on interval data is proposed for real-
time predictions of tunnelling induced surface settlements. Thereby, the ranges for
expected geotechnical parameters of the soil layers given in the geotechnical reports
are directly quantified as intervals without requiring any further assumptions, e.g. in
terms of stochastic distributions or fuzzy membership functions.

In order to support TBM steering directly at the construction site, the simulation
results are required in real-time. ”Real time” means a duration for the analysis, which
is significantly smaller compared to the time required for one construction stage, con-
sisting of an excavation and machine advancement step, the segmented tunnel ring
installation and the tail void grouting. The time required for one construction step
depends on the geological situation and is typically in the range between 2-4 hours.
Hence, a real time prediction should be performed in the range of seconds to a few
minutes. Moreover, the TBM steering assistant system, which is currently developed
within project C1 of the Collaborative Research Center SFB 837 ”Interaction Mod-
eling in Mechanised Tunnelling” aims to provide predictions for user-defined real-
isations of the steering parameters in a few seconds. Evidently, for such real-time
predictions, surrogate models are inevitable to substitute the expensive and complex
finite element simulation model in mechanised tunnelling. Different methods can be
used for generating simulation based surrogate models, including regression models
[18], artificial neural networks [19, 20], stochastic approaches such as Kriging or spa-
tial correlation models [21, 22], response surface methods [23], or proper orthogonal
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decomposition (POD) [24]. A study on the performance of different surrogate mod-
elling techniques (quadratic polynomial regression, moving least squares, POD with
radial basis functions (RBF), and an extended version of POD-RBF) for application
in mechanised tunnelling problems is presented in [25]. In [26], a procedure for the
steering of TBMs based upon artificial neural networks used as surrogate models has
been proposed. However, in this method, parameter uncertainties have not been con-
sidered.

In this paper, a hybrid surrogate modelling strategy proposed in [27] is used to
support decisions related to the steering of the TBM during tunnel construction in
real time, taking uncertainties of geotechnical parameters into account. The hybrid
strategy is based on a combination of Recurrent Neural Networks (RNN) and Gappy
Proper Orthogonal Decomposition (GPOD) methods and can predict (extrapolate)
tunnelling induced uncertain time and spatially varying surface settlements. Based
on RNN predictions at selected monitoring points of the settlement field, the GPOD
method is used to predict the whole surface field of settlements induced by the mech-
anised tunnelling process. In [27], an optimisation approach based on Particle Swarm
Optimisation is utilized to predict the interval bounds of tunnelling induced settle-
ment fields, considering uncertain soil parameters by means of intervals. However,
this requires one to two hours on a standard notebook or parallel runs on a computing
cluster to reduce the computational time, which limits its practical application for real-
time predictions at construction sites. Therefore, the objective of the new surrogate
modelling approach is to provide interval surface settlement predictions in real-time,
i.e. in a few seconds using a standard notebook computer. This paper is based upon
[28], where the calibration of the hybrid surrogate model with monitoring data and
an application for real-time predictions on a standard notebook computer has been
presented. As an extension, this paper includes additional research on computing the
hybrid RNN-GPOD surrogate model with interval data based on the midpoint-radius
representation to directly account for uncertain geotechnical parameters when per-
forming the analysis. The RNN and GPOD surrogate models are split for midpoint
and radius computations of the interval data, respectively. While the midpoint com-
putations are identical to the approach presented in [28], the radius computations are
restricted to positive numbers. To account for this constraint, we propose using Non-
Negative Matrix Factorisation for the GPOD part and adequate activation functions in
the RNN part of the hybrid surrogate model.

The remainder of this paper is organised as follows. Section 2 gives a brief descrip-
tion of the process-oriented finite element model for numerical simulations of mech-
anised tunnelling processes, which is used for the training of the surrogate model. In
Section 3, the mapping and computation of processes with interval data is introduced
for time variant settlement field predictions in mechanised tunnelling. The new RNN-
GPOD surrogate modelling approach for interval data is presented in Section 4. The
verification with an analytical solution and an application example are finally shown
in Section 5.
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2 Finite element model for mechanised tunnelling sim-
ulation

In this paper, the process-oriented finite element simulation model ekate [29] is used
for the simulation of the shield tunnelling processes in fully and partially saturated soft
soils. The simulation model ekate has been developed within the object-oriented
finite element framework KRATOS [30]. The finite element model considers all rele-
vant components of the tunnel construction process (soil and groundwater conditions,
tunnel lining, the TBM with shield and hydraulic jacks, tail void grouting and various
types of face support) and their (time dependent) interactions, as shown in Figure 1.
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Figure 1: Components of the finite element model for shield tunnelling ekate in
soft soils: (1) surrounding soil, (2) TBM, (3) segmented lining, (4) pressurisation of
grouting material with time-dependent stiffness and permeability, (5) hydraulic jacks
and (6) representation of existing buildings.

The soil is modelled as a three (or two) phase material for partially (or fully) sat-
urated soils [29]. Two elastoplastic models are available for the consideration of the
inelastic response of soft soils: the Clay and Sand model [31] and the Drucker-Prager
model (Figure 1(1)). The TBM is represented as a deformable body moving through
the soil and interacting with the ground through frictional surface-to-surface contact,
allowing that the deformation of the soil naturally follows the real, tapered geometry
of the TBM and that the effect of overcutting (Figure 1(2)) is captured. The hydraulic
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jacks advancing the machine are represented by truss elements tied between the lining
and the shield machine (see Figure 1(5)). In order to realistically model the movement
of the machine and its interaction with the soil, an algorithm to control the individual
jack thrusts similar to the one proposed in [5] is used to keep the machine on the de-
signed alignment path [7]. The load of the back-up trailer is considered by prescribing
equivalent surface loads on the corresponding lining elements.

After each TBM advance, the excavation at the cutting face, the tail void grout-
ing and the erection of a new lining ring during standstill are taken into account by
re-zoning the finite element mesh and adjusting all boundary conditions to the new
situation. The installation of the tunnel lining follows a staged construction process
(Figure 1(3)). Within each installation step, a full lining ring of a given length, diame-
ter and thickness is activated. The annular gap between the segmented lining tube and
the excavation boundary is refilled with grout (see Figure 1(4)). The tail gap grout-
ing is modelled as a fully saturated two-phase material with a hydrating matrix phase,
considering the temporal evolution of stiffness and permeability of the cementitious
grout [32]. To provide the stability of the tunnel face and to reduce ground loss behind
the tapered shield, the face support pressure and the grouting pressure are applied at
the tunnel face and in the steering gap, respectively.

In the simulation model ekate, the interaction of buildings including their founda-
tions with tunnelling-induced deformations of the soil is accounted for by adopting an
interface formulation (see Figure 1(6)). Buildings are described as 3D block models
with a substitute stiffness computed according to [33]. In the presented finite ele-
ment formulation, isotropic shell, or, alternatively, volume elements with respective
properties are adopted interacting with the soil through a mesh independent surface-
to-surface contact algorithm, which prevents the penetration of the foundation of the
building into the soil. It also takes into account different mechanisms of the soil-
structure interaction corresponding to so-called “sagging” and “hogging” modes.

3 Uncertainty quantification by means of intervals

The prediction of tunnelling induced process responses, such as time variant settle-
ments, requires to consider the unavoidable uncertainty associated with the geotech-
nical model. The uncertainty of geotechnical parameters describing the topology and
the properties of the soil layers may have a significant influence to the time variant
settlement field and, consequently, on the prognoses of tunnelling related risks. In
the design stage of a tunnel project, only limited information of geotechnical param-
eters can be obtained from a few borehole data along the tunnel track, see Figure 2.
Geotechnical reports generally provide ranges for expected geotechnical parameters,
e.g. for the soil material parameters (Table 1) instead of deterministic values. The
ranges for expected geotechnical parameters can directly be quantified by intervals

x̄ = [lx, ux] (1)
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Figure 2: Digital tunnelling information model with soil layers, existing buildings,
tunnel alignment, boreholes and monitoring points for the Wehrhahn-Line project in
Düsseldorf according to [34].

Geotechnical parameter Range
Young’s Modulus of layer 1 — E1 [MPa] 10–30
Young’s Modulus of layer 2 — E2 [MPa] 30–90
Friction angle of layer 1 — φ1 [◦] 25–35
Friction angle of layer 2 — φ2 [◦] 30–40
Cohesion of layer 1 — c1 [kPa] 0–3
Cohesion of layer 2 — c2 [kPa] 0–3

Table 1: Ranges of exemplified soil material parameters obtained from a geotechnical
report.

with lower bounds lx and upper bounds ux. An overline is used to indicate, that a
number is given as an interval. The algorithms developed in this paper are based on
the midpoint-radius representation of intervals, see Figure 3, where the midpoint is

x

x

rx

interval parameter

l uxmx

{rx {
x

Figure 3: Interval of a geotechnical parameter x̄, defined by its lower bound lx, upper
bound ux, midpoint mx and radius rx.
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defined by

mx = lx+ ux

2
, (2)

and the radius is given by

rx = ux− lx

2
. (3)

Vice versa, the lower and upper interval bounds are obtained by

lx = mx− rx (4)

and
ux = mx+ rx , (5)

respectively.
Considering the time dependence of mechanised tunnelling processes, the settle-

ments at points i = 1, . . . , I of an area of interest are represented as interval processes

s̄i(t) =
{
[1]s̄i, . . . ,

[n]s̄i, . . . ,
[N ]s̄i

}
, (6)

which consist of a series of intervals [n]s̄i with equidistant time points [n]t. All discre-
tised surface settlements of an area of interest are summarised in the interval vector
[n]S̄. In general, the interval vector [n]S̄ contains the lower and upper bounds of the
nodal displacements at the surface of the finite element mesh or, alternatively, post-
processed displacements at arbitrary (mesh independent) positions.

3.1 Mappings of processes with interval parameters in mechanised
tunnelling

The uncertainty of the time variant settlement field S̄(t) is resulting from the uncer-
tain geotechnical parameters collected in the interval vector X̄. During the tunnelling
process, the tunnel-soil interactions, and thus the settlements, are influenced by time
variant deterministic process parameters, such as the face support pressure, the grout-
ing pressure or the advancement rate, which the machine driver controls to steer the
TBM. These steering parameters are collected in the vector P(t). Taking deterministic
steering parameters and geotechnical interval parameters into account, the following
mappings are formulated:

• Type 1 Mapping with deterministic model parameters

X̄,P(t) 7→ S̄(t) (7)

The (time constant) geotechnical interval parameters X̄ and the time variant
deterministic steering parameters P(t) are defined as inputs, which are mapped
with deterministic model parameters onto the time variant interval settlement
field S̄(t).
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• Type 2 Mapping with interval model parameters

P(t) ¯7→ S̄(t) (8)

Only the time variant deterministic steering parameters P(t) are defined as in-
puts, which are mapped with interval model parameters onto the time variant
interval settlement field S̄(t). The influence of the time constant geotechnical
interval parameters X̄ is considered by interval model parameters of the map-
ping model.

With respect to the mapping types for interval and fuzzy processes introduced in
[35] and [36], the mapping with deterministic parameters is denoted as Type 1 Map-
ping and the mapping with interval parameters is denoted as Type 2 Mapping. The
difference between the two mapping types lies in the way how the interval uncertainty
of the geotechnical parameters X̄ is considered. In case of Type 1 Mapping, the inter-
val parameters X̄ are defined as additional inputs. Whereas in Type 2 Mapping, the
interval parameters are fixed and only the deterministic steering parameters P(t) are
considered as inputs. Hence, the input dimension is reduced in case of Type 2 Map-
ping. The algorithms developed in this paper are based on Type 1 Mapping (Eq. (7)),
but they can also be applied to Type 2 Mapping with some minor modifications. For
tunnelling induced settlement predictions, multiple (but low dimensional) input pro-
cesses (i.e. a few j = 1, . . . , J time constant geotechnical interval parameters x̄j of
the interval vector X̄ and not more than K = 3 deterministic steering parameters
pk(t), k = 1, . . . , K, of the vector P(t)) are mapped onto multiple (high dimensional)
outputs (i.e. all i = 1, . . . , I components s̄i(t) of the interval settlement field sum-
marised in the interval vector S̄(t), where the number of settlement field components
to be predicted is I ≈ 100). With respect to the representation of interval processes
in Eq. (6), the interval settlements [n]s̄i of time step n depend on the k = 1, . . . , K
deterministic steering parameters [r]pk of prior and current time steps r = 1, . . . , n,
i.e. the current settlements are dependent on the history of the steering parameters
adopted during the advancement process.

3.2 Computational strategies for mappings with interval processes

For the described mappings of processes with interval parameters, three computational
approaches are possible, see Figure 4:

1. optimisation with a deterministic mapping model (for Type 1 Mapping),

2. interval arithmetic (for Type 1 and Type 2 Mapping) and

3. splitting into independent deterministic mapping models for midpoints and ra-
diuses (for Type 1 and Type 2 Mapping).

Within optimisation approaches, see e.g. [37], the lower and upper interval bounds
([n]lsi and [n]

usi) of each settlement field component have to be computed by solving
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Figure 4: Computational strategies for the mapping of deterministic steering parame-
ters and geotechnical interval parameters onto interval settlements.

two optimisation tasks (minimisation for lower bounds and maximisation for upper
bounds). This might be very time consuming for high dimensional multiple output
mappings, because for each settlement field component multiple runs of a determin-
istic mapping model have to be performed. In [27], the Particle Swarm Optimisa-
tion method in combination with a hybrid RNN-GPOD surrogate model is utilized to
compute the interval bounds of 105 settlement field components during a tunnelling
process. For each time step, the computational time for solving the corresponding
optimisation problems was approximately 1.5 hours using a standard notebook com-
puter. Also if the optimisation runs may be parallelised, faster approaches are required
for real-time applications.

Interval arithmetic approaches, e.g. interval analysis [38], are very efficient with
respect to computational time, because the whole settlement field can be computed
in one computational step, without solving optimisation problems. However, if a de-
terministic mapping model is used to process interval data with interval arithmetic
operations, the interval width of the settlement field components may be too wide, i.e.
overestimated. The problem of possible overestimation has to be considered within
the creation of the mapping model. For artificial neural network based mapping mod-
els, overestimation is avoided by special training algorithms for interval data, similar
to the approach presented in [36] for fuzzy data. For POD-RBF in general it is possi-
ble to apply interval arithmetic operations, but overestimation cannot be avoided. In
case of a black box solver for the structural model, interval arithmetic cannot directly
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be applied. First, an optimization based approach is employed to compute the interval
output fields for given interval inputs. Then an interval surrogate model, e.g. an artifi-
cial neural network or a POD-RBF model, has to be created to map the interval inputs
onto interval outputs by means of interval arithmetic.

In this paper, the third option is used to enable real-time predictions of interval
settlement fields by means of the midpoint-radius representation of intervals. The
mapping is realised by a split into independent deterministic mapping models for the
midpoints and the radiuses. It should be noted, that it may also be possible to define
two mapping models for the lower and upper interval bounds, which are, however, not
independent from each other, because the lower bound of the output must be greater
than the upper bound. The advantage of the midpoint-radius representation is that the
two corresponding mapping models are independent from each other. For the mapping
model for the radiuses one has to account for the constraint that only positive numbers
are possible. For real-time predictions, numerically efficient surrogate models based
on artificial neural networks and proper orthogonal decomposition are utilized for the
mappings of midpoints and radiuses. These methods are described in the next sections.

4 Surrogate models for predicting time variant inter-
val settlement fields

Mechanised tunnelling simulations using the process oriented finite element model
presented in Section 2 are time consuming and are therefore best used in the design
stage of a tunnelling project. For a model-based support of steering decisions during
the tunnel construction in real-time, the finite element simulation model is replaced by
surrogate models to describe the dependencies between the inputs (interval geotechni-
cal parameters and deterministic steering parameters) and the corresponding outputs
(time variant surface settlements). Several surrogate modelling approaches have been
developed for various engineering applications, see e.g. [39] for an overview. Each
surrogate modelling approach has specific advantages for specific tasks. As an ex-
ample, Artificial Neural Networks are advantageous for multiple input and single or
low dimensional output mappings, Recurrent Neural Networks for the prediction and
extrapolation of processes and the Proper Orthogonal Decomposition method for the
reduction of high dimensional data and, in combination with Radial Basis Functions,
for the nonlinear interpolation of high dimensional output data. In [26], an artifi-
cial neural network has been employed as a surrogate model for deterministic real
time analyses of mechanised tunnelling. In this paper, the benefits of Artificial Neu-
ral Networks and Proper Orthogonal Decomposition approaches are combined within
a hybrid RNN-GPOD surrogate model for Type 1 Mapping of processes with a low
dimensional input and a high dimensional output.
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4.1 Hybrid surrogate modelling scheme

For the support of decisions during the tunnel advancement process, predictions of
expected surface settlements at multiple surface locations are required. For predefined
(critical) sections of the tunnelling project, the analysis model needs to describe the
dependencies between time variant deterministic process parameters P(t) and interval
parameters X̄ related to the geotechnical model and the corresponding uncertain sys-
tem response, such as time variant interval surface settlements S̄(t). This motivates
to generate a surrogate model with multiple interval output process prediction capa-
bilities considering interval input data, i.e. Type 1 Mapping according to Section 3.1.
Therefore, an extension of the hybrid surrogate model introduced in [27] is proposed
to predict interval settlement fields, see Figure 5.

Figure 5a) shows a block diagram of the necessary computation in the offline stage,
i.e. in the design phase of a tunnelling project, to set up the interval input-output data
surrogate model. Firstly, a surrogate model is generated for a tunnel drive through
a specific tunnel section with deterministic inputs (geotechnical parameters X, time
variant steering parameters P(t)) and deterministic outputs (time variant surface set-
tlements S(t)) By varying the input parameters (design of experiments) of the numer-
ical model ekate used to simulate the mechanised tunnelling process from time step
1 to N , a set of deterministic input-output data is collected. The next step is to com-
pute the same system outputs for uncertain geotechnical parameters X̄ in the context
of an interval analysis. This is also accomplished in the offline stage using the surro-
gate model with a deterministic input-output mapping together with an optimisation
approach, e.g. the Particle Swarm Optimisation approach, developed in [27]. The
obtained results are patterns of interval and deterministic input parameters and the
corresponding interval surface settlement field from the time steps 1 to N . These pat-
terns are used to create a hybrid RNN-GPOD surrogate model for interval data based
on the midpoint-radius representation, which is described in the next subsections.

Figure 5b) presents how to apply the proposed surrogate model in the online stage,
i.e. during the tunnel construction. The idea is that the surrogate model is operated,
adopting the actually recorded steering parameters from the previous time steps 1 to
n, to predict the interval bounds of the expected surface settlement field of the next
time step n + 1 with assumed (chosen) values of the steering parameters and given
ranges of the geotechnical parameters. For this purpose, the surrogate model pro-
posed in [27] is extended to allow processing of interval data. In a first step, trained
Recurrent Neural Networks are employed for the midpoints and the radiuses to predict
the interval bounds of settlements at several monitoring points for the next time step
n + 1. In a second step, the complete time variant interval surface settlement field
from time step 1 to n is approximated by trained Proper Orthogonal Decomposition
Radial Basis Functions surrogate models for the midpoints and the radiuses. Finally,
the Gappy Proper Orthogonal Decomposition and the Non-Negative Matrix Factorisa-
tion (NNMF) approaches are adopted to reproduce and predict the complete interval
settlement field in the time step n + 1 based on a combination of the results from the
two previous methods. The predicted results are then included into the available inter-
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Figure 5: Scheme of the proposed hybrid surrogate modelling approach with interval
data. a) Offline stage; b) Online stage.

val data set and the procedure is repeated for the subsequent time steps. The algorithm
of the proposed extended surrogate modelling approach is summarised in Table 2.

4.2 Process prediction with recurrent neural networks for interval
data

Artificial neural networks are widely used as surrogate models in structural mechan-
ics, see e.g. [19, 20]. Often, multilayer perceptrons with a feed forward architecture,
see [40], are utilized to learn functional relationships in data. In [41] and [42], feed
forward neural networks are used to predict surface settlements resulting from ma-
chine driven tunnelling. The networks are trained with data obtained from numerical
simulations using the process-oriented finite element model for mechanised tunnelling
described in Section 2.

For the approximation and prediction of dependencies between structural processes,
recurrent neural networks (RNNs) are beneficial, see e.g. [36]. RNNs are able to learn
dependencies between data series without considering time as additional input param-
eter. This enables to capture time-dependent phenomena in data series and predict
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Offline stage
1: Generate a finite element model representing the tunnel advancement process
within predefined sections of the tunnel project from time step n = 1, . . . , N using
the process oriented computational model ekate
2: Define deterministic input parameters (geotechnical parameters X and steering
parameters [n]P) with typical ranges and scenarios for possible variations of the
steering parameters.
3: Run numerical simulations with different patterns of deterministic input param-
eters (design of experiment)
4: Store the numerical results of the deterministic settlement fields in the vector [n]S
5: Define intervals of the geotechnical parameters X̄
6: Run the deterministic surrogate model in [27] for different patterns of X̄ and
scenarios of deterministic steering parameters [n]P within an interval analysis –
optimisation approach
7: Store the lower and upper bounds [n]S̄ of the interval settlement field
8: Provide interval settlement data at selected monitoring points [n]s̄iRNN

to train
and test the RNN
9: Provide interval settlement data for the complete settlement field [n]S̄ to train the
POD-RBF
Online stage
1: Input: Interval of the geotechnical parameters X̄, the recorded history of steering
parameters [1]P to [n]P for time steps 1 to n and assumed values of [n+1]P for time
step n+ 1
2: Approximate the lower and upper bounds of the complete interval settlement
field from time step 1 to n (by POD-RBF)
3: Predict the lower and upper bounds of the interval settlements at the selected
monitoring points [n+1]s̄iRNN

for the next time step n+ 1 (by RNN)
4: Predict the interval bounds of the complete settlement field [n+1]S̄ of next time
step n+ 1 (by GPOD and NNMF)
5: Update the interval bounds of the complete settlement field from time step 1 to
n+ 1
6: Repeat steps 3 and 4 with updated inputs

Table 2: Algorithm of the hybrid RNN-GPOD surrogate modelling approach to predict
interval bounds of the expected surface settlement field in time step n+ 1.

(extrapolate) further structural responses. The layered network structure of the RNNs
is similar to the architecture of feed forward neural networks. But in addition to the
neurons, so-called context neurons are used to consider the structural history, see Fig-
ure 6. The RNN architecture is based on the Elman [43] and Jordan [44] networks.
However, in the present RNN formulation, multiple delayed context layers are consid-
ered, see [20]. For each hidden and each output neuron, a context neuron is assigned.
These context neurons send multiple time delayed context signals to the hidden and
output neurons.
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Figure 6: Recurrent neural network (midpoint RNN) for interval settlement process
predictions.

In order to process interval data with RNNs, the midpoint-radius representation of
interval data is suggested in this paper. For the prediction of the time variant interval
settlement at selected monitoring points, two separate RNNs for the midpoints and
the radiuses, denoted as midpoint RNN and radius RNN, are generated. In each time
step n, the input signals of both networks (i.e. the midpoints mxj and radiuses rxj of
the time constant geotechnical interval parameters x̄j and the deterministic steering
parameters [n]pk) are processed layer by layer to get the network outputs (i.e. the mid-
points [n]

msiRNN
or radiuses [n]

r siRNN
of the interval settlements [n]s̄iRNN

at the selected
monitoring points iRNN ), see Figure 6 exemplified for the midpoint RNN.

The signals in the hidden and output neurons of the corresponding midpoint RNN
and radius RNN are computed by

[n]x
(m)
i = ϕ

(m)
i

(
H∑

h=1

[
[n]x

(m−1)
h · w(m)

ih

]
+

Q∑
q=1

[
D∑

d=1

[
[n−d]x(m)

q · dc(m)
iq

]]
+ b

(m)
i

)
.

(9)
In Eq. (9), ϕ(m)

i (.) is the activation function of neuron i in layer (m). The argument
ν
(m)
i of the activation function is computed as a sum of all output signals x(m−1)

h of
the previous layer (m − 1), multiplied by their synaptic weights w(m)

ih plus a sum of
all [n− 1] , . . . , [n−D] delayed prior output signals [n−d]x

(m)
q of the hidden neurons

in the same layer (m) multiplied by their context weights dc
(m)
iq and an additional bias

value b(m)
i .

Different types of activation functions ϕ(m)
i (.) can be used to process the signals

in the neurons. Because of the used gradient based training algorithm, they must be
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differentiable. Here, the hyperbolic tangent function

ϕ (ν) = tanh (ν) =
exp (ν)− exp (−ν)

exp (ν) + exp (−ν)
(10)

is used in the hidden neurons and the linear activation function

ϕ (ν) = ν (11)

in the output neurons of the midpoint RNN. For the radius RNN, the logistic sigmoid
function

ϕ (ν) =
1

1 + exp (−ν)
(12)

is used in the hidden neurons and the positive linear function

ϕ (ν) =

{
ν, if ν ≥ 0

0, if ν < 0
(13)

is used in the output neurons to fulfil the constraint of positive outputs for the radiuses.

The synaptic weights w(m)
ih , the context weights dc

(m)
iq for each d = 1, . . . , D de-

layed time step and the bias values b(m)
i are unknown network parameters, which

are identified within the network training. The RNNs are trained by the Levenberg-
Marquardt backpropagation algorithm.

4.3 Interpolation with Proper Orthogonal Decomposition for in-
terval data

The Proper Orthogonal Decomposition (POD) technique has gained wide popularity
in data analysis, since it is capable of deriving a reduced order set of basis functions,
which can represent the original high-dimensional data with a high level of accuracy.
A brief overview of the POD method is presented in [45], [46]. The POD approach is
applied in various fields under different names such as Principal Component Analysis
[47] in statistics, Singular Value Decomposition [48] in linear algebra and Karhunen-
Loeve Decomposition [49], [50] in signal processing. Nowadays, the method is ap-
plied extensively in computational mechanics, e.g. in fluid dynamics [51], [52], aero-
dynamics [53] and nonlinear solid mechanics [54], [55]. In combination with Radial
Basis Functions (RBF), the POD is used as surrogate model to solve inverse problems,
see e.g. [56, 57, 24, 58].

In the paper, two separate POD-RBF surrogate models for the midpoints and the
radiuses are created to produce quick predictions of the system response (i.e. the
interval settlement field) corresponding to an arbitrary set of input parameters (reali-
sations of geotechnical interval parameters and deterministic steering parameters) by
interpolation between the sample data points. Before the midpoint-radius representa-
tion for POD-RBF with interval data is developed, a short review on the deterministic
POD-RBF is presented next.
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The first step in creating a POD basis is to obtain a collection of M snapshots of
possible system solutions (settlements) by varying the input parameters, where each
snapshot consists of N output values (all settlements [n]si of time steps 1, . . . , n at all
points i = 1, . . . , I of the settlement field) corresponding to a specific set (scenario)
of input parameters (one realisation with geotechnical parameters xj and steering pa-
rameters [n]pk for time steps 1, . . . , n). The obtained data are structured in the format
of a so-called snapshot matrix S which possesses N = n · I rows and M columns,
where M corresponds to the number of scenarios of input parameters. The POD basis
vectors can be obtained by a Single Value Decomposition of the matrix S or by solving
the eigenvalue problem of the sample covariance matrix C = ST · S. Employing the
latter approach in this paper, the POD basis is expressed as a linear transformation of
the snapshot matrix S

Φ = S · V, (14)

where V is a matrix obtained by solving the following eigenvalue problem

C · V = Λ · V. (15)

The matrixV contains eigenvectors corresponding to eigenvalues of the matrix C.
Each eigenvalue λi contained in the matrix λ represents the variance of the data set
in the direction of the corresponding POD mode. The eigenvalue λi can be shown to
be a measure of the approximation capabilities of the ith basis function. Typically,
depending on the desired accuracy, only K �M basis functions are kept for the ap-
proximation of the snapshot matrix S. The resulting matrix consisting of the first K
POD modes is denoted as truncated POD basis matrix Φ̂.

The exact and approximated snapshot matrix S is represented by

S = Φ · A, (16)

S ≈ Φ̂ · Â, (17)

respectively. The matrices A and Â are the amplitude matrix and the truncated am-
plitude matrix, respectively. From Eqs. (16) and (17), A and Â can be constructed
as

A = ΦT · S, (18)

Â ≈ Φ̂
T
· S. (19)

It should be noted, that at this step Â contains only the information of the scenarios
of input parameters used to create the snapshot matrix.

To approximate the system behaviour related to intermediate values of input pa-
rameters that are not included in the snapshot data, an interpolation is performed to
determine the truncated amplitude matrix Â, assuming that Â is a smooth function
of input parameters. More specifically, each amplitude vector is defined as a linear
combination of a set of vectors Fi = [f1(Qi)...fj(Qi)...fM(Qi)]T , with fj(Qi) as pre-
defined interpolation functions of the input parameter scenarios Qi and an unknown
coefficient matrix B as

Â
i

= B · Fi . (20)
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The choice of fj(Qi) can be arbitrary. A suitable option is to employ Radial Ba-
sis Functions (RBFs) as interpolation functions due to their good approximation and
smoothing properties. In this paper, the inverse multiquadric radial basis function, see
[59, 60], is used as interpolation function. Each element of the vector Fi is computed
according to

fj(Qi) = fj(|Qi −Qj|) =
1√

|Qi −Qj|2 + c2
, (21)

with c as a smoothing factor selected as

c = 0.815(
1

M

M∑
i=1

di), (22)

and di is the distance between the ith data point and its neighbour [61]. The matrix F
containing the interpolation functions can be constructed from all vectors Fi of input
parameters that are used to generate the snapshots. Using F, the truncated amplitude
matrix Â is given by

Â = B · F , (23)

From Eqs. (23) and (19), the coefficient matrix B is determined. Finally, an approxi-
mation of the output system response (settlement field) corresponding to an arbitrary
set of input parameters (geotechnical and steering parameters) is obtained by

Sa ≈ Φ̂ · B · Fa . (24)

The algorithm for POD-RBF procedure for deterministic data is summarised in Ta-
ble 3.

For the processing of interval data by means of the midpoint-radius representa-
tion (see Section 3) the POD-RBF algorithm is applied separately for the midpoints
and radiuses. A constraint for the radiuses is that the predicted results must be non-
negative. Since the approximation with POD-RBF is just an interpolation between
sample points with non-negative outputs, the constraint is also satisfied for the ap-
proximated results. The summary of the POD-RBF algorithm with interval data is
presented in Table 4.

4.4 Predicting missing interval data

For predicting missing interval data within the hybrid surrogate modelling strategy,
the midpoints and radiuses of the full settlement field at time step n+ 1 are predicted
separately using the settlement fields of all prior time steps and the RNN predictions
at the monitoring points [n+1]s̄iRNN

, see Section 4.1. The midpoints are predicted with
the Gappy Proper Orthogonal Decomposition (GPOD) approach (Subsection 4.4.1).
However, this approach cannot be used for predicting the radiuses of the interval
data, since it does not guarantee to fullfil the non-negativity constraint. Therefore,
the so-called Non-Negative Matrix Factorisation is utilized for the radiuses (Subsec-
tion 4.4.2).
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Input: Deterministic snapshots output matrix S, snapshots input matrix Q, arbitrary
input vector Qa, desired accuracy E
Output: System response vector Sa

A - Compute the truncated POD basis matrices Φ̂
1: Compute covariance matrices C = ST · S
2: Compute eigenvalue decomposition [Ψ,Λ] = eig(C)
3: Set λi = Λii, for i = 1, ...,M
4: Set Φi = S ·Ψ−,i/

√
λi, where Ψ−,i is the ith column of matrix Ψ

5: Define K based on the desired accuracy E with
∑K

i=1 λi/
∑M

i=1 λi ≥ E

6: Obtain truncated POD basis Φ̂ by taking the first K columns of Φ
B - Interpolation

1: Compute fj(Qi), with i, j = 1, ...,M
2: Form matrix F from previous step
3: Compute Â = Φ̂

T
· S

4: Compute B based on F, Â
5: Compute fj(Qa), with j = 1, ...,M
6: Form vector Fa from previous step
7: Return the system response vector Sa = Φ̂ · B · Fa

Table 3: POD-RBF algorithm to predict deterministic system response from an arbi-
trary set of input parameters.

Input: Interval snapshots output matrix S̄, interval snapshots input matrix Q̄, arbi-
trary interval input vector Q̄a, desired accuracy E
Output: Interval system response vector S̄a

1: Transform interval data into the type of midpoint and radius data according to
Eqs. (2) and (3)

mS = (lS + uS)/2 ; rS = (uS− lS)/2

mQ = (lQ + uQ)/2 ; rQ = (uQ− lQ)/2

mQa = (lQa + uQa)/2 ; rQa = (uQa − lQa)/2
2: Form the deterministic input matrix and input vector including both midpoint
and radius representations dQ = [mQ; rQ] and dQa = [mQa; rQa]
3: Compute the system response corresponding to midpoint and radius representa-
tion mSa and rSa

mSa = POD RBF(mS, dQ, dQa, E), see Table 3
rSa = POD RBF(rS, dQ, dQa, E), see Table 3

4: Compute the upper and lower bounds of the system response vector according to
Eqs. (4) and (5)

uSa = mSa + rSa

lSa = mSa − rSa

5: Return the interval system response vector S̄a
= [lSa; uSa]

Table 4: POD-RBF algorithm to predict lower and upper bounds of interval system
responses from an arbitrary set of interval and deterministic input parameters.
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4.4.1 Gappy proper orthogonal decomposition for midpoint predictions

Without any missing data, an arbitrary snapshot Sj which belongs to a set of snapshots
can be approximated as a linear combination of the first K POD basis vectors Φ̂ and
an amplitude vector Â

j
as described in the previous subsection. The amplitude vector

is calculated by minimising the error norm

min. ‖ Sj − Φ̂ · Â
j
‖2L2 . (25)

The same least square approach can be effectively used to predict missing data of an
incomplete data snapshot. However, due to missing elements, the L2 norm in Eq. (25)
cannot be evaluated correctly. As a remedy, the GPOD algorithm, introduced in [51],
is using the concept of a gappy norm based on the available data. This method is based
on the conventional POD method for solving an unconstrained optimisation problem,
which approximately reconstructs the full data from the incomplete one. This concept
is already successfully applied in aerodynamics [53] for the data recovery of the flow
field.

Firstly, the GPOD algorithm is using a vector m to identify available and missing
data. Each element of m is defined as

mi = 0, for locations of unknown or missing data,
mi = 1, for locations of known data. (26)

Given the POD basis mΦ of an output system response snapshot set mS, where all
snapshots are known, and let mS∗ be another solution vector, that has some elements
missing, with a corresponding mask vector m, the goal is to produce the complete
vector from mS∗ with the assumption, that mS∗ can be characterised by the existing
snapshots set mS. An intermediate repaired vector mS̃

∗
can be expressed as truncated

POD basis vectors mΦ̂

mS̃
∗
≈ mΦ̂ · mÂ

∗
. (27)

By minimizing the error E = ‖ mS∗ − mS̃
∗
‖
2

n, the coefficient vector mÂ
∗

can be
computed by solving the least squares or linear regression problem

mM · mÂ
∗

= mR (28)

with

mM = (mΦ̂
T
,mΦ̂), mR = (mΦ̂

T
,mS∗) . (29)

Solving Eq. (27) with mÂ
∗

computed from Eq. (28), the intermediate repaired vector
mS̃

∗
is obtained. Finally, by replacing the missing elements in mS∗ by the respective

components in mS̃
∗

the complete vector of the output system response is predicted.
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4.4.2 Non-negative matrix factorisation for radius predictions

The GPOD approach cannot account for constraints with respect to the sign of the el-
ements in the factorised matrices. Therefore, we propose using the Non-negative Ma-
trix Factorisation (NNMF) as a matrix decomposition approach, which decomposes a
non-negative matrix into two low-rank non-negative matrices for radius predictions.
The NNMF was originally suggested by Paatero and Tapper [62, 63] as a concept of
Positive Matrix Factorisation concentrating on a specific application concerned with
Byzantine algorithms. Due to its simple and effective algorithmic implementation and
the potential value of part-based representation (see Lee and Seung [64]), the range of
applications of the NNMF method has increased and includes now a large variety of
scientific disciplines such as machine learning [65], signal processing [66], bioinfor-
matics [67] and economics [68]. Modern NNMF algorithms can be divided into four
categories: Standard, Constrained, Structured and Generalised NNMF. For a com-
prehensive review of the theory and the state-of-the-art of NNMF concepts we refer
to [69]. In this paper, the Standard NNMF is utilized for radius predictions. This
procedure is explained next.

Given a (n × m) non-negative matrix rS and a reduced rank k, the non-negative
matrix factorisation algorithm is searching for two non-negative matrices Wn×k and
Hk×m that approximate rS in the format

rS ≈W ·H . (30)

A corresponding optimisation problem is formulated in the Euclidean space as

min
W,H

1

2
‖ rS−W ·H ‖2F subject to, W,H ≥ 0 . (31)

Similar to the POD approach, W and H are denoted as the basis matrix and coeffi-
cient matrix, respectively. The minimisation problem in Eq. (31) can be solved by
multiplicative update rules as introduced in [70]. This algorithm, which is easy to im-
plement, does not guarantee to converge to a stationary point, see [71]. Therefore, the
alternating non-negative least squares algorithm proposed in [71] is used in this paper,
which ensures to converge.

The GPOD procedure can now be followed with some minor modifications to pre-
dict missing data of a non-negative vector containing the radiuses S+. The corre-
sponding objective function E = ‖ S+ −W ·H ‖2n to be minimised contains the dis-
tances between the available incomplete data vector and the predicted vector. The
non-negative basis matrix W is assumed to be known from the available non-negative
data matrix rS. The coefficient vector H is obtained accounting for the non-negativity
constraint by solving the non-negative least squares problem

rM ·H = rR , (32)

with

rM = (WT,W) rR = (WT, rS+) . (33)
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In this paper, the non-negative-constrained least squares problem in Eq. (32) is solved
by an algorithm introduced in [72]. Finally, similar to the GPOD approach, the goal to
predict a complete vector for the radiuses of the output system response (the interval
settlement field of time step n+ 1) is accomplished by replacing the missing elements
in S+ by the respective components in S̃

+
, with S̃

+
≈W ·H.

5 Numerical applications

5.1 Verification example

The proposed hybrid surrogate modelling approach for interval data is illustrated by
means of a verification example adopted from structural analysis. In this verification

[8]P[1]P

6 7 8 101 43 5

l

a
y

11

E = [28,36] GPa
I  = 0.01 m4

l  = 10 m
11  nodes
9    load positions

x

load position

Figure 7: Verification example for the proposed hybrid surrogate model with interval
data: Beam subjected to a moving single load.

example, the interval bounds of the deflection S̄ of a simply supported beam with a
deterministic moving load P along the length of the beam are investigated (see Figure
7). The modulus of elasticity of the beam is defined as an interval Ē = [28, 36] GPa.
The single load P (t) is assumed as a time variant parameter moving along the beam
from node 1 to 9. The scenarios for the temporal change of P (t) in each time step can
be arbitrary, but P (t) is assumed not to exceed a range from 10 kN to 100 kN.

The objective of this verification example is to predict the interval deflection of the
complete beam when the load P (t) moves to the final position, i.e at a = 9 m with a
given scenario for the moving load changing P (t) stepwise from a = 1, 2, . . . 8 m as
shown in Figure 8. It is assumed that only the interval deflections at nodes 2, 6 and 10
(i.e. for x = 1, 5 and 9 m) can be measured. The deflections at the other nodes (the
beam is discretised into 11 nodes) need to be predicted by the hybrid RNN-GPOD
surrogate model. The final predictions of the surrogate model are compared with the
analytical solution obtained from the following equations

ȳ(x) =
P (l − a)x

6lĒI
(l2 − x2 − (l − a)2), for 0 < x < a (34)

ȳ(x) =
P (l − a)

6lĒI

[
l

l − a
(x− a)3 + (l2 − (l − a)2)x− x3

]
, for a < x < l .(35)
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Figure 8: An arbitrary scenario of changing and moving load P (t).

Theoretically, a deterministic surrogate model based on analytical results should
be built to provide interval bounds for all beam nodes from step 1 to 8 using an opti-
misation approach. However, from the above equations, the upper bounds and lower
bounds of the interval deflections can be directly calculated with interval arithmetic
given the lower and upper bounds of Ē. 48 snapshots are generated based on a combi-
nation of 8 different intervals of Ē and 6 scenarios of changing P (t) to create the sur-
rogate models. Each snapshot contains the interval displacements of 11 nodes of the
beam from time step 1 to 8. The snapshots data set is divided into sets for midpoints
and radiuses as introduced in the previous subsections. The verification procedure can
be split into the following steps:

1. Given an arbitrary interval of Ē and an arbitrary scenario of changing P (t) from
step 1 to 8 (which are not used to generate the surrogate models), the midpoints
mS and the radiuses rS of the interval deflections at all 11 nodes from step 1 to
8 are obtained by the POD-RBF approach. Consequently, the upper and lower
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bounds are computed according to Eqs. (4) and (5).

mS =



0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.455 1.103 0.405 0.403 0.428 0.734 0.116 0.208
0.786 2.018 0.761 0.768 0.821 1.416 0.224 0.403
0.983 2.593 1.020 1.056 1.145 1.991 0.317 0.571
1.062 2.837 1.145 1.228 1.364 2.406 0.386 0.700
1.039 2.798 1.145 1.258 1.445 2.610 0.425 0.777
0.932 2.522 1.041 1.160 1.364 2.548 0.425 0.788
0.758 2.057 0.853 0.960 1.145 2.190 0.378 0.720
0.534 1.450 0.604 0.682 0.821 1.592 0.282 0.560
0.275 0.749 0.312 0.354 0.428 0.836 0.150 0.306
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000



rS =



0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.042 0.101 0.040 0.040 0.042 0.071 0.015 0.021
0.073 0.185 0.074 0.076 0.080 0.136 0.029 0.042
0.092 0.238 0.100 0.105 0.112 0.191 0.040 0.059
0.099 0.260 0.112 0.122 0.133 0.231 0.049 0.072
0.097 0.256 0.112 0.125 0.141 0.251 0.054 0.080
0.087 0.231 0.102 0.115 0.133 0.245 0.054 0.081
0.071 0.189 0.083 0.095 0.112 0.210 0.048 0.074
0.050 0.133 0.059 0.068 0.080 0.153 0.036 0.058
0.026 0.069 0.031 0.035 0.042 0.080 0.019 0.032
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000



The individual errors between approximation and analytical results of upper and
lower bounds defined as

error =

√√√√∑N
i=1(Si

approx − Si
analytical)

2∑N
i=1(Si

analytical)
2

× 100%. (36)

are 3.4% and 5.4%, respectively.

2. Perform the POD procedure for the midpoint matrix mS. The input are the
snapshots matrix mS (11×8) and the desired accuracy E = 99.9. The output are
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the truncated POD basis vectors mΦ̂ (11×2).

mΦ̂ =



0.000 0.000
−0.157 0.320
−0.293 0.482
−0.386 0.414
−0.436 0.183
−0.443 −0.102
−0.410 −0.328
−0.338 −0.412
−0.238 −0.361
−0.123 −0.207

0.000 0.000


3. Perform the NNMF procedure for the radius matrix rS. The input are the snap-

shots matrix rS (11×8) and the reduced rank number k = 3. The output are the
non-negative basis vectors W (11×3).

W =



0.000 0.000 0.000
0.159 0.413 0.111
0.303 0.520 0.217
0.409 0.319 0.315
0.461 0.073 0.395
0.454 0.000 0.446
0.395 0.141 0.452
0.303 0.361 0.404
0.198 0.457 0.304
0.097 0.304 0.163
0.000 0.000 0.000


4. Predict the midpoints and the radiuses of the interval deflections at nodes 2, 6

and 10 (i.e. x = 1, 5 and 9 m) in time step 9 by the midpoint RNN and the radius
RNN, respectively. First, the patterns of input-output data at the 3 selected nodes
are used for training and setting up the RNN surrogate models. Afterwards, an
arbitrary input scenario of moving load P(t), e.g. the scenario illustrated in
Figure 8, is considered as the input. The outputs are the deflections at the 3
selected nodes (midpoints and radiuses). For the midpoint prediction a RNN
with one hidden layer containing 7 hidden neurons was sufficient. The radius
RNN required two hidden layers with 10 neurons per layer. In both networks, a
delay of one time step has been selected for the context neurons.

mS̄RNN =

0.372
1.165
0.477


mS̄analytical =

0.311
1.175
0.514
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rS̄RNN =

0.035
0.142
0.055


rS̄analytical =

0.039
0.147
0.064


The errors computed by Eq. (36) for the predicted midpoints and radiuses of the
selected points are 5.4% and 6.6%, respectively.

5. Predict intervals of deflections of all 11 nodes of the beam in time step 9. The
input are the snapshots matrices mS (11×8), rS (11×8), the mask vector m,
the incomplete vector mS∗, and the incomplete vector rS∗. The output is the
complete vector S̄∗.

As introduced in the previous sections, the proposed surrogate model consists of
three different parts: POD-RBF, RNN and GPOD-NNMF. To verify the capabilities of
each component as well as of the combination of all three components, three variants
of surrogate models are established and investigated in Table 5: The surrogate model
A uses the results from the analytical solution instead of predicted results from the
first two methods to show the capability of the GPOD-NNMF method. The surrogate
model B replaces the predicted results from the second method with analytical results,
i.e. it combines the analytical model with the POD-RBF and the GPOD-NNMF. Fi-
nally, the proposed surrogate model, characterised by the combination of the three
methods is denoted as surrogate model C.

Table 5: Investigation of different variants of surrogate models.
Surrogate model Upper bound error (%) Lower bound error (%)

A 3.9 4.0
B 3.7 4.4
C 6.8 8.4

S̄∗
A =



[0.000, 0.000]
[0.272, 0.350]
[0.475, 0.618]
[0.719, 0.932]
[0.923, 1.199]
[1.028, 1.321]
[1.077, 1.379]
[0.955, 1.221]
[0.712, 0.909]
[0.450, 0.579]
[0.000, 0.000]


S̄∗

B =



[0.000, 0.000]
[0.272, 0.350]
[0.468 , 0.625]
[0.720, 0.932]
[0.937, 1.193]
[1.028, 1.321]
[1.073, 1.381]
[0.942, 1.231]
[0.695, 0.923]
[0.450, 0.579]
[0.000, 0.000]


26



1 2 3 4 5 6 7 8 9 10 11

0

0.2

0.4

0.6

0.8

1

1.2

1.4

lower bound analytical
upper bound analytical
lower bound A
upper bound A
lower bound B
upper bound B
lower bound C
upper bound C

D
efl

ec
tio

n 
(m

m
)

Beam nodes

Figure 9: Comparison of predictions from different surrogate models (A, B and C)
with the analytical solution.

S̄∗
C =



[0.000, 0.000]
[0.337, 0.407]
[0.567, 0.714]
[0.806, 1.012]
[0.980, 1.232]
[1.022, 1.307]
[1.030, 1.319]
[0.889, 1.147]
[0.648 , 0.847]
[0.422, 0.532]
[0.000, 0.000]


S̄∗
analytical =



[0.000, 0.000]
[0.272, 0.350]
[0.528, 0.679]
[0.750, 0.963]
[0.922, 1.186]
[1.028, 1.321]
[1.050, 1.350]
[0.972, 1.250]
[0.778, 1.000]
[0.450, 0.579]
[0.000, 0.000]


Figure 9 shows a comparison of predictions using different surrogate models to-

gether with the analytical solution. The errors for the predicted upper and lower in-
terval bounds of all nodes using the complete proposed surrogate model are 6.8% and
8.4%, respectively.

5.2 Settlement predictions in mechanised tunnelling

This section presents an application of the proposed surrogate modelling scheme for
interval geotechnical data to a mechanised tunnelling process based on a synthetic
example. The interval results obtained from the proposed method are compared with
the reference solution based upon an optimisation approach presented in [27] in terms
of prediction accuracy and computation time. The deterministic surrogate model is
first trained by means of the finite element model ekate described in Section 2.
Details of the capability of the surrogate model for processing deterministic data can
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Figure 10: Numerical simulation model of a tunnel section. Geometry and finite
element discretisation.

be found in [73, 27]. Afterwards, the interval results computed with the optimisation
approach are utilised to train the proposed hybrid RNN-GPOD surrogate model with
interval data to predict the interval bounds of the surface settlements for further time
steps of the mechanised tunnelling process.

In this example, a tunnel of 8.5 m diameter is assumed to be constructed by a tunnel
boring machine with a centre line depth of 12.75 m. The dimension of the soil block in
this example are 48 m, 170 m and 55.25 m in X, Y, Z-direction, respectively. Figure 10
shows the geometry and the finite element discretisation of the tunnelling model. The
effect of the stiffness of two existing buildings located at the surface is considered
by placing rectangular plate-like substitute models with an equivalent thickness of
5 m and a stiffness of 50 GPa at the top of the discretised soil body, which consists
of 11,072 quadrilateral two-field finite elements with quadratic approximations for
the displacements and linear approximations of the water pressure (Figure 10 and
Figure 11).

The excavated domain comprises two layers of soft soil as shown in Figure 10. It
is assumed, that the TBM advances completely within the clay layer (soil layer 1).
In this application, the elastic modulus of layer 1 is taken as an uncertain parameter
defined by an interval. A Drucker-Prager plasticity model is used to model the soil
behaviour of both layers. The behaviour of the lining shell and the shield machine
are assumed to be linear elastic. The tunnel advancement process is simulated via a
step-by-step procedure including individual phases as described in Section 2.

Considering, that beyond a distance of 42 m in Y-direction from both sides of the
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tunnel axis, the surface settlements are almost zero, an effective rectangular surface
area with 105 grid points as illustrated in Figure 11 is considered for the generation
of the surrogate model. It is assumed, that the current state of the TBM advance cor-
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Figure 11: Surface area used for settlement predictions.

responds to the 22nd step of the excavation process. The proposed hybrid surrogate
modelling approach is employed to predict the complete interval surface displacement
field in the subsequent excavation step (step 23) based upon the interval input param-
eter Ē1 of the soil layer 1 and the recorded history of the process parameters. In this
application example, the interval settlements of 11 selected monitoring points are pre-
dicted by the RNN approach at time step n + 1, i.e. for the advancement step 23.
Subsequently, the complete surface displacement field will be approximated with the
GPOD and NNMF method under consideration of interval data.

In order to create the deterministic surrogate model, different parameters were var-
ied within specified ranges and afterwards combined to generate simulation scenarios.
In this study, these parameters are the Young modulus of the first soil layer E1 and
the grouting pressure at each excavation step [n]P , n=1 . . . 22. The parameter range
is 20 to 110 MPa for E1 and 130 to 230 kPa for [n]P , respectively. As mentioned
before, the proposed approach is compared with the reference solution obtained from
employing an optimisation approach in an interval analysis assuming Ē1 as an interval
Ē1 = [45, 52] MPa, see [27]. For that purpose, the interval bounds of the surface field
from time step 1 to 22 are constructed based on the deterministic surrogate model with
the optimisation approach.

Figure 12 shows a comparison between the predicted settlements at all 105 points
distributed within the area of influence of the tunnelling process and the reference so-
lution obtained with the optimisation approach. The prediction shows a good accuracy
with respect to the reference solution in both the upper and lower bounds. The errors,
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Figure 12: Absolute prediction error of the lower and upper interval settlement bounds
at 105 points within the investigated area defined in terms of the reference solution
[27]

calculated by

error =

√∑N
i=1(Sopt

i − S∗
i )

2∑N
i=1(Sopt

i )2
× 100% , (37)

are 6.2% and 8.9% for the lower and upper bounds, respectively. The largest absolute
error is just 1.9 mm, which shows that the prediction capability is appropriate to be
used for practical applications. Additionally, the interval bounds computed by the
optimisation approach are compared with results of a Monte Carlo simulation, as e.g.
applied in [74]. Here, an analysis with a Monte Carlo simulation of 105 samples
together with the deterministic surrogate model described in [27] was carried out.
The interval results obtained from the Monte Carlo simulation have shown a very
good agreement with the one from the optimisation approach. The difference of the
lower and upper interval bounds of the settlements computed from the two approaches
was recorded less than 1% for the given interval modulus of elasticity of soil layer 1
Ē1 = [45, 52] MPa and several grouting pressure scenarios. This comparison confirms
the reliability of the proposed surrogate model approach for practical applications.

In Figure 13, the computed interval settlement field is represented by its lower
and upper bounds. The most important benefit of the proposed approach is that the
computation time is significantly reduced compared to the optimisation approach. To
obtain the interval bounds from the optimisation approach, the required computation
time is around 1.5 hours. Meanwhile the proposed approach needs only 4 seconds to
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Figure 13: Interval field of tunnelling induced surface settlements with Ē1 =
[45, 52] MPa.

predict the interval settlement field with similar accuracy.

6 Conclusions

In the paper, a hybrid surrogate modelling strategy based on Recurrent neural Net-
works and Proper Orthogonal Decomposition Approaches has been developed to pre-
dict time variant settlement fields induced by mechanised tunnelling. The proposed
method allows to predict the surface settlements during the tunnel construction in real
time for selected scenarios of the TBM steering parameters (e.g. the face and the
tail void pressure), taking uncertain geotechnical parameters into account. The hybrid
surrogate model parts are created (i.e. trained and tested) by finite element analyses
using a process-oriented numerical simulation model taking all relevant components
of a tunnel construction process (soil and groundwater conditions, tunnel lining, the
TBM with shield and hydraulic jacks, tail void grouting and face support) and their
interactions into account.

The uncertainty of geotechnical parameters is quantified by intervals, which are
provided as ranges in the geotechnical reports of tunnelling projects. In order to
achieve real-time prediction capabilities with uncertain geotechnical parameters, the
hybrid RNN-GPOD surrogate model for deterministic data, which has been previ-
ously developed by the authors, has been extended to process interval data by means
of the midpoint-radius representation. In comparison to the optimisation approach
for interval analysis, the computational time is significantly reduced by the proposed
strategy. This has been illustrated in the application example, for which the optimisa-
tion approach required 1.5 hours while the new approach based on the midpoint-radius
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representation required only 4 seconds to compute the interval bounds of a settlement
field with 105 settlement components with a similar accuracy. With such a fast re-
sponse, the proposed strategy can by utilized for real-time predictions to support the
machine driver in steering the TBM, as it enables to quickly investigate the conse-
quences of certain process parameters on the expected settlements in the subsequent
excavation stages.

Future developments of the proposed approach include the implementation of fur-
ther sub-models into the planned TBM steering assistant system, e.g. considering
reliability and risk based measures such as tunnel face stability, the risk of damage of
the tunnel lining and the damage of existing buildings. In addition, more advanced
scenarios with multiple uncertain parameters will be considered. In this case, the
number of training samples has to be increased to guarantee a good accuracy of the
hybrid surrogate model. Currently, a strategy is developed, which allows to reduce
the initial epistemic uncertainty of the geotechnical parameters, i.e. the range of the
computed settlements, by updating the resulting interval settlement field by means of
deterministic monitoring data measured during the tunnel construction process.
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cepts for Reliability Analyses in Mechanised Tunnelling – Part 1: Theory”, in
G. Meschke, J. Eberhardsteiner, T. Schanz, K. Soga, M. Thewes (Editors), Pro-
ceedings of the Third International Conference on Computational Methods in
Tunnelling and Subsurface Engineering (EURO:TUN 2013), pages 791–799.
Aedificatio Publishers, Bochum, 2013.

[9] J. Stascheit, S. Freitag, M. Beer, K. Phoon, J. Ninić, B. Cao, G. Meschke, “Con-
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