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Selective Laser Melting of Aluminium Alloys 

Nesma T. Aboulkhair*, Nicola M. Everitt, Ian Maskery, Ian Ashcroft, Chris Tuck  

Metal additive manufacturing (AM) processes, such as selective laser 

melting, enable powdered metals to be formed into arbitrary 3D shapes. For 

aluminium alloys, which are desirable in many high-value applications for their 

low density and good mechanical performance, selective laser melting is regarded 

as challenging due to the difficulties in laser melting aluminium powders. 

However, a number of studies in recent years have demonstrated successful 

aluminium processing, and have gone on to explore its potential for use in 

advanced, AM componentry. In addition to enabling the fabrication of highly 

complex structures, selective laser melting produces parts with characteristically 

fine microstructures that yield distinct mechanical properties. Research is rapidly 

progressing in this field, with promising results opening up a range of possible 

applications across scientific and industrial sectors. This paper reports on recent 

developments in this area of research as well as highlighting some key topics that 

require further attention 
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Introduction to selective laser melting  

Many industrial sectors are now benefiting from the possibility of 

fabricating intricate structures using additive manufacturing (AM) technologies to 

achieve the objectives of light-weighting, increased functionality and part number 

reduction. They also have the potential to fulfil demands for reducing the cost and 

design-to-manufacture time through savings on raw materials and replacement of 

a series of production processes by a single step process 1, 2, hence reducing lead 

times in multi-process fabrication 3-7. Selective laser melting (SLM) is from the 

family of powder bed AM techniques. SLM involves a series of steps, principally 

powder deposition and laser scanning 8, conducted within an inert controlled-

atmosphere chamber to avoid oxidation 9. The parts are normally built on a 
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temperature-controlled build-plate which acts as a heat sink and aids in heat 

dissipation by lowering the thermal gradient 10, avoiding part curling due to non-

uniform thermal expansion 11.  

Modern AM dates back to the mid-1980s and expanded during the late 

1980s and early 1990s principally as a method for manufacturing prototypes 

quickly 12, 13. Only recently has AM been considered part of a new industrial 

revolution 14. A description of the evolution of AM can be found in 15. SLM is 

gaining wide popularity across industrial and scientific research sectors 13, 16 for 

applications in the aerospace, automotive, and biomedical fields 17. Components 

are fabricated from loose powder with comparable physical shape and properties 

and often even superior to those conventionally-manufactured (CM) 4, 18. Part of 

the interest in SLM is driven by raising the level of automation in the 

manufacturing sector along with the production rates 19. As a powder-bed process, 

SLM offers the geometrical flexibility to fabricate parts 20 that in many cases 

cannot be manufactured using CM 4, 14; such as the examples in Figure 1. SLM 

promotes the possibility of producing highly-customized products 14 in low-to-

medium quantities 18, 21. Another benefit is eco-design optimization where 

significant structural light-weighting is possible, with a typically 50% weight-

reduction 22. SLM is also a promising technique to manufacture functionally-

graded multi-material parts 5, 23, 24.  
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Figure 1. Examples of complex structures manufactured using selective laser melting at the Centre for 

Additive Manufacturing (CfAM) laboratories at The University of Nottingham: (a) a stainless steel 

diamond lattice structure, (b) titanium designer necklace designed by Carrie Dickens, and (c) a jaw 

bone made from stainless steel. 

In SLM, a thin layer of feedstock powder is deposited by a wiper or roller 

mechanism. A laser then scans across the powder-bed line-by-line, melting the 

powder into cylindrical segments 25; referred to as scan tracks (Figure 2a) or melt 

pools (Figure 2b). Scan tracks are similar to laser welds with the characteristic 

chevron pattern on top 26. SLM samples are built up through metallurgical 

bonding of scan tracks overlapping in the horizontal and vertical directions 

(Figure 2c). 

There are numerous useful reviews on metal AM, such as 12, 28. The reader 

is directed to reference 29 for a generic review on AM processes. A review 

focusing on SLM of Al alloys 30 was published in 2015, however, a lot of 

progress has been made in this area of research after this date, which is included 

in this review. This review contributes to integrating the various aspects of the 

SLM process for Al alloys in the literature, which is beneficial to the academic 

community and various industrial sectors interested in SLM of Al alloys, such as 

the automotive and aerospace industries. A focus is the correlation between the 

process and the resultant microstructure, mainly governed by the mode of melting 
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and solidification behaviour, as well as the local and bulk mechanical behaviour 

of the material.  

       

 

 

 

 

 

 

 

 

Figure 1: (a) Characteristic chevron pattern on top of an AlSi10Mg single track processed by SLM on 

an LM6 as-cast substrate and (b) cross-sectional view (A-A) of a single melt pool showing evidence of 

keyhole-mode melting, (c) isometric view for the orthogonal planes of a selectively laser melted cube 

from AlSi10Mg showing the overlapping tracks building up the part 27. 

The suitability of aluminium alloys for SLM  

A great deal of SLM research to date has focussed on the fabrication of 

steel and titanium components. Paving the way for SLM to become an attractive 

alternative to subtractive and forming CM requires widening the range of usable 

materials. Aluminium alloys are characterised by low density (2.7 gm/cm3), high 

strength 31, adequate hardenability 32, good corrosion resistance 33-35, and excellent 
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weld-ability 32, making them suitable for use in a range of applications 36, such as 

automotive, defence and aerospace equipment manufacturing, and machinery and 

tools production 32, 33, 35. The possibility of manufacturing advanced lightweight 

Al parts using SLM opens up additional application opportunities and promotes 

the use of difficult-to-machine alloys. Examples of Al alloys examined for 

manufacture by SLM are shown in Table I, with AlSi10Mg having so far received 

the most attention. Further details on the classification of the Al alloys studied for 

SLM in the literature are available in 37. 

Table I: Summary of works done in the field of SLM of Al alloys in the different focus areas 

listing the references. 

Al alloys 
Single tracks & 

layers 

Material 

qualification 

Microstructure 

& heat 

treatment  

Mechanical 

properties 

AlSi10Mg 26, 47 38, 45 43, 48-52 20, 49, 52, 53 

Al-2618 54 54   

Al-2219 54 54   

Al-6061  44   

Al-7075  46 46 46, 55 

A357  56  56 

AlSi50    57, 58 

AlSi12  42, 59 60 42, 60 

Al–20Si–5Fe–3Cu–1Mg   61  

 

The challenges of processing aluminium alloys by SLM 

As much as AM is finding its way into commercialization at a fast rate, 

not many materials are currently process-able 13, 17. Compared to many other SLM 

candidate materials, Al alloys are challenging to process 38. Aluminium powders 

are inherently light with poor flow-ability 38, 39, high reflectivity in the typical 

SLM laser wavelength range, and high thermal conductivity 34, 40. Laser 
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absorption of Al is poor 40 suggesting the need for high laser power to overcome 

the rapid heat dissipation 35. They are highly susceptible to oxidation 8, 33, 41, 42, 

which promotes porosity 40, 43, 44 alongside their low melt viscosity 40. The major 

challenges addressed in the literature include minimizing porosity 22, 38, 45 and 

cracking 46.  

Numerous processing parameters are associated with SLM. These are 

known to affect the quality of the manufactured parts 38, with ‘unoptimised’ 

parameters introducing defects, mainly porosity 32, 62. The set of optimized 

parameters varies from one SLM machine to another and between materials. 

Therefore, “Material Development/Qualification Research” 14, 19 is crucial for the 

success of the process. The most frequently examined parameters 8 are the 

processing environment, powder properties, layer thickness, laser power, scan 

speed, hatch spacing, and scan strategy 27.  

SLM is conducted under inert atmosphere, typically argon 38, 45. Wang et 

al. 42 reported the type of inert gas to have no effect on densification. However, 

Ferrar et al. 4 stated that the gas flow rate within the SLM chamber controls the 

amount of condensate and spatter removed during processing; these ejecta are 

generated by the laser-material interaction 63, 64, with the amount of spatter related 

to the laser power and spot size 14. Their structure and chemical composition were 

shown by Simonelli et al. 64 to be different from the feedstock powder. Inefficient 

removal of the spatter might lead to its entrapment as inclusions in the final parts, 

as has been observed by Aboulkhair et al. 53, affecting final part densities.  

There are some prerequisite powder properties to accommodate the 

successive deposition of uniform powder layers 5, 38. Powder of a particular alloy 

can have different properties depending on the method of its manufacture and its 

processing history. Low porosity, higher quality parts are generally achieved 

when using powders complying with the process requirements 39. This involves 

having spherical morphology, good flow-ability and packing density, minimal gas 

pores, and Gaussian particle size distribution. The flow-ability and apparent 

density of powders are improved by having particles of a spherical morphology 6 

with a uniform Gaussian size distribution. The presence of gas phases in the 
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starting powder significantly suppresses densification 65, 66. Pre-heating the 

powder is recommended to improve its laser absorptivity 67 and enhance 

densification 59. Also, the use of the pre-sinter scan strategy 38 has been shown to 

significantly remedy powder-induced defects with powder that does not fully 

comply with the abovementioned requirements, yielding parts with a relative 

density that was comparable to those processed from higher quality powders 39. It 

is important to consider the chemical composition of an alloy to be used in SLM 

since some chemical elements can make an alloy susceptible to cracking, as is 

common in difficult-to-weld alloys, such as Al-7075. Altering the chemical 

composition by adding elements that hinder cracking has been demonstrated to 

improve the process-ability, such as when amounts of Si were added to the Al-

7075 to improve the fluidity, therefore eliminating the cracks 46.  

The consolidation of continuous single tracks can be used to determine a 

suitable range for laser power and scan speed for low porosity manufacture, as 

well as to define the layer thickness and hatch spacing through examination of the 

melt pool shape 68. The basic requirements of single tracks can be found in 26, 65. 

The stability of the melt pool is controlled by the processing parameters 25, 54. The 

laser power and speed affect the width and depth of a scan track (Figure 2b), 

whereas its length is governed by the laser power and material’s absorptivity 62. 

Defects, such as satellites, balling, irregularities, and discontinuities 26, can arise 

in Al tracks when the laser scan speed increases beyond a critical limit. Slower 

speeds are favoured because they increase the melt volume and enhance 

wettability rather than balling 32. Aluminium’s conductivity-reflectivity balance 69 

results in keyhole-mode melting rather than conduction mode 26, as demonstrated 

by the high depth-width ratio of the melt pool 69 in Figure 2b. The shape of the 

melt pool, whether spherical or conical, is an important factor when optimising 

the process parameters; the objective is to ensure sufficient overlap of the melt 

pools to create a consolidated defect-free layer through metallurgical bonding of 

adjacent scan tracks 70. The conically-shaped melt pool in the case of Al requires 

the use of a narrow hatch spacing to create a consolidated layer, avoiding the 

formation of gaps towards the bottom through diminishing the intra-layer bonding 
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38. However, narrow hatch spacing results in slower rates of production, whilst 

larger hatch spacing impose a limitation on the maximum layer thickness 70. 

Increasing the layer thickness promotes the formation of defects in tracks and 

layers 26, hindering the deposition of uniform layers to build a multi-layered part. 

Furthermore, a large layer thickness results in reducing the re-melted depth 26.  

Two types of pores form during Al SLM, namely metallurgical and 

keyhole pores. The type of pore is scan speed dependent. A critical scan speed can 

be defined 38, below which metallurgical (spherical) pores form and above which 

keyhole (irregular) pores are created. Altering the scan strategy has been 

employed with the aim of controlling the microstructure, minimizing the residual 

stresses 43, 71, and remedying defects, such as porosity 38.  

The metallurgy of SLM Al alloys 

A series of thermal processes during SLM 12 affect the resulting 

microstructure. Solidification occurs at a very fast rate producing a typically fine 

microstructure 38 and metastable phases 72. The fine microstructure of SLM parts 

is in stark contrast to the generally coarse microstructures developed by CM 

processes 32, and can be quite attractive for some applications. In addition, the 

material is re-melted more than once due to penetration of the laser beam and heat 

transfer. The microstructure within the melt pools of the scan tracks 26, layers 26, 

73, and multi-layered parts 38, 43, 45, 49 has been repeatedly reported. Each melt pool 

is divided into three regions; the melt pool core, the melt pool boundary, and the 

heat affected zone (Figure 3a). The layer-based manufacturing approach results in 

microstructures that are non-homogeneous. Viewed perpendicularly to the build 

direction BD, the grains are equiaxed; being finer towards the melt pool core 43 

(Figure 3b). Parallel to the BD, the grains at the melt pool boundaries are 

elongated, with finer equiaxed grains at the cores 38, 43 (Figure 3c). Cellular-

dendritic solidification produces fine equiaxed grains in the melt pool core due to 

proximity to the heat source and rapid solidification, with Si in the form of 

continuous segregations on the boundaries of α-Al cells 74, whereas grains at the 

melt pool boundary are columnar with inter-dendritic Si 43. The dendritic growth 

indicates directional solidification along the thermal gradient, i.e. pointing 
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towards the moving heat source. Fast solidification also resulted in a fine and 

quite homogeneous dispersion of the alloying elements 48 (Figure 3e and f). 

Prashanth et al. 74 provided a clear explanation of the solidification process in 

SLM of Al-Si alloys attributing the formation of the cellular structure to the 

amount of undercooling. During solidification, Si is rejected into the liquid 

increasing the solute concentration. As per the Al-Si phase diagram, the solubility 

of Si in Al is reduced at lower temperatures but it can be extended by fast cooling. 

Therefore, the amount of Si rejected in the liquid during rapid cooling is reduced 

decreasing the solute concentration in the liquid as well as the undercooling. 

Rapid solidification changes the solute distribution drastically 75. Thus a cellular 

structure is favoured in which α-Al solidifies first in a cellular morphology 

leaving the remaining Si as segregations at the boundaries.   

 

       

(a) 

MP core 

MP boundary 
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Melt pool core Melt pool boundary 
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Figure 2: The microstructure of SLM AlSi10Mg showing (a) the three regions of microstructure within 

the melt pools divided into fine grains, coarse grains, and heat affected zones HAZ 43, (b) equiaxed 

grains observed on the plane perpendicular to the build direction with coarser grains at the melt pool 

boundary, and (c) fine equiaxed grains at the melt pool core and coarser elongated grains at the melt 

pool boundary as seen in the plane parallel to the build direction 48. (d) SEM image demonstrating a 

similar microstructure achieved for AlSi12 using SLM with (e and f) EDX maps showing the good 

dispersion of the alloying elements 74. 

During solidification, a fraction of the grains grow faster in preferred 

orientations, i.e. formation of a crystallographic texture develops in the material 43 

due to the directional solidification and layer-by-layer fabrication (Figure 4a). 

Thijs et al. 43 reported the crystallographic texture of AlSi10Mg to change from a 

strong fibre texture to a weak cubic texture by changing the scan strategy (Figure 

4b).     

Al Si 
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Figure 3: (a) EBSD orientation maps for SLM AlSi10Mg samples processed using the meander scan 

strategy and (b) the effect of changing the scan strategy on the crystallographic texture of the SLM 

AlSi10Mg material 43.     

The response of SLM Al to various post-manufacture heat treatments has 

been investigated in the literature. Annealing SLM Al-20%Si 76, Al-12%Si 74, and 

AlSi10Mg 50, 77 led to Si diffusion to form particles (Figure 5a). As the treatment 

temperature or duration increased, the microstructure coarsened 74. Heat treating 

AlSi10Mg 20, 48 and 7075 46 using solution heat treatment followed by artificial 

ageing (T6) also returned the same phase transformation (Figure 5b), 

(a) 

(b) 
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spherodisation (Figure 5c). Both heat treatment procedures dissolved the melt 

pools and dendritic structure. As the treatment duration increased, Si had a longer 

duration to diffuse and formed larger particles, decreasing their spatial density and 

increasing their size 48.   

    

 

Figure 4: The microstructure of SLM AlSi10Mg after annealing heat treatment (a) 50 and solution heat 

treatment followed by artificial ageing (b) 48. Both heat treatments promoted spherodisation phase 

transformation as illustrated in (c) 74. 

The mechanical performance of SLM Al alloys 

Material-laser interaction and rapid solidification due to high cooling rates 

(~ 105 K/s 60) lead to microstructural modifications that can yield enhanced 

material properties 36 compared to CM material, e.g. cast material 45. Mechanical 

characterization to assess the feasibility of using SLM for structural parts is 

ongoing, as demonstrated by the examples in Table II. Also, a summary of the 

tensile mechanical properties of SLM Al alloys reported in the literature can be 

found in 37. Generally, SLM parts are characterized by high residual stresses 

arising from high energy density and rapid solidification 78. High residual stresses 

in SLM AlSi12 (~36 MPa) were reduced by almost 90% by using a heated-build 

plate and post-process stress relief treatment 79. The microstructure and porosity 

controlled by the process parameters influence the mechanical behaviour 20. The 

25 µm 

(a) (b) 

(c) 
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fine microstructure and good distribution of alloying elements (at the scale of 

several tens of microns) in SLM yield uniform local mechanical properties across 

the melt pools 49. The global mechanical properties of SLM materials are 

comparable to those of their conventionally processed counterparts. Mechanical 

anisotropy is affected by the material’s crystallographic texture 80, 81, which is 

attributed to the process parameters 43, 80. The layer-by-layer fashion in which the 

parts are built in SLM results in a number of factors leading to anisotropy 82. 

These are: (1) the shape and size of voids, (2) the grain orientation and 

crystallographic texture with respect to the build orientation, and (3) the regions 

of interface between scan tracks and layers. When anisotropy is observed, better 

properties are generally seen along axes perpendicular to the BD 20, 22, 80, with the 

density of dislocations being dependent on the BD 81. However in some cases, no 

significant BD effect was observed 20, 45. 

Table II: A list of the studies in the literature that investigated the various mechanical 

properties of SLM Al alloys. 

 
AlSi10Mg AlSi12 AlSi50 A357 

Al-

7075 

Al-

2xxx 

Nano-hardness 26, 47, 49, 73 
 

   
 

Micro-hardness 22, 48, 80, 83  57  46 83 

Tensile behaviour 
22, 45, 49, 52, 

77, 80, 84 

42, 74, 79, 

85, 86 
 56 55  

Compressive 

behaviour 
49   

 46 
 

Fatigue performance 20, 53, 87, 88 60, 79, 86   55  

Fracture toughness   60     

Creep resistance 45      

Impact resistance 80      

Wear behaviour   57, 58    

 

Although several studies reported high tensile strengths for SLM parts 

compared with CM, this often comes at the expenses of low ductility. However, 

heat treatments such as annealing 76 and T6 procedures 49 can recover some of the 
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ductility without significantly reducing strength, providing a good compromise 

for applications which require both properties. The compromise between the SLM 

material’s strength and ductility that can be achieved via heat treatment is 

appealing for numerous applications when considering the material’s 

comparatively low density. A T6 heat treatment has been shown to soften SLM 

AlSi10Mg 48 and 7075 46. The strengthening factors in the as-built and heat-

treated materials were similar except for the grain size refinement factor in the 

former being replaced by the strengthening effect of dispersoids (Orowan) in the 

latter. The higher hardness in the SLM material indicates that the grain size 

refinement effect outweighed the dispersoid effect in this case.  

The presence of un-bonded powder inside SLM parts was reported for 

AlSi10Mg 38, 45, 6061 44, and 7075 55. Although these regions are relatively small, 

i.e. they will not significantly reduce the load bearing area under tension 45, they 

might be influential to fatigue. Defects in SLM parts act as stress concentrations, 

depressing fatigue life due to crack nucleation and growth 20, 78, 89-91. SLM Al has 

shown good performance under cyclic loading 20, 53. The potential effect of 

machining to improve the fatigue performance was emphasised in some studies in 

the literature 12, however, Aboulkhair et al. 53 provided evidence that machining 

may not improve the fatigue performance but rather increases the scatter in 

lifetime data. Heat treatment has been shown to considerably improve the fatigue 

performance 20, 53 due to the transformation of Si dendrites to spheroids that 

hinder crack initiation and propagation 20, 53. The optimum fatigue life can be 

achieved by a combination of heat treatment and surface machining. The 

enhancement in fatigue life via heat treatment was attributed to the induced 

ductility and relaxation of residual stresses. Failure under tensile and cyclic 

loading always originated at sub-surface defects and propagated along the melt 

pool boundaries, this being the weaker region since it is Al-rich. 

The future 

Despite the significant amount of work that has been done in the field of 

SLM of aluminium alloys, there are still areas that require the attention of the 

research and development community for a more mature impact on the industrial 
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sector. This section will highlight some of these areas, demonstrating their 

importance. 

SLM commonly uses readily available pre-alloyed metal powder. The 

development of new SLM tailored powder mixtures has strong potential. 

Blending metal powders with different properties is a promising route. This could 

be in the form of altering the composition of pre-alloyed powder through adding 

modifiers or designing new alloys as in the case of SCALMALLOY® 92. Coating 

Al or mixing it with elements that would enhance its absorptivity or surface 

tension could be a means for better material process-ability. The laser surface 

alloying literature 93-95 is rich with examples for improving the laser absorptivity 

through suitable additives. Depositing Cu on Al particles yielded particles with 

intermediate absorptivity and reflectance compared to the original elements 96. 

Sistiaga et al. 46 added Si to Al-7075 alloy to improve the fluidity of the alloy, 

reduce the thermal expansion, and decrease the solidification range; successfully 

hindering the cracking common in SLM of Al-7075, producing defect-free parts. 

Vora et al. 97 compared processing pre-alloyed AlSi12 powder to blended Al and 

Si powder to the same composition demonstrating lower residual stressed when 

using blended powders. A means for mixing powders without just blending is 

satelliting 98, 99 which is yet to be applied in SLM. Despite the potential in this 

approach, it is worth investigating the practicality of recycling the blended 

powders.  

 Several studies have stated the importance of using metal powders that 

have properties suitable for SLM. Standardizing properties of powders to be used 

for SLM is essential to cope with the process needs through producing powder 

with specifications meeting the process requirements. One of the appealing 

features in SLM is the ability to recycle the leftover powder. However, the 

literature on Al alloys lacks information on the threshold limit for powder 

recycling after which the quality of the produced parts and their mechanical 

performance is compromised. There are several studies on the powder recycling 

for other metal powders used in SLM 100, 101 but the findings cannot be 

generalised for all materials. This is due to the presence of laser spatter in the left 
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over powder that has been found to have different properties from an alloy to 

another 64. For example, the laser spatter from Ti-6Al-4V is not significantly 

different from the fresh powder, unlike AlSi10Mg spatter which has a distinct 

morphology and chemical composition.  

As has been demonstrated in Table I, most of the research to date has been 

with Al-Si casting alloys with less consideration of the high strength alloys. This 

is due to the relative ease of processing the former compared to the latter, which 

in most cases not easily weldable, which is also indicative that they are not easily 

processed by SLM. The success of processing a hard-to-process alloy, such as Al-

7075, through changing the chemical composition introduces the promising 

approach that is logical to adopt to widen the range of focus of aluminium alloys 

used in SLM. In addition to changing the chemical composition of alloys for 

better process-ability, chemical elements can be mixed into Al alloys with the aim 

of in-situ production of reinforced Al-based composites 102, 103, such as AlSi10Mg 

and SiC with multiple reinforcements yielding superior mechanical properties 104, 

105, TiC reinforced Al-Si-Mg nano-composite from a mechanically-alloyed 

AlSi10Mg and TiC 106, and TiC reinforced composite from mechanically-alloyed 

titanium, aluminium, and graphite 107. 
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