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Abstract 
System and survival signatures are important and popular tools for studying and analysing the reliability of 

systems. However, it is difficult to compute these signatures for systems with complex reliability structure 

functions and large numbers of components. This paper presents a new algorithm that is able to compute exact 

signatures for systems that are far more complex than is feasible using existing approaches. This is based on 

the use of reduced order binary decision diagrams (ROBDDs), multidimensional arrays and the dynamic 

programming paradigm. Results comparing the computational efficiency of deriving signatures for some 

example systems (including complex benchmark systems from the literature) using the new algorithm and a 

comparison enumerative algorithm are presented and demonstrate a significant reduction in computation time 

and improvement in scalability with increasing system complexity. 
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Notation 

𝑚  Number of components in the system 

𝐾  Number of component types in the system, where components of the same type have exchangeable 

random failure times 

𝑀𝑘  Number of components of type k 

𝑥𝑖   Boolean variable representing the state of component 𝑖 where 𝑥𝑖 = 1 if the component functions and 

𝑥𝑖 = 0 if the component is failed 

𝑥  Vector of length m representing the system component states where the value at index 𝑖 ∈ {1, … , 𝑚} 

corresponds to  𝑥𝑖 

𝜙  Boolean function representing the system reliability structure where 𝜙(𝑥) = 1 if the system functions 

with component state vector 𝑥 and 𝜙(𝑥) = 0 if the system is failed 

𝑓𝑥𝑖=𝑣  Boolean function f evaluated with Boolean variable 𝑥𝑖 = 𝑣 

𝑇𝑠  Random failure time of the system 

𝑇𝑙:𝑚  lth order statistic for the random component failure times 

𝑞𝑙  Probability that the system failure time coincides with the lth component failure (i.e. 𝑃(𝑇𝑠 = 𝑇𝑙:𝑚 )) 

𝑞  Vector of length 𝑚 known as the system signature where the value at index 𝑙 ∈ {1, … , 𝑚} corresponds 

to 𝑞𝑗 
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𝑆𝑙1,…,𝑙𝐾
 Set of state vectors for the m components that contain precisely 𝑙𝑘 functioning components of type k 

|𝑆𝑙1,…,𝑙𝐾
| Cardinality of 𝑆𝑙1,…,𝑙𝐾

 

𝑆  Multidimensional array with 𝐾  dimensions where the value at index (𝑙1, … , 𝑙𝐾)  in dimensions 

(1, … , 𝐾) respectively corresponds to 𝑆𝑙1,…,𝑙𝐾
 

|𝑆|  Multidimensional array with 𝐾  dimensions where the value at index (𝑙1, … , 𝑙𝐾)  in dimensions 

(1, … , 𝐾) respectively corresponds to |𝑆𝑙1,…,𝑙𝐾
| 

Φ̅𝑙1,…,𝑙𝐾
  Number of state vectors for the m components that both contain precisely 𝑙𝑘 functioning components 

of type k and result in the system functioning 

Φ̅  Multidimensional array with 𝐾  dimensions where the value at index (𝑙1, … , 𝑙𝐾)  in dimensions 

(1, … , 𝐾) respectively corresponds to Φ̅𝑙1,…,𝑙𝐾
  

Φ𝑙1,…,𝑙𝐾
 Probability that the system functions given that exactly (𝑙1, … , 𝑙𝐾) components of types (1, … , 𝐾) 

respectively function 

Φ  Multidimensional array with 𝐾 dimensions known as the survival signature where the value at index 

(𝑙1, … , 𝑙𝐾) in dimensions (1, … , 𝐾) respectively corresponds to Φ𝑙1,…,𝑙𝐾
 

𝐶𝑡
𝑘  Number of components of type k in the system that function at time 𝑡 > 0 

𝐹𝑘  Cumulative distribution function for the time to failure of components of type 𝑘 

𝐴‡ The complement of multidimensional array A 

𝐴 ⊕ 𝐵  Elementwise addition of multidimensional arrays A and B 

𝐴 ⊖ 𝐵  Elementwise subtraction of multidimensional array A from multidimensional array B 

𝐴 ⊘ 𝐵  Elementwise division of multidimensional array A from multidimensional array B 

𝐴 ⊞ 𝑘 Resize-k operation on multidimensional array A 

𝐴 ⊛ 𝑘 Shift-k operation on multidimensional array A 

1 Introduction 
The system signature, introduced by Samaniego [1], is a useful tool for studying the reliability of coherent 

systems [2]. Consider a coherent system of m components with independent identically distributed failure 

times. Let 𝑇𝑠 > 0 be the random failure time of the system and let 𝑇𝑗:𝑚 be the lth order statistic for the random 

component failure times with 𝑇1:𝑚 ≤ 𝑇2:𝑚 ≤ ⋯ ≤ 𝑇𝑚:𝑚.  The system signature is defined as the vector 𝑞 

where the value at index 𝑙 ∈ {1,2, … , 𝑚}, denoted 𝑞𝑙 , gives the probability that the system failure time 

coincides with the lth component failure 

𝑞𝑙 = 𝑃(𝑇𝑠 = 𝑇𝑙:𝑚)  (1) 

The system signature has various theoretical applications in reliability engineering such as establishing 

stochastic comparisons between the reliability of different systems [3,4]. An overview of the system signature 

and some of its applications in reliability engineering is given by Samaniego [2], whilst Eryilmaz [5] gives a 

review of recent advances. Recently, Coolen and Coolen-Maturi [6] introduced the survival signature which, 
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similar to the system signature, fulfils the role of a quantitative model of the system reliability structure that 

is entirely separated from the random failure times of the components.  The survival signature has the 

advantage that is can be easily generalised to systems with multiple types of components unlike the system 

signature for which this is practically impossible [6]. This generalisation represents a significant practical 

advantage since many systems contain multiple component types, including networks which contain at least 

two types of component (‘nodes’ and ‘links’). Let 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑚) ∈ {0,1} 𝑚 represent a Boolean state 

vector for a system of m components with exchangeable failure times, where 𝑥𝑖 = 1 if component 𝑖 functions 

and 𝑥𝑖 = 0 if it is failed. Also let 𝜙: {0,1}𝑚 → {0,1} represent the system reliability structure function, defined 

for all 2𝑚 possible 𝑥, where  𝜙(𝑥) = 1 if the system functions with component states 𝑥 and 𝜙(𝑥) = 0 if it is 

failed. Finally, let 𝑆𝑙 denote the set of component state vectors with exactly l of the m components functioning 

(i.e. ∑ 𝑥𝑖 = 𝑙𝑚
𝑖=1 ). The survival signature is then defined as the vector Φ  where the value at index 𝑙 ∈

{0,1,2, … , 𝑚}, denoted Φ𝑙, gives the probability that the system functions given that precisely l components 

function 

Φ𝑙 = (
𝑚
𝑙

)
−1

∑ 𝜙(𝑥)

𝑥∈𝑆𝑙

 
 (2) 

Now consider the case where the m components in the system are partitioned into  𝐾 different types, where 

the 𝑀𝑘 components of type 𝑘 ∈ {1, … , 𝐾} have exchangeable random failure times. Let 𝑆𝑙1,…,𝑙𝐾
 denote the set 

of component state vectors that contain precisely  𝑙𝑘 ∈ {0,1, … , 𝑀𝑘}  functioning components of type k (i.e. 

those for which ∑ 𝑥𝑖
𝑘 =

𝑀𝑘
𝑖=1 𝑙𝑘  for 𝑘 = 0,1, … , 𝐾 − 1  where 𝑥𝑖

𝑘  is the ith component of type k). Also let 

|𝑆𝑙1,…,𝑙𝐾
| = ∏ (

𝑀𝑘

𝑙𝑘
)𝐾

𝑘=1  denote the cardinality of 𝑆𝑙1,…,𝑙𝐾
 and Φ̅𝑙1,…,𝑙𝐾

= ∑ 𝜙(𝑥)𝑥𝜖𝑆𝑙0,…,𝑙𝐾−1
 denote the number 

of state vectors from 𝑆𝑙1,…,𝑙𝐾
 for which the system functions. The generalised survival signature, Φ, is then 

defined as the multidimensional array with K dimensions where the value at index (𝑙1 ∈ {0, . . , 𝑀1}, … , 𝑙𝐾 ∈

{0, . . , 𝑀𝐾})  in dimensions (1, … , 𝐾)  respectively, denoted  Φ𝑙1,…,𝑙𝐾
, gives the probability that the system 

functions given that precisely (𝑙1, … , 𝑙𝐾) components of types (1, … , 𝐾) respectively function 

Φ𝑙1,…,𝑙𝐾
=

Φ̅𝑙1,…,𝑙𝐾

|𝑆𝑙1,…,𝑙𝐾
|
 

 (3) 

Let 𝐶𝑡
𝑘𝜖{0, … , 𝑀𝑘} denote the number of components of type k in the system that function at time 𝑡 > 0. The 

probability that the system functions at time 𝑡 can be calculated using the survival signature and the joint 

probability distribution for the number of functioning components of each type at time t 

𝑃(𝑇𝑆 > 𝑡) = ∑ …

𝑀1

𝑙1=0

∑ [Φ𝑙1,…,𝑙𝐾
𝑃 (⋂{𝐶𝑡

𝑘 = 𝑙𝑘}

𝐾

𝑘=1

)]

𝑀𝐾

𝑙𝐾=0

 

(4) 

If failure times of components of type k are conditionally independent and identically distributed with CDF 

𝐹𝑘(𝑡) and failure times of components of different types are independent, then  

𝑃(𝑇𝑆 > 𝑡) = ∑ …
𝑀1
𝑙1=0 ∑ [Φ𝑙1,…,𝑙𝐾

∏ ((
𝑀𝑘

𝑙𝑘
) [𝐹𝑘(𝑡)]𝑀𝑘−𝑙𝑘[1 − 𝐹𝑘(𝑡)]𝑙𝑘)𝐾

𝑘=1 ]
𝑀𝐾
𝑙𝐾=0

  

 (5) 

For systems containing a single component type, the system signature and survival signature have the simple 

relation 

𝑞𝑙 = Φ𝑚−𝑙 − Φ𝑚−𝑙−1  (6) 
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Several theoretical applications of the survival signature to problems in the field of reliability engineering 

have already been published including nonparametric predictive inference for system reliability [7];  Bayesian 

inference for reliability of systems and networks [8]; modelling uncertain aspects of system dependability [9]; 

predictive inference for system reliability after common-cause component failures [10]; imprecise system 

reliability and component importance [11]; Bayesian nonparametric system reliability using sets of priors [12] 

and comparing systems with heterogeneous components [13]. 

Despite the advances is the theory and development of numerous application for signatures, practical 

applications have until now been limited to the analysis of relatively small problems.  The main reason for 

this is that the computation of signatures using existing methods is difficult unless the number of components 

is small or the system reliability structure function is quite trivial [2,6]. The aim of this paper is to present a 

new and computationally efficient algorithm based on binary decision diagrams for computing exact system 

and survival signatures and report its computational efficiency for a number of example systems, including 

large and complex systems that have been derived from practice and were published as benchmarks in the 

literature. The remainder of this paper is organised as follows: Section 2 describes the existing methods that 

are available for the computation of system and survival signatures. Section 3 introduces the new algorithm. 

Section 4 presents some results on the efficiency of the new algorithm in computing system and survival 

signatures for a set of example systems, including some large and complex benchmark systems from the 

literature. Section 5 summarises the paper, gives some concluding remarks and also discusses limitations and 

areas for future work. 

2 Existing Methods for System and Survival Signature Computation 
A small number of methods for computing system signatures have been published in the literature and are 

based on minimal ordered cut sets, diagonal sections of the reliability structure function and generating 

functions. Kochar et al [14] note that the system signature can be defined for 𝑗 ∈ {1,2, … , 𝑚} as 

𝑞𝑗 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑜𝑟𝑑𝑒𝑟𝑖𝑛𝑔𝑠 𝑓𝑜𝑟 𝑤ℎ𝑖𝑐ℎ 𝑡ℎ𝑒 𝑗𝑡ℎ 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑐𝑎𝑢𝑠𝑒𝑠 𝑠𝑦𝑠𝑡𝑒𝑚 𝑓𝑎𝑖𝑙𝑢𝑟𝑒

𝑚!
 

 

(7) 

 

The system signature can therefore be computed by generating the 𝑚! permutations of component orderings 

and counting the number of permutations for which the jth component failure results in system failure for 𝑗 ∈
{1,2, … , 𝑚}. The system failure evaluation might be carried out, for example, by deriving the minimal cut sets 

for the system and comparing them with subsets of increasing size from each component ordering permutation 

until a match is found. A subset of components from a system is a cut set if the failure of those components 

implies failure of the system and is a minimal cut set if it has no proper subset that is also a cut set. Since the 

computational expense of this approach grows approximately with the product of 𝑚! and the number of 

minimal cut sets, it is only feasible for simple systems. Boland [15] showed that the system signature for a 

system could also be defined for 𝑗 ∈ {1,2, … , 𝑚} as 

𝑞𝑗 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑛𝑖𝑚𝑎𝑙 𝑜𝑟𝑑𝑒𝑟𝑒𝑑 𝑐𝑢𝑡 𝑠𝑒𝑡𝑠 𝑜𝑓 𝑠𝑖𝑧𝑒 j

𝑚! ÷ (𝑚 − 𝑗)!
 

(8) 

 

where an ordered minimal cut set is an ordered sequence of component failures that results in system failure 

only when the final component in the sequence fails.  In this alternative expression, only permutations of j of 

the m components need to be counted for 𝑞𝑗, however the computational expense still increases exponentially 

with the number of components in the system making it infeasible when m is large. Marichal and Mathonet 

[16] proposed an  alternative  to the method from Boland  [15] that avoids requiring evaluation of the system 

reliability structure function for every permutation of component orderings, showing that the system signature 
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can be computed for a system from the diagonal section of the reliability structure function via derivatives. 

This method relies on complicated algebraic manipulations and is best suited to hand calculation with systems 

with small numbers of components. Triantafyllou and Koutras [17] presented an approach for computing the 

system signatures for linear and circular k-out-of-n: F systems using generating functions. Linear and circular 

k-out-of-n: F systems consist of linear and circularly arranged components, respectively, where the system 

fails if and only if at least k consecutive components fail. Whilst this method is computation efficient it is 

applicable only to the small subset of systems that can be modelled as a linear or circular k-out-of-n: F system 

such as certain telecommunication and pipeline networks. For systems that can be decomposed into disjoint 

subsystems, Marichal and Mathonet  [16] and Da et al [18] derived formulas for computing the system 

signature of a system from the system signatures computed for its subsystems and the reliability structure 

function for the system in terms of its subsystems. This reduces the computational burden compared to 

computing the system signature for the complete system directly. 

An enumerative approach can be used for the computation of the survival signature, where each possible state 

vector is evaluated in turn, such as the following approach used by the ReliabilityTheory package [19] for the 

R programming language [20]: 

 Derive the minimal cut sets for the system. 

 Generate each of the 2𝑚 possible component state vectors. 

 Compare each component state vector to the minimal cut sets to determine whether it results in the 

system functioning or not. 

 Count the number of component state vectors with  (𝑙1, … , 𝑙𝐾)  components of types (1, … , 𝐾) 

functioning that result in system functioning to obtain Φ̅𝑙1,…,𝑙𝐾−1
 for all ∏ 𝑀𝑘 + 1𝐾

𝑘=1  different 

(𝑙1, … , 𝑙𝐾). 

 Obtain Φ𝑙1,…,𝑙𝐾
 by dividing Φ̅𝑙1,…,𝑙𝐾

 by |𝑆𝑙1,…,𝑙𝐾
| for all ∏ 𝑀𝑘 + 1𝐾

𝑘=1  different (𝑙1, … , 𝑙𝐾). 

However, the computational expense of this approach grows approximately with the product of 2𝑚 and the 

number of minimal cut sets, it becomes infeasible for complex systems (e.g. for 𝑚 = 30 there are over 1 

billion possible component state vectors to consider).  

In summary, the existing methods for computing system and survival signatures are only computationally 

feasible when applied to relatively simple systems with small numbers of components. If the system can be 

reduced to a set of disjoint subsystems, then the combinational formulas from Marichal and Mathonet  [16] 

and Da et al [18] can be useful in reducing computational burden but do not address the challenge of deriving 

the signatures for the subsystems. The method from Triantafyllou and Koutras [17] is efficient but its 

applicability is limited to the small number of systems that can be modelled as linear or circular k-out-of-n: F 

systems. Therefore new methods are required to enable the practical computation of system and survival 

signature for many large and complex real world systems. 

3 Description of New Method for System and Survival Signature Computation based on 

Binary Decision Diagrams 
A new algorithm for efficiently computing system and survival signatures is presented in this section. The 

algorithm utilises reduced ordered binary decision diagrams (hereafter referred to as BDD) and 

multidimensional array data structures in the signature computation process. 

3.1 Reduced Ordered Binary Decision Diagram (BDD) Data Structure 

A BDD [21] is a data structure in the form of a rooted directed acyclic graph which can be used to compactly 

represent and efficiently manipulate a Boolean function. They are based upon Shannon decomposition theory 

[22]. The Shannon decomposition of a Boolean function f on Boolean variable 𝑥𝑖 is defined as 
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𝑓 = ((𝑥𝑖 = 1) ∧ 𝑓𝑥𝑖=1) ∨ ((𝑥𝑖 = 0) ∧ 𝑓𝑥𝑖=0)  (9) 

where 𝑓𝑥𝑖=𝑣 is 𝑓 evaluated with 𝑥𝑖 = 𝑣.   

Each BDD contains two terminal nodes that represent the Boolean constant values 1 and 0. Each non-terminal 

node represents a subfunction g, is labelled with a Boolean variable v and has two outgoing edges. By applying 

a total ordering on the m Boolean variables for function f by mapping them to the integers 0, … , 𝑚 − 1, and 

applying the Shannon decomposition recursively to f, it can be represented as a binary tree with m+1 levels. 

Each intermediate node, referred to as an if-then-else (ite) node, at level 𝑙 ∈ {0, … , 𝑚 − 1} (where the root 

node is at level 0 and the nodes at level 𝑚 − 1 are adjacent to the terminal nodes) represents a Boolean 

function g on variables 𝑥𝑙 , 𝑥𝑙+1, … , 𝑥𝑚−1. It is labelled with variable 𝑥𝑙 and has two out edges called 1-edge 

and 0-edge linking to nodes labelled with variables higher in the ordering. 1-edge corresponds to 𝑥𝑙  = 1 and 

links to the node representing 𝑔𝑥𝑙=1, whist 0-edge corresponds to 𝑥𝑙 = 0 and links to the node representing 

𝑔𝑥𝑙 =0. In addition, the following two reduction rules are applied: 

1. Isomorphic subgraphs are merged. 

2. Any node whose two children are isomorphic is eliminated. 

Complement edges [23] are an extension to standard BDDs that reduce size and computation time. A 

complement edge is an ordinary edge that is marked to indicate that the connected child node (at a higher 

level) is to be interpreted as the complement of its Boolean function. The use of complement edges is limited 

to the 0-edges to ensure canonicity. In general, the BDD representation of a Boolean function of m variables 

has far fewer nodes than 2𝑚 nodes.  

Efficient algorithms have been developed for the computation of the BDD representation of the reliability 

structure function of a system from fault trees [24], event trees [25], networks [26] and dynamic flowgraphs 

[27]. The chosen variable ordering often has a significant impact on the size of the resultant BDD. Finding the 

optimum variable ordering is known to be a NP-hard problem [28], however many efficient heuristic methods 

have been developed (e.g. for fault trees [29] or networks [30]). 

An example of a success tree (i.e. logical complement of a fault tree, where basic events and the top event 

represent component and system functioning respectively) is shown in Figure 1a. Figure 1b shows a 

complemented edge BDD representation of the success tree, where components are ordered 𝐴 < 𝐵 < 𝐶 < 𝐷, 

ite nodes are labelled with the component names, the terminal 1 node is labelled 1, the dashed edges represent 

0-edges (marked with -1 if complemented) and solid edges represent 1-edges. 
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Figure 1a - A success tree from an example system. Figure 1b – A complemented edge BDD 

representation of the success tree shown 

in Figure 1a. 

3.2 Computational representation of Φ and Φ̅ 

The number of possible values for Φ𝑙1,…,𝑙𝐾
  or Φ̅𝑙1,…,𝑙𝐾

 from Eqn. 3 for any (𝑙1, … , 𝑙𝐾), across all possible 

systems with K component types and 𝑀𝑘  components of type k, is given by 

∏ (𝑚𝑎𝑥 ((
𝑀𝑘

⌈𝑀𝑘 ÷ 2⌉
) , (

𝑀𝑘

⌊𝑀𝑘 ÷ 2⌋
)))𝐾

𝑘=1 . Thus the range of possible values can be very large for systems 

with many components and component types and require high bit length numerical data structures to represent 

computationally to exact or high precision. Additionally there are a total of ∏ 𝑀𝑘 + 1𝐾
𝑘=1  different (𝑙1, … , 𝑙𝐾) 

indices for which Φ𝑙1,…,𝑙𝐾
 and  Φ̅𝑙1,…,𝑙𝐾

 from Eqn. 3 need to be computed. These values can be represented 

computationally using a multidimensional array data structure with K dimensions and length 𝑀𝑘 + 1  in 

dimension k, where the value stored at index (𝑙1, … , 𝑙𝐾) of the array is equal to Φ𝑙1,…,𝑙𝐾
 or Φ̅𝑙1,…,𝑙𝐾

. Across all 

possible systems with m components and K component types, the maximum possible value for ∏ 𝑀𝑘 + 1𝐾
𝑘=1  

is (
𝑚

𝐾
+ 1)

𝐾

. Therefore, the computational representation of Φ̅ or Φ for systems with many components and 

component type can require significant amount of memory. For example, the computational representation of 

the survival signature for a 50 component system partitioned evenly across 10 component types would require 

the use of a multidimensional array with 60,466,176 elements and 24 bits of memory per element to ensure 

exact representation of Φ̅ or Φ – a total of over 180 megabytes of memory. 

3.3 New algorithm for calculating system and survival signatures 

A new efficient algorithm that outputs a multidimensional array representation of the survival signature, Φ, 

for a system is presented in this section. For the case of a single component type, i.e. K=1, an array representing 

the system signature 𝑞 can be derived from the array representing the survival signature Φ by applying the 

simple transformation given in Eqn. 6. The inputs to the algorithm are: 

 A BDD representation (standard or complement edge) of the reliability structure function of the 

system, where the m components are ordered from 0 to 𝑚 − 1,  ite nodes at level i in the BDD are 
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labelled with Boolean variable 𝑥𝑖 representing the state of component i in the ordering, 1-edges from 

a node represent survival of the labelling component, 0-edges from a node represent failure of the 

labelling component, the terminal 1 node represents system survival and the terminal 0 node represents 

system failure.  

 An associative array [31]  (also known as a map or dictionary data type) that associates each of the m 

components in the system with its component type from {1, … , 𝐾}. 

The algorithm computes multidimensional arrays representing Φ̅ for nodes at successively lower levels of the 

BDD, starting with the terminal nodes at level m and finishing with the root node. The array representing Φ̅ 

for each ite node is computed using the results from its two child nodes, representing the positive and negative 

sub-parts of the Shannon decomposition of the Boolean function represented by the node (see Eqn. 9). These 

result are stored in an associative array and retrieved whenever the node is reencountered during the 

computation process.  The algorithm therefore follows the dynamic programming paradigm [32] in which a 

problem is solved by identifying a collection of sub-problems, solving each sub-problem using the solutions 

to its sub-problems, iteratively solving the sub-problems in order of increasing size and storing the sub-

problem solutions and then retrieving them instead of resolving them when shared sub-problems are 

reencountered. An array representing the survival signature Φ is then computed by normalising the array 

representing Φ̅ for the complete BDD using an array representing |𝑆|.  

One unary operation and five binary operations and on multidimensional arrays will now be defined that are 

used in the algorithm. The unary operation on an array is named here as the complement operation and is only 

required where complement BDDs are used. The complement operation on array A, denoted 𝑋‡, outputs an 

array B where the value at each index (𝑙1, … , 𝑙𝐾) is equal to ∏ (
𝐿𝑘 − 1

𝑙𝑘
)𝐾

𝑘=1  minus the value at that index in 

array A, where 𝐿𝑘 is the length of array A in dimension k. The first three binary operations are defined for 

pairs of multidimensional arrays with the same number of dimensions and dimension lengths. They are named 

here as the elementwise addition, elementwise subtraction and elementwise division operations. The 

elementwise addition of two arrays A and B, denoted 𝐴 ⊕ 𝐵, outputs an array C with the same number of 

dimensions and dimension lengths as arrays A and B where the value at each index in array C is equal to the 

sum of the values at the same index in arrays A and B. Elementwise subtraction of array B from array A, 

denoted 𝐴 ⊖ 𝐵, outputs an array C with the same number of dimensions and dimension lengths as arrays A 

and B where the value at index each index in array C is equal to the value at that index in array A minus the 

value at that index in array B. Elementwise division of array A by array B, denoted 𝐴 ⊘ 𝐵, outputs an array 

C with the same number of dimensions and dimension lengths as arrays A and B where the value at index in 

array C is equal to the value at that index in array A divided by the value at that index in array B. The final 

two binary operations are defined for a first argument of a multidimensional array with K dimensions and a 

second argument of an integer 𝑘 ∈ {1, … , 𝐾}. They are named here as the resize-k and shift-k operations.  The 

resize-k operation on array A by integer k is denoted 𝐴 ⊞ 𝑘. It returns an array B with the same number of 

dimensions and dimension lengths as A, except with the length of dimension k increased by 1 to length 𝐿, 

where: 

 the value in B at each index (𝑙1, … , 𝑙𝑘, … , 𝑙𝐾), except where 𝑙𝑘 = 𝐿, is equal to the value from A at the 

same index. 

 the value in B at each index (𝑙1, … , 𝐿, … , 𝑙𝐾) is equal to 0. 

The shift-k operation on array A by integer k is denoted 𝐴 ⊛ 𝑘. It returns an array B with the same number of 

dimensions and dimension lengths as A, except with the length of dimension k increased by 1, where: 

 the value in B at each index (𝑙1, … , 𝑙𝑘, … , 𝑙𝐾), except where 𝑙𝑘 = 0, is equal to the value from A at 

index  (𝑙1, … , 𝑙𝑘−1, … , 𝑙𝐾); 
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 the value in B at each index (𝑙1, … ,0, … , 𝑙𝐾) is equal to 0. 

The main routine of the algorithm is shown in Figure 2. Arrays representing Φ̅ for the terminal nodes are 

computed first. A BDD comprising of only the terminal 1 node represents a Boolean function on 0 components 

of each type that evaluates to 1 (i.e. system survival). Therefore the array representing Φ̅ for the terminal 1 

node has K dimensions of length 1 and a single element of 1. Conversely, a BDD comprising of only a terminal 

0 node represents a Boolean function on 0 components of the K components type that evaluates to 0 (i.e. 

system failure). Therefore the array representing Φ̅ for the terminal 0 node has K dimensions of length 1 and 

a single element of 0. For example, the arrays representing Φ̅ for the terminal 1 and terminal 0 nodes from the 

BDD in Figure 1b, which corresponds to a system with two component types (i.e. K=2) with the success tree 

depicted in Figure 1a, are [[1]] and [[0]] respectively. The results for Φ̅ corresponding to the terminal nodes 

are then stored in an associative array that represents a cache of all computed node results. 

Arrays representing Φ̅ for ite nodes in the BDD at successive levels are then computed, starting with those at 

level m-1 adjacent to the terminal nodes. For an ite node labelled with Boolean variable 𝑥𝑖 , an array 

representing Φ̅ for the positive and negative parts of the Shannon decomposition the node represents, i.e.  

((𝑥𝑖 = 1) ∧ 𝑓𝑥𝑖=1) and ((𝑥𝑖 = 0) ∧ 𝑓𝑥𝑖=0) from Eqn. 9 respectively, are computed first. The subroutines of 

the algorithm for computing the positive and negative parts of the Shannon decomposition are shown in Figure 

3 and Figure 4 respectively. To compute the array representing Φ̅ for the positive part, the array representing 

Φ̅ for the positive Shannon cofactor, i.e. 𝑓𝑥𝑖=1, is computed first.  This array is computed from the array 

representing Φ̅ for the child node connected to the 1-edge of the ite node which is retrieved from the cache of 

previously computed results. Due to the removal of isomorphic child nodes in the BDD construction process, 

the path from the ite node to the child node may skip levels in the BDD where the state of the components at 

those levels in the ordering do not influence the value of 𝑓𝑥𝑖=1. The state vector counts in the array from the 

child node are therefore updated by accounting for the survival and failure of the component corresponding 

to each missing level. The operation Φ̅ ⊞ k is used to update the state vector counts in Φ̅ to account for an 

additional component of type k that fails whilst the operation Φ̅ ⊛ k is used to update the state vector counts 

in Φ̅ to account for an additional component of type k that survives. The elementwise addition of the resultant 

arrays from these two operations therefore gives an array representing Φ̅ that is updated for a component of 

type k labelling a level skipped by an edge. The array representing Φ̅ for the negative part is computed in a 

similar way, except that array computed for the node connected to the 0-edge of the ite node rather than the 

1-edge is retrieved from the cache, the complement operation ‡  is applied to the array if the 0-edge is 

complemented, and the ⊞ operation is used instead of ⊛ in the final step to update the state vector counts for 

the failure rather than survival of the component labelling the ite node. Elementwise addition of the arrays 

representing Φ̅ for the positive and negative parts is then performed to obtain an array representing Φ̅ with the 

total state vector counts for the ite node. The result for Φ̅ corresponding to the ite node is then stored in the 

associative array that represents a cache of all computed node results. 
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Figure 2 – Main routine of the algorithm that computes survival signatures. 

 

Once the array representing Φ̅ for the root node in the BDD has been computed, the subroutine shown in 

Figure 5 is used to update the array to account for remaining levels in the BDD, i.e. where the root node is at 

a level greater than 0, and obtain the survival signature through application of a normalisation step. Due to the 

removal of isomorphic child nodes in the BDD construction process, a root node at a level greater than 0 

signifies that the survival or failure of the components at lower levels in the ordering do not influence whether 

or not the system survives. Updating the array representing Φ̅ to account for such levels follows the same 

process as for levels skipped in the edge path between an ite node and its child node. For the purpose of 

normalisation, an array representing |S| is created with K dimensions and length 𝑀𝑘+1 in dimension k, with 

the value at each index (𝑙1, … , 𝑙𝑘, … , 𝑙𝐾)  set equal to ∏ (
𝑀𝑘

𝑙𝑘
)𝐾

𝑘=1 . Elementwise division of the array 

representing Φ̅ by the array representing |S| is then performed to derive the array representing the survival 

signature Φ, which is the final result output by the algorithm. 
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Figure 3 – “compute positive result” subroutine of the algorithm that computes �̅� for positive part of 

Shannon decomposition of an ite node. 
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Figure 4 – “compute negative result” subroutine of the algorithm that computes �̅� for negative part of 

Shannon decomposition of an ite node. 
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Figure 5 – “finalise signature” subroutine of the algorithm that finalises the computation of a survival 

signature. 
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3.4 Example Computation 

Consider a five component system (consisting of components A, B, C, D and E) with two component types 

(consisting of types 1 and 2) and the reliability structure given by the reliability block diagram shown in Figure 

6a, where each node is labelled with the component and component type. The corresponding BDD constructed 

with components ordered alphabetically is shown in Figure 6b, where each ite node is labelled with the 

component and node number. 

The multidimensional arrays representing Φ̅ for the terminal 1 and terminal 0 nodes of this system are [[1]] 

and [[0]] respectively. The multidimensional arrays representing Φ̅ for each of the ite nodes in the BDD are 

given in Table 1. 

Table 1 - Multidimensional arrays representing �̅� for each ite node from the BDD shown in Figure 6b. 

ite node 

from 

BDD 

Multidimensional array 

representing �̅� for positive part 

of Shannon decomposition 

Multidimensional array 

representing �̅� for negative part 

of Shannon decomposition 

Multidimensional array 

representing �̅�  

1  [[0], [1]] [[0], [0]]   [[0], [1]] 

2 [[0, 1], [0, 1]] [[0, 0], [0, 0]]   [[0, 1], [0, 1]] 

3 [[0, 0], [1, 0]] [[0, 1], [0, 1]] [[0, 1], [1, 1]] 

4 [[0, 0, 1], [0, 1, 1]] [[0, 1, 0], [0, 1, 0]]  [[0, 1, 1], [0, 2, 1]] 

5 [[0, 0, 1], [0, 1, 1]] [[0, 0, 0], [1, 1, 0]] [[0, 0, 1], [1, 2, 1]] 

6 [[0, 0, 1, 1], [0, 1, 2, 1]] [[0, 1, 1, 0], [0, 2, 1, 0]]  [[0, 1, 2, 1], [0, 3, 3, 1]] 

7 [[0, 0, 0, 1], [0, 1, 2, 1]] [[0, 0, 0, 0], [0, 0, 0, 0]]  [[0, 0, 0, 1], [0, 1, 2, 1]] 

8 [[0, 0, 0, 0], [0, 1, 2, 1], [0, 3, 3, 1]] [[0, 0, 0, 1], [0, 1, 2, 1], [0, 0, 0, 0]]  [[0, 0, 0, 1], [0, 2, 4, 2], [0, 3, 3, 1]] 

 

The array representing |𝑆| is: 

|𝑆| = [[1, 3, 3, 1], [2, 6, 6, 2], [1, 3, 3, 1]] 

Finally, the multidimensional array representation of the survival signature Φ for the BDD obtained through 

elementwise division of the array representing Φ̅ for the BDD (i.e. the result for the root node of the BDD, ite 

node 8, given from Table 1) by the array representing|𝑆| is: 

Φ =  [[0, 0, 0, 1], [0, 2, 4, 2], [0, 3, 3, 1]]  ⊘ [[1, 3, 3, 1], [2, 6, 6, 2], [1, 3, 3, 1]] =  [[0, 0, 0, 1], [0,
1

3
,

2

3
, 1] , [0, 1, 1, 1]]  

4 Application of New Method for System and Survival Signature to Benchmark Problems 
The algorithm presented in this paper has been implemented as a computer code (available on request) in the 

Python programming language, using the NumPy open source library [33] to provide an efficient 

implementation of multi-dimensional arrays and array operations. The algorithm and its implementation were 

validated for correctness by verifying computed signatures for a set of small network reliability problems 

(which contained 22 components or less) against results obtained from the ReliabilityTheory package [19] for 

the R programming language [20]. Additional verification was performed by using Eqn. 5 to calculate the 

probabilities of system survival from the computed survival signatures and comparing them against the known 

values for each system. 

To demonstrate the efficiency of the algorithm, it was used to compute the signatures from the fault tree 

representation of the reliability structure for 7 systems of different size and complexity. Systems 1, 2 and 3 
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were composed by the author, whilst the European 1 and European 3 systems were obtained from the literature 

[34] and have been used previously by other researchers as benchmarks [24]. European 1 and European 3 

systems were chosen since they are large and complex systems derived from practice that feature many cut-

sets (46188 and 24386 respectively) and components (61 and 80 respectively). Finally, two further systems 

named European 1a and European 1b were derived from the European 1 system by reducing the number of 

component types (from the original 14 types to 3 and 6 respectively). The fault tree and component types for 

system 1 are given in Table A.1 and Table A.2, respectively, of Appendix A. A BDD for each of the seven 

fault trees was computed using the method from Rauzy [24] with components ordered according to the 

sequence in which they were first encountered during a depth first traversal [35] of the fault tree starting at 

the top event. 

Table 3 presents the results for computing signatures for each of the example systems, using both the new 

algorithm that was presented in Section 3 and an enumerative algorithm similar to that described in Section 2. 

The results were obtained using a computer with an Intel i3-4130 3.4GHz CPU and 8GB RAM. In Appendix 

B, the survival signature that was computed for system 1 is shown in Table B.1a and Table B.1b, whilst the 

system signature for the European 3 system is shown in Table B.2. 

Table 3 – Results for computing signatures using new algorithm and enumerative algorithm for example 

systems (all times given in seconds) 

System 1 2 3 

European 

1a European 1b European 1 European 3 

Number Components 16 21 23 61 61 61 80 

Number of 

Component Types 3 4 8 3 6 14 1 

Number of survival 

signature elements 180 1400 30240 8370 419238 745875000 81 

Number BDD Nodes 17 22 41 7365 7365 7365 11789 

BDD Computation 

Time 0.00 0.00 0.00 0.14 0.14 0.14 0.38 

Signature 

Computation Time 

(New Algorithm) 0.00 0.01 0.01 0.93 3.53 n/a 1.02 

Signature 

Computation Time 

(Enumerative 

Algorithm) 0.14 27.42 127.56 n/a n/a n/a n/a 

 

The results given in Table 3 demonstrate that the new algorithm is extremely efficient, computing signatures 

for all the systems in less than 4 seconds, with the exception of the full European 1 system that has 14 

component types. In contrast, the enumerative algorithm used for comparison purposes could not obtain results 

for any of the European systems in reasonable times and took over 2 minutes to compute the survival signature 

for System 3 which took only 0.01 seconds with the new algorithm. The results also show that the new 

algorithm scales well with the complexity of the analysed system, for example it was able to compute the 

survival signature for systems 2 and 3 in the same time despite System 3 having an extra 2 components and 

twice as many component types. In comparison, the enumerative algorithm took more than 4 times longer to 

compute the survival signature for System 3 than it did for System 2. Even for very complex systems the new 

algorithm remains efficient, for example it took just over 1 second to compute the system signature for the 

European 3 system with 80 components. The only system for which it was not possible to compute a signature 
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was for the full European fault tree 1 with all 14 component types. For this system, the array representation of 

the survival signature has over 0.75 billion elements and the memory required to represent it in RAM exceeded 

the resources available on the computer used to perform the analysis.  

5 Summary and Conclusions 
The system signature and survival signature are valuable tools for the analysis and assessment of system 

reliability as evidenced by the wide range of theoretical applications found in the literature. These applications 

include comparing the reliability of different system designs and determining where redundancy should be 

added to a system to maximise gains in reliability. It is well known that the computation of signatures is very 

challenging and the previously published approaches are only feasible for simple systems with few 

components. The development of algorithms that are able to compute signatures for complex systems with 

large numbers of components is therefore important so that they can be analysed with the many signature 

based reliability analysis methods that have been published in the literature.   

A new algorithm for computing system and survival signatures was introduced, based on the use of binary 

decision diagrams (BDDs), multidimensional arrays and the dynamic programming paradigm. Results were 

presented comparing the efficiency of the new algorithm with an enumerative algorithm in the computation 

of signatures for a range of benchmark problems that are representative of complex real world systems. These 

demonstrated that the new algorithm results in significantly increased efficiency and scalability with 

increasing system complexity. For example, the survival signature for an example system with 23 components 

and 8 component types was computed in just 0.01 seconds by the new algorithm whereas the enumerative 

algorithm took over 2 minutes. The new algorithm also computed signatures for 3 out of 4 of benchmark 

systems from the literature (ranging from 61 and 80 components), whilst the enumerative algorithm was 

unable to compute signatures for any of them in reasonable times. The presented approach will therefore 

permit system and survival signatures to be computed for many large and complex systems for which this was 

infeasible with previous approaches. This should result in greater practical application of the theoretical uses 

for signatures in analysing the reliability that have been developed, such as the methods for stochastic 

comparison of the reliability of alternative system designs.  

A limitation of the algorithm is that it relies on the BDD representation of the reliability structure of the system 

to be analysed. The ability to compute this data structure depends on the representation of the system reliability 

structure available for the system to be analysed. For example, they can easily be computed for even very 

large fault trees since they represent the reliability structure directly in terms of the Boolean logic, however it 

is more difficult for very large networks where the reliability structure must be computed. Furthermore, the 

memory requirements for the computational representation of signatures was discussed in the paper and 

showed that huge amounts of memory can be required for certain systems with many components and 

component types. For this reason, the implementation of the algorithm was unable to compute the survival 

signature for one of the example benchmark systems as the RAM required to represent its signature exceeded 

the available resources on the computer used for the analysis. Therefore implementations of the algorithm that 

are able to manipulate the arrays representing signatures without requiring complete storage in RAM are 

necessary to analyse such cases. The development of algorithms and implementations to overcome these 

limitations are areas for future research. 
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Appendix A – Description of system 1. 

Table A.1 - Fault tree description for system 1. 

Gate Name Logical Operator Inputs 

G1 AND G2, G3, G4 
G2 OR G5, BE1, BE2 
G3 OR G6, BE3 
G4 OR G7, G8 
G5 AND G9, G10 
G6 AND BE4, BE5 
G7 AND BE6, BE7, BE8 
G8 AND BE9, BE10 
G9 OR BE11, BE12, BE13 
G10 OR BE14, BE15, BE16 

 

Table A.2 – Components and component types for system 1. 

Component Component Type 

BE1 1 
BE2 2 
BE3 1 
BE4 1 
BE5 3 
BE6 2 
BE7 2 
BE8 1 
BE9 1 
BE10 3 
BE11 1 
BE12 2 
BE13 2 
BE14 1 
BE15 1 
BE16 1 
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Appendix B – Signatures for system 1 and the European 3 system. 

Table B.1a – Part 1 of survival signature for system 1. 

𝒍𝟏 𝒍𝟐 𝒍𝟑 Survival 
signature 
value 𝚽𝒍𝟏,𝒍𝟐,𝒍𝟑

 

 𝒍𝟏 𝒍𝟐 𝒍𝟑 Survival 
signature 
value 
𝚽𝒍𝟏,𝒍𝟐,𝒍𝟑

 

9 5 2 1.0000  7 2 2 0.9972 
9 5 1 1.0000  7 2 1 0.9875 
9 5 0 1.0000  7 2 0 0.9611 
9 4 2 1.0000  7 1 2 0.9889 
9 4 1 1.0000  7 1 1 0.9722 
9 4 0 1.0000  7 1 0 0.9333 
9 3 2 1.0000  7 0 2 0.9722 
9 3 1 1.0000  7 0 1 0.9444 
9 3 0 1.0000  7 0 0 0.8889 
9 2 2 1.0000  6 5 2 1.0000 
9 2 1 1.0000  6 5 1 0.9940 
9 2 0 1.0000  6 5 0 0.9762 
9 1 2 1.0000  6 4 2 1.0000 
9 1 1 1.0000  6 4 1 0.9798 
9 1 0 1.0000  6 4 0 0.9214 
9 0 2 1.0000  6 3 2 0.9988 
9 0 1 1.0000  6 3 1 0.9690 
9 0 0 1.0000  6 3 0 0.8857 
8 5 2 1.0000  6 2 2 0.9821 
8 5 1 1.0000  6 2 1 0.9399 
8 5 0 1.0000  6 2 0 0.8369 
8 4 2 1.0000  6 1 2 0.9571 
8 4 1 1.0000  6 1 1 0.9024 
8 4 0 1.0000  6 1 0 0.7857 
8 3 2 1.0000  6 0 2 0.9167 
8 3 1 1.0000  6 0 1 0.8452 
8 3 0 1.0000  6 0 0 0.7143 
8 2 2 1.0000  5 5 2 1.0000 
8 2 1 1.0000  5 5 1 0.9643 
8 2 0 1.0000  5 5 0 0.8651 
8 1 2 1.0000  5 4 2 1.0000 
8 1 1 1.0000  5 4 1 0.9405 
8 1 0 1.0000  5 4 0 0.7873 
8 0 2 1.0000  5 3 2 0.9929 
8 0 1 1.0000  5 3 1 0.9175 
8 0 0 1.0000  5 3 0 0.7333 
7 5 2 1.0000  5 2 2 0.9548 
7 5 1 1.0000  5 2 1 0.8647 
7 5 0 1.0000  5 2 0 0.6690 
7 4 2 1.0000  5 1 2 0.9048 
7 4 1 0.9972  5 1 1 0.8016 
7 4 0 0.9889  5 1 0 0.6032 
7 3 2 1.0000  5 0 2 0.8333 
7 3 1 0.9944  5 0 1 0.7143 
7 3 0 0.9778  5 0 0 0.5159 
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Table B.1b – Part 2 of survival signature for system 1. 

𝒍𝟏 𝒍𝟐 𝒍𝟑 Survival 
signature value 
(𝚽𝒍𝟏,𝒍𝟐,𝒍𝟑

) 

 𝒍𝟏 𝒍𝟐 𝒍𝟑 Survival 
signature value 
(𝚽𝒍𝟏,𝒍𝟐,𝒍𝟑

) 

4 5 2 1.0000  2 2 2 0.8250 
4 5 1 0.9048  2 2 1 0.5708 
4 5 0 0.6825  2 2 0 0.1917 
4 4 2 1.0000  2 1 2 0.6500 
4 4 1 0.8802  2 1 1 0.4333 
4 4 0 0.6143  2 1 0 0.1333 
4 3 2 0.9810  2 0 2 0.4167 
4 3 1 0.8452  2 0 1 0.2500 
4 3 0 0.5595  2 0 0 0.0556 
4 2 2 0.9183  1 5 2 1.0000 
4 2 1 0.7742  1 5 1 0.6111 
4 2 0 0.4952  1 5 0 0.1111 
4 1 2 0.8349  1 4 2 1.0000 
4 1 1 0.6841  1 4 1 0.6111 
4 1 0 0.4222  1 4 0 0.1111 
4 0 2 0.7222  1 3 2 0.9222 
4 0 1 0.5635  1 3 1 0.5611 
4 0 0 0.3254  1 3 0 0.1000 
3 5 2 1.0000  1 2 2 0.7667 
3 5 1 0.8214  1 2 1 0.4611 
3 5 0 0.4762  1 2 0 0.0778 
3 4 2 1.0000  1 1 2 0.5333 
3 4 1 0.8036  1 1 1 0.3111 
3 4 0 0.4333  1 1 0 0.0444 
3 3 2 0.9643  1 0 2 0.2222 
3 3 1 0.7601  1 0 1 0.1111 
3 3 0 0.3893  1 0 0 0.0000 
3 2 2 0.8750  0 5 2 1.0000 
3 2 1 0.6756  0 5 1 0.5000 
3 2 0 0.3333  0 5 0 0.0000 
3 1 2 0.7500  0 4 2 1.0000 
3 1 1 0.5595  0 4 1 0.5000 
3 1 0 0.2619  0 4 0 0.0000 
3 0 2 0.5833  0 3 2 0.9000 
3 0 1 0.4048  0 3 1 0.4500 
3 0 0 0.1667  0 3 0 0.0000 
2 5 2 1.0000  0 2 2 0.7000 
2 5 1 0.7222  0 2 1 0.3500 
2 5 0 0.2778  0 2 0 0.0000 
2 4 2 1.0000  0 1 2 0.4000 
2 4 1 0.7139  0 1 1 0.2000 
2 4 0 0.2611  0 1 0 0.0000 
2 3 2 0.9444  0 0 2 0.0000 
2 3 1 0.6653  0 0 1 0.0000 
2 3 0 0.2333  0 0 0 0.0000 
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Table B.2 – System signature for system European 3. 

Number of 
failed 

components 
(j) 

System 
signature 
value (𝒒𝒋)  

Number of 
failed 

components 
(j) 

System 
signature 
value (𝒒𝒋)  

Number of 
failed 

components 
(j) 

System 
signature 
value (𝒒𝒋) 

1 0.00E+00  28 1.36E-09  55 9.41E-03 

2 0.00E+00  29 3.55E-09  56 1.24E-02 

3 0.00E+00  30 8.81E-09  57 1.60E-02 

4 0.00E+00  31 2.10E-08  58 2.02E-02 

5 0.00E+00  32 4.80E-08  59 2.49E-02 

6 0.00E+00  33 1.06E-07  60 3.01E-02 

7 0.00E+00  34 2.27E-07  61 3.56E-02 

8 0.00E+00  35 4.72E-07  62 4.12E-02 

9 0.00E+00  36 9.54E-07  63 4.67E-02 

10 0.00E+00  37 1.88E-06  64 5.18E-02 

11 0.00E+00  38 3.60E-06  65 5.63E-02 

12 0.00E+00  39 6.76E-06  66 5.99E-02 

13 0.00E+00  40 1.24E-05  67 6.24E-02 

14 0.00E+00  41 2.22E-05  68 6.37E-02 

15 0.00E+00  42 3.91E-05  69 6.37E-02 

16 0.00E+00  43 6.72E-05  70 6.22E-02 

17 0.00E+00  44 1.13E-04  71 5.95E-02 

18 5.55E-16  45 1.88E-04  72 5.55E-02 

19 5.66E-15  46 3.04E-04  73 5.04E-02 

20 4.09E-14  47 4.83E-04  74 4.43E-02 

21 2.28E-13  48 7.53E-04  75 3.74E-02 

22 1.08E-12  49 1.15E-03  76 3.00E-02 

23 4.44E-12  50 1.72E-03  77 2.23E-02 

24 1.64E-11  51 2.52E-03  78 1.45E-02 

25 5.51E-11  52 3.62E-03  79 6.96E-03 

26 1.71E-10  53 5.08E-03  80 0.00E+00 

27 4.98E-10  54 6.99E-03    
 

 


