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Abstract

Excluding four exceptional cases, the asphericity of the relative presentation

P= ⟨G, x|xmgxh⟩ for m ≥ 2 is determined. If H = ⟨g, h⟩ ≤ G, then the

exceptional cases occur when H is isomorphic to C5 or C6.
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1 Introduction

A relative group presentation is a presentation of the form P= ⟨G,x|r⟩, where G is a

group and x is a set disjoint from G. Denoting the free group on x by ⟨x⟩, r is a set

of cyclically reduced words in the free product G ∗ ⟨x⟩. The group defined by P is Ĝ=

G∗⟨x⟩/N , where N is the normal closure in G∗⟨x⟩ of r. A relative presentation is said

to be aspherical if every spherical picture over it contains a dipole. These notions were

defined and studied in [3] where it is shown that if P is aspherical then group theoretic

information about Ĝ can be deduced.

There has been much interest in determining asphericity of P particularly when x =

{x} and r = {r} both consist of a single element. Indeed, if r = xε1g1 . . . x
εkgk where

gi ∈ G, εi = ±1 and gi = 1 implies εi + εi+1 ̸= 0 (1 ≤ i ≤ k, subscripts mod k), then

the asphericity of P has been determined (modulo some exceptional cases) when k ≤ 3

or r ∈ { xg1xg2xg3xg4, xg1xg2xg3x
−1g4, xg1xg2xg3xg4xg5, (xg1)

l1(xg2)
l2(xg3)

l3(li >

1, 1 ≤ i ≤ 3)} [1-3] [7-9]. This list includes xmgx−1h (g, h ∈ G\{1}) for m ≤ 3, and

when m ≥ 4 asphericity (modulo exceptional cases) has been determined in [6].

In this paper we consider xmgxh (g, h ∈ G\{1}). If m = 2 then a complete classi-

fication of when P is aspherical has been obtained in [3]. Modulo some exceptions the
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cases m = 3 and m = 4 were determined in [2] and [8] respectively. Before stating our

main result observe that xmgxh = 1 if and only if x−mh−1x−1g−1 = 1, and it follows

that we can work modulo g ↔ h−1.

We list the following exceptional cases.

(E1) g = h2, |h| = 5 and m ≥ 5.

(E2) g ∈ {h2, h3, h4}, |h| = 6 and m ≥ 3.

Theorem 1.1. Let P be the relative presentation P =⟨G, x|xmgxh⟩, where m ≥ 2,

x /∈ G, g, h ∈ G\{1} . Suppose that none of the conditions in (E1) or (E2) holds.

Then P is aspherical if and only if (modulo g ↔ h−1) none of the following holds:

1. g = h±1 has finite order.

2. g = h2 has finite order and m = 2.

3. g = h2, |h| = 4 and m ≥ 3.

4. g = h2, |h| = 5 and 3 ≤ m ≤ 4.

5. g ∈ {h3, h4}, |h| = 6 and m = 2.

6. |g| = 2, |h| = 3 and [g, h] = 1.

7. 1
|g| +

1
|gh−1| +

1
|h| > 1, where 1

∞ := 0.

If m = 2, 3, 4 (respectively) then the proof of Theorem 1.1 can be deduced from

results in [3], [2], [8] (respectively) apart from two exceptional cases for m = 3 (E4 and

E5 of [2]) which are dealt with here together with the case m ≥ 5. In Section 2 we

discuss the method of the proof where the concept of pictures is needed. In Section 3

some preliminaries results are stated. The proof of Theorem 1.1 is given in Section 4.

2 Method of Proof

2.1 Pictures and Curvature

The definitions of this subsection are taken from [3]. The reader is referred to [3] and [2]

for more details.

A picture P is a finite collection of pairwise disjoint discs {D1, . . . , Dm} in the

interior of a disc D2, together with a finite collection of pairwise disjoint simple arcs
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{α1, . . . , αn} embedded in the closure of D2 −
∪m

i=1Di in such a way that each arc

meets ∂D2 ∪
∪m

i=1Di transversely in its end points. The boundary of P is the circle

∂D2, denoted by ∂P. For 1 ≤ i ≤ m, the corners of Di are the closures of the connected

components of ∂Di −
∪n

j=1 αj , where ∂Di is the boundary of Di. The regions ∆ of P
are the closures of the connected components of D2 −

(∪m
i=1Di ∪

∪n
j=1 αj

)
. An inner

region of P is a simply connected region of P that does not meet ∂P. The picture P is

non-trivial if m ≥ 1, is connected if
∪m

i=1Di ∪
∪n

j=1 αj is connected, and is spherical

if it is non-trivial and if none of the arcs meets the boundary of D2. The number of

edges in ∂∆ is called the degree of the region ∆ and is denoted by d(∆). A region of

degree n will be called an n-region. If P is a spherical picture, the number of different

discs to which a disc Di is connected is called the degree of Di, denoted by d(Di). The

discs of a spherical picture P are also called vertices of P.
Suppose that the picture P is labelled in the following sense: each arc αj is equipped

with a normal orientation, indicated by a short arrow meeting the arc transversely, and

labelled by an element of x∪ x−1. Each corner of P is oriented clockwise (with respect

to D2) and labelled by an element of G. If κ is a corner of a disc Di of P, then W (κ) will

be the word obtained by reading in a clockwise order the labels on the arcs and corners

meeting ∂Di beginning with the label on the first arc we meet as we read the clockwise

corner κ. If we cross an arc labelled x in the direction of its normal orientation, we

read x, else we read x−1.

A picture over P is a picture P labelled in such a way the following are satisfied:

1. For each corner κ of P, W (κ) ∈ r∗, the set of all cyclic permutations of r ∪ r−1

which begin with a member of x.

2. If g1, ..., gl is the sequence of corner labels encountered in anticlockwise traversal

of the boundary of an inner region ∆ of P, then the product g1g2...gn=1 in G.

We say that g1g2...gn is the label of ∆, denoted by l(∆) = g1g2...gn.

A dipole in a labelled picture P over P consists of corners κ and κ′ of P together

with an arc joining the two corners such that κ and κ′ belong to the same region and

such that if W (κ)= Sg where g ∈ G and S begins and ends with a member of x∪x−1,

then W (κ′)= S−1g−1. The picture P is reduced if it does not contain a dipole. A

relative presentation P is called aspherical if every connected spherical picture over P
contains a dipole. If P is not aspherical then there is a reduced spherical picture over

P.
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The star graph Pst of a relative presentation P is a graph whose vertex set is

x ∪ x−1 and edge set is r∗. For R ∈ r∗, write R = Sg where g ∈ G and S begins and

ends with a member of x∪x−1. The initial and terminal functions are given as follows:

ι(R) is the first symbol of S, and τ(R) is the inverse of the last symbol of S. The

labelling function on the edges is defined by λ(R) = g−1 and is extended to paths in

the usual way. A non-empty cyclically reduced cycle (closed path) in Pst will be called

admissible if it has trivial label in G. Each inner region of a reduced picture over P
supports an admissible cycle in Pst.

A weight function θ is a real-valued function on the set of edges of Pst which satisfies

θ(Sg) = θ(S−1g−1) where Sg = R ∈ r∗. The weight of a closed cycle is the sum of the

weights of the constituent edges. A weight function is weakly aspherical if the following

conditions are satisfied:

1. Let R ∈ r∗, with R = xε11 g1 . . . x
εn
n gn. Then

n∑
i=1

(1− θ(xεii gi . . . x
εn
n gnx

ε1
1 g1 . . . x

εi−1

i−1 gi−1)) ≥ 2.

2. The weight of each admissible cycle in Pst is at least 2.

If Pst admits a weakly aspherical weight function, then P is aspherical [3] and this

method will be used in the proofs.

Another method is curvature distribution (see, for example [7]). Let P be a reduced

spherical picture over P. We proceed as follows. An angle function on P is a real-valued

function on the set of corners of P. Given this, the curvature of a vertex of P is defined

to be 2π less the sum of the angles at that vertex. The curvature c(∆) of a k-gonal

region ∆ of P is the sum of all the angles of the corners of ∆ less (k−2)π. Our method

of associating angles ensures that vertices have zero curvature and it follows from this

that
∑

c(∆) = 4π where the sum is taken over all the regions ∆ of P. Assuming that

none of conditions 1-7 holds, our strategy will be to show that the positive curvature

that exists in P can be sufficiently compensated by the negative curvature. To this

end we locate each ∆ satisfying c(∆) > 0 and distribute c(∆) to near regions ∆̂ of

∆. For such regions ∆̂ define c∗(∆̂) to equal c(∆̂) plus all the positive curvature ∆̂

receives during this distribution procedure. We prove that c∗(∆̂) ≤ 0 and, since the

total curvature of P is at most
∑

c∗(∆̂), this yields a contradiction which shows that

P is aspherical.
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2.2 Construction of pictures and Defined angle functions

For this subsection we assume g ̸= h±1. Let P be a reduced spherical picture over

P=⟨G, x|xmgxh⟩. Then each vertex (disc) in P has one of the forms given by Figure

2.2.1(i) and (ii); and the the star graph Pst of P is given by Figure 2.2.1(iii). Note

that when drawing figures the edge arrows shown in Figure 2.2.1 will often be omitted.

(i)

1

1

h

g

+

_
h

g

(ii)

_
_

_
1

1
_

m  arcs m  arcs

(iii)

g

h

1

1

xx −1

m−1 edges

Figure 2.2.1: + disc, - disc and Pst.

If there are k − 1 consecutive regions of degree 2, then the k arcs in the boundary

of these regions constitute a k-bond. We will refer to a 1-bond as a single bond. Given

that g ̸= h±1 there are (up to inversion) only two types of (m− 1)-bonds in a reduced

picture P (see Figure 2.2.2). For simplicity, in our figures (m− 1)-bonds will be drawn

as bold 2-bonds (see Figure 2.2.2). Note that there are no m-bonds or (m+1)-bonds in

P, indeed a vertex of degree 2 can only occur in a reduced picture if g = h or g = 1 or

h = 1. Also, for simplicity, the vertex of degree 3 of the form shown in Figure 2.2.3 (i)

will be drawn as shown in Figure 2.2.3 (ii), where m1 ≥ 2, m2 ≥ 2 and m1 +m2 = m.

1)

2)

h

g

1

g

h

1 _
g

h
_

g
_

h
_

_
1

1
_

m−2 regions

m−2 regions

Figure 2.2.2: (m− 1)-bond.

5



m  −1  regions1

m  −1  regions2

g

h 1

(ii)(i)

g

h 1

m  −bond1

m  −bond2

Figure 2.2.3.

Remarks 2.1.

1. Each arc connects a + disc to a - disc, and so each region has even degree.

2. A word w obtained from reading the labels on the edges of a cyclically reduced

cycle in Pst does not contain (up to cyclic permutation and inversion) gg−1 or

hh−1 although it can contain 11−1 provided different edges in Pst are used. We

will call such words w cyclically reduced .

3. Each region in a reduced spherical picture P over P supports a cyclically reduced

word in {g, h, 1}.

There are (up to inversion) three types of vertices of degree 3 and these are shown

in Figure 2.2.4.

g
_

∆ 8

∆ 7∆ 1

1

1 g

Type 1

∆ ∆ ∆ ∆

∆

∆
2 3 5

1

g

h

Type 2

6

4

9

g

1

Type 3

h
h

h
_ _

_

_

1

1

_
1

Figure 2.2.4.

For the proofs, we define the following angle functions on the vertices v of P. The

angle function α is defined as follows. Each corner within a 2-bond has angle zero,

while each of the other corners has angle 2π
d(v) . We will refer to α as the standard angle

function.
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The angle function α1 is defined as follows. Again, corners within 2-bonds have

angle zero. For vertices of degree 3 of Type 1-3, α1 is given by Figure 2.2.5. If d(v) > 3,

then each corner in v has angle 2π
d(v) .

g
_

< π/2

< π/2

1

Type 1

h

g3π/4 3π/41

π/2

1

Type 2

1

g

h

π/2

Type 3

gh

1

3π/4 3π/4

3π/4
3π/4

π/2

h
_ _

_

_

_

1

1

Figure 2.2.5: Angle function α1 for vertices of degree 3.

Define an angle function α2 on P as follows. Corners within 2-bonds have angle

zero. In vertices of degree 3, corners labelled by h±1 have angle π, each of the other

two corners has angle π
2 (see Figure 2.2.6). Corners in vertices of degree > 3 have angle

2π
d(v) .

g
_

1 1

Type 1 Type 2 Type 3

π/2

g
h

1 g

h

π/2 π/2

π

1hπ

π/2

π/2
g

1

π

π/2

h
_ _

_
1

_
1

_

Figure 2.2.6: Angle function α2 for vertices of degree 3.

Finally, the angle function α3 on P is given as follows. Corners within 2-bonds have

angle zero. For vertices of degree 3, corners labelled by 1±1 have angle π, each of the

other two corners has angle π
2 (see Figure 2.2.7). Corners in vertices of degree > 3 have

angle 2π
d(v) .
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g
_

< π/2

< π/2

< π/2

< π/2

1

Type 1

h

g1

π/2

1

Type 2

1

g

h

Type 3

gh

1

π/2 π/2

π π/2 π/2 π
π/2

π

h
_ _ _

1
_

_
1

Figure 2.2.7: Angle function α3 for vertices of degree 3.

Remarks 2.2.

1. The corners in each 2-bond have angle 0 in each of the above angle functions. It

follows that the curvature of regions of degree 2 is 0, and so we can treat each

k-bond as a single bond.

2. By assigning the angle function α1 to the corners of P, the following are satisfied:

(i) Since (2− 8)π + 8.3π4 = 0, positive regions can only have degree 4 or 6.

(ii) Both corners adjacent to the (m − 1)-bond in a boundary of a region have

angle 3π
4 ; while the two corners adjacent to the m1-bond or m2-bond in a boundary

of a region cannot both have angle 3π
4 (see Figure 2.2.5).

3. By assigning the angle function α2 to the corners of P, the following are satisfied:

(i) In any region ∆ of P, there are no consecutive corners with angle π, else P
is not reduced. Hence, c(∆) ≤ (2 − n)π + n

2 .π + n
2 .

π
2= π(8−n

4 ) and so positively

curved regions can only be 4-regions or 6-regions.

(ii) If ∆ is a positive 4-region, then it has at least one corner labelled by h±1 with

angle π (otherwise c(∆) ≤ −2π + 4.π2 = 0).

(iii) If ∆ is a positive 6-region, then it contains at least three h±1-corners each

with angle π (else c(∆) ≤ −4π + 2π + 4.π2 = 0).

4. By assigning the angle function α3 to the corners of P, the following are satisfied:

(i) There are no consecutive corners with angle π in the boundary of a region ∆

of P (otherwise P is not reduced). Thus, c(∆) ≤ (2− n)π + n
2 .π + n

2 .
π
2= π(8−n

4 )

and so positive regions can only be 4-regions or 6-regions.

(ii) If ∆ is a positive 4-region, then it contains at least one corner labelled by 1±1

with angle π (otherwise c(∆) ≤ −2π + 4.π2 = 0).
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(iii) If ∆ is a positive 6-region, then it contains three occurrences of 1±1-corners

each with angle π (else c(∆) ≤ −4π + 2π + 4.π2 = 0).

3 Preliminary Lemmas

Assume that m ≥ 5. We first state a series of lemmas followed by their proofs. Recall

that we assume g, h ∈ G\{1}.

3.1 Statement of Lemmas

Lemma 3.1. If P is not aspherical, then at least one of the following conditions holds:

1. g = h±1;

2. g = h2 or h = g2;

3. 2 ∈ {|g|, |h|};

4. |gh−1| = 2 and 3 ∈ {|g|, |h|}.

Lemma 3.2. If g = h±1, then P is aspherical if and only if g has infinite order.

Lemma 3.3. Let g = h2. If |h| = 4, then P is not aspherical, while if |h| > 6, then P
is aspherical.

Lemma 3.4. If 1
|g| +

1
|gh−1| +

1
|h| > 1, then P is not aspherical.

Lemma 3.5. If |gh−1| is infinite, then P is aspherical.

Lemma 3.6. Suppose that |g| = 2.

1. If |gh−1| = 2 and |h| = ∞, then P is aspherical.

2. If |gh−1| = 3, |h| ≥ 6 and P is not aspherical, then g = h3, in particular |h| = 6.

3. If |gh−1| ≥ 4, |h| ≥ 4 and g ̸= h2, then P is aspherical.

4. If |gh−1| ≥ 6 and |h| = 3, then P is not aspherical if and only if [g, h] = 1.

Lemma 3.7. If |g| = 3, |gh−1| = 2, |h| ≥ 6 and P is not aspherical, then g = h4 and

|h| = 6.
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3.2 Proof of Lemma 3.1.

Let P be a reduced spherical picture over P. It can be assumed without any loss of

generality (A) that the number of regions of degree 4 cannot be decreased by bridge

moves [5]. Suppose that none of the Conditions 1, 2 or 3 holds.

First assign the standard angle function α to the vertices of P. Since for any n-

region ∆ in P, c(∆) ≤ π
(
6−n
3

)
, c(∆) > 0 only if n = 4. A positively curved 4-region

∆ has at least one vertex of degree 3. If ∆ ∈ {∆i : 1 ≤ i ≤ 8} which are shown in

Figure 2.2.4, then at least one corner of ∆ is not labelled by 1±1. By considering all

cyclically reduced words of length at most 4 in {g±1, h±1} (which are compatible with

our hypotheses on g and h), we obtain l(∆) = (gh−1)±2. If ∆= ∆9 then l(∆) gives

a contradiction or ∆ is the positive 4-region shown in Figure 3.2.1. Since m1 > B a

sequence of bridge moves transforms ∆ into a region of degree > 4 without creating

a new region of degree 4. This contradicts assumption (A) and so by assigning α we

obtain |gh−1| = 2.

m  −bond
1

1

1 1

11

∆

g

h

1

2
m  −bond

B −bond  

Figure 3.2.1.

Now apply the angle function α1. By Remark 2.2.(2)(i), positively curved regions

can only be 4-regions or 6-regions. A positively curved 4-region ∆ has at least one

corner with angle 3π
4 in its boundary and so ∆ = ∆i for some i ∈ {2, 3, 5, 6, 7, 8}.

This implies that ∆ has at least one corner not labelled by 1±1. Also, it implies that

l(∆) ̸= (gh−1)±2. All other choices contradict our assumptions on g and h and so there

are no positive 4-regions. It follows that ∆ is a 6-region which contains at least five

corners with angle 3π
4 in its boundary (else, c(∆) ≤ (2 − 6)π + 4.3π4 + 2.π2 = 0). By

Remark 2.2(2)(ii) ∆ contains at least two (m − 1)-bonds in its boundary and a third

bond which is either an (m−1)-bond, an m1-bond or m2-bond. If the (m−1)-bonds in

the boundary of ∆ are inwardly oriented, then l(∆) = (g1−1)±3, while if the (m− 1)-

bonds are oriented outward ∆, then l(∆) = (h1−1)±3. It follows that |gh−1| = 2 and

3 ∈ {|g|, |h|} which is Condition 4, as required.
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3.3 Proof of Lemma 3.2.

If g = h then xmgxh = 1 if and only if xm−1(xg)2 = 1. By Lemma 1 in [9], P is

aspherical if and only if |g| = ∞.

If g = h−1 and g has infinite order, then Lemma 3 in [2] applies to show that P is

aspherical. But xmgxg−1 = 1 and |g| < ∞ implies |x| < ∞ and by Theorem 1 in [2] P
is not aspherical.

3.4 Proof of Lemma 3.3.

Let g = h2. For |h| = 4 there is the sphere shown in Figure 3.4.1. On the other hand

if |h| = k > 6, then the ordinary presentation ⟨x, h|xmh2xh = 1 = hk⟩ is a C(4)-T(4)

presentation, hence P is aspherical (for more details see [2]).

h2
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h2

h2

h2

−2
h

−2
h

−2
h

−2
h

−2
h

−2
h

−2
h

−2
h

−2
h

−2
h

−2
h

−2
h

h2

h2

h2

h2

_
h

_
h

_
h

_
h

_
h

_
h

_
h

_
h

_
h

_
h

_
h

h2
h2

1

1

1
1

1

1

1
1

1

1

1
1

1

11

1

1

1

1

1

1

1

1

1

1

h

h

h

h

h

h

h

h

h

h

hh

_
h

_

_ _
_

_

_

_

_

_
_

1

1

_

11

1

_

_

_

_

_

1

1

Figure 3.4.1: g = h2 and |h| = 4.

3.5 Proof of Lemma 3.4.

If 1
|g| +

1
|gh−1| +

1
|h| > 1 then there are spherical pictures P over P. For example

if (|g|, |gh−1|, |h|) =(2, 3, 4) then P is given by Figure 3.5.1. The other spheres are

constructed in a similar way, we omit the details.
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11
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1
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Figure 3.5.1:
(
|g|, |gh−1|, |h|

)
= (2, 3, 4).

3.6 Proof of Lemma 3.5.

Suppose that |gh−1| is infinite. If we have a relation of the form (gh−1)kg = 1 or

h−1(gh−1)k = 1 in G then H = gp{g, h} is infinite cyclic generated by gh−1, and so P
is aspherical by Lemma 3 in [2]. So assume otherwise.

Define the following weight function θ on Pst (see Figure 2.2.1(iii)): θ(eg)= 0=

θ(eh) and θ(si) = 1 for (1 ≤ i ≤ m− 1), where eg, eh, si (1 ≤ i ≤ m− 1) are the edges

of Pst labelled g, h, 1 (respectively). Clearly Condition 1 of weakly aspherical weight

function is satisfied. The assumptions on g and h imply that each admissible cycle in

Pst must involve at least 2 edges labelled by the identity, and so has weight at least 2.

Therefore θ is an aspherical weight function which proves that P is aspherical.

3.7 Proof of Lemma 3.6(1): Case(2, 2,∞)

In this case, |g| = 2, |gh−1| = 2 and |h| = ∞. Let P be a reduced spherical picture over

P and assign the angle function α2 to P. By Remark 2.2 (3)(i), positive regions can

only be 4-regions or 6-regions. By Remark 2.2 (3)(iii), positive 6-regions involve three

occurrences of h±1-corners and each possible label yields a contradiction. By Remark

2.2 (3)(ii) a positive 4-region must contain h±1 forcing the label (gh−1)±2. Hence, there

are (up to inversion) two types of positive regions as shown in Figure 3.7.1. (Note that
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the maximum possible curvature is always indicated.)

We adopt the notation of [2] and define the following distribution scheme (distribut-

ing positive curvature from ∆ to ∆̂) which is given in Figure 3.7.1:

Γ(∆, ∆̂) =



c(∆) if 0 < c(∆) ≤ π
2 and ∆ is separated from ∆̂ by a single bond S

that is oriented from ∆ to ∆̂ such that S is adjacent to an

h±1-corner in ∆ with angle π

c(∆)/2 if π
2 < c(∆) and ∆ is separated from ∆̂ by a single bond

that is oriented from ∆ to ∆̂

0 otherwise
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Figure 3.7.1: Positive regions and distribution scheme in Case(2, 2,∞).

Let Γ(∆, ∆̂) > 0 and let r be the number of corners of angle π in ∆̂. By Remark

2.2(3)(i), r ≤ n
2 where n = d(∆̂). Set Γ2= Γ2(∆̂)= |{∆ : Γ(∆, ∆̂) = π

2 }| ≤
n
2 (since

∆̂ receives π/2 only across edges that are oriented inwards - see Figure 3.7.1). Then

c∗(∆̂) ≤ (2− n)π + rπ + (n− r)π2 + Γ2.
π
2= 2π − π

2 (n− r − Γ2) ≤ 2π. It follows that if

Γ2 ≤ n
2 − 4 then c∗(∆̂) ≤ 0, so assume otherwise.

If Γ2 = n
2 or n

2 − 1, then (see Figure 3.7.1 ) the labelling of ∆̂ implies that either

h±
n
2 = 1 or g = h±

n
2 , contradicting |h| = ∞. This leaves Γ2 = n

2 − 3 and r = n
2 ; or

Γ2 = n
2 − 2 and r ≥ n

2 − 1 (otherwise c∗(∆̂) ≤ 0 ). First assume that r = n
2 − 1. Then

Γ2 =
n
2 −2 and c∗(∆̂) ≤ π

2 . The fact that Γ2 =
n
2 −2 means that there are two inwardly

oriented edges in ∂∆̂ across which ∆̂ does not receive π
2 . Figure 3.7.2 (i) shows the first

case (consecutive), which forces l(∆̂) = h
n
2
−1w1w2w3, where w1, w3 ∈ {1−1, g−1} and

w2 ∈ {1, g, h}; and it follows that |h| < ∞, a contradiction. The second case is given

by Figure 3.7.2 (ii) and l(∆̂) = z1h
α1z2h

α2 , where z1, z2 ∈ {1−1, g−1}. If z1 = 1−1 or
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z2 = 1−1 then |h| = ∞, a contradiction, so assume otherwise. But if z1 = g−1 in Figure

3.7.2 (ii) then either the h-corner in the vertex v1 has angle ≤ π
2 , or ∆1 contains an

m-bond in its boundary and so it cannot be either of the positive regions shown in

Figure 3.7.1. (i.e ∆̂ does not receive π
2 from ∆1). Either way, c∗(∆̂) will be decreased

by π
2 and so c∗(∆̂) ≤ 0.

Now let r = n
2 in which case Γ2 =

n
2−2 or n

2−3 and c∗(∆̂) ≤ π. Since g2=(gh−1)2=1

it follows that any word in g and h can be rewritten in the form gα1hα2 . If g±1 appears

an odd number of times in l(∆̂) then |h| < ∞. Also, if g±1 occurs at least four times

in l(∆̂) then Γ2 ≤ n
2 − 4, a contradiction, and so g±1 appears exactly twice in l(∆̂).

Since r = n
2 , each of these two g−1-corners is adjacent to two h-corners in ∂∆̂. Thus,

arguing as in the case z1 = g−1 above it follows that c∗(∆̂) ≤ π − 2.π2 = 0.
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Figure 3.7.2.

3.8 Proof of Lemma 3.6(2): Case(2, 3̄, 6̄)

Here we assume that |g| = 2, |gh−1| ≥ 3 and |h| ≥ 6. Suppose that P =⟨G, x|xmgxh⟩
is not aspherical. We show that H = gp{g, h} is cyclic of order 6 generated by h and

g = h3. Let P be a reduced spherical picture over P to which we assign the angle

function α2. All possible labels for a positive 4-region give a contradiction since, by

Remark 2.2 (3)(ii), each must involve h±1. For positive 6-regions, by Remark 2.2

(3)(iii), there are three occurrences of h±1 and the only possible labels not yielding a

contradiction imply (gh−1)±3 = 1 or g = h3 (and we are done). Therefore there is (up

to inversion) only one positive region which is shown in Figure 3.8.1.
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Apply the following distribution scheme:

Γ(∆, ∆̂) =


c(∆)/3 if c(∆) > 0 and ∆ is separated from ∆̂ by a single bond

that is oriented from ∆ to ∆̂

0 otherwise
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Figure 3.8.1: Positive regions and distribution scheme in Case(2, 3̄, 6̄).

As shown in Figure 3.8.1, if Γ(∆, ∆̂) > 0, then (h1−1h)±1 is a sublabel of ∆̂. For a

fixed region ∆̂ set Γ6(∆̂) = |{∆ : Γ(∆, ∆̂) = π
6 }|.

Remarks 3.8.

1. Since ∆̂ receives π/6 only through edges that are oriented towards ∆̂, Γ6 ≤ n
2 .

2. For each π/6 that ∆̂ receives, there is an (m−1)-bond in the boundary of ∆̂ which

gives (h1−1)±1 as a sublabel of ∆̂.

3. l(∆̂) = h1−1hw and so d(∆̂) > 6; since if d(∆̂)=6 then l(∆̂) yields a contradiction

or g = h3.

Observe that by Remarks 2.2 (3)(i) and 3.8.1, c∗(∆̂) ≤ (2− n)π+ n
2 .π+ n

2 .
π
2 + n

2 .
π
6

and so c∗(∆̂) > 0 implies n < 12.

Let ∆̂= (n, r) denote a region of degree n with Γ6 = r. We need to check c∗(∆̂)

for ∆̂= (n, r)= (10, 5), (10, 4), (10, 3), (10, 2), (10, 1), (8, 4), (8, 3), (8, 2) and (8, 1). The

region (n, r) ̸= (10, 5) or (8, 4) else it gives h±5 = 1 or h±4 = 1 (respectively) contra-

dicting |h| ≥ 6. All possible labels for ∆̂=(n, r)= (10, 4) or (8, 3) yields a contradiction.
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For example, ∆̂= (8, 3) gives either h±4 = 1 or g = h4: the first contradicts |h| ≥ 6 and

the second implies h = 1. For ∆̂= (10, r ≤ 3), c∗(∆̂) ≤ (2− 10)π+5π+5.π2 +3.π6 = 0.

Finally, since (2 − 8)π + 3π + 5.π2 + 2.π6 =−π
6 < 0, c∗(∆̂) > 0 for ∆̂= (8, r ≤ 2) only

if it contains 4 corners with angle π (up to inversion ∆̂ is shown in Figure 3.8.2), and

each possible l(∆̂) yields a contradiction.
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Figure 3.8.2: ∆̂= (8, r ≤ 2) with c∗(∆̂) > 0.

3.9 Proof of Lemma 3.6(3): Case(2, 4̄, 4̄)

Here |g| = 2, |gh−1| ≥ 4 and |h| ≥ 4. Let P be a reduced spherical picture over P and

assign the angle function α2 to P. By Remark 2.2(3)(i) a positive region ∆̂ can only

have degree 4 or 6. It follows from Remarks 2.2(3)(ii) and (iii) that l(∆̂) will yield a

contradiction. Therefore, in this case P is aspherical.

3.10 Proof of Lemma 3.6(4): Case(2, 6̄, 3)

If [g, h] = 1 then |gh−1| = 6, (gh−1)3 = g and (gh−1)2 = h. It follows that P
=⟨G, x|xmb3xb2, b6⟩ and this presentation has been shown to be not aspherical by Bog-

ley and Williams [4] (indeed it can be shown that b is conjugate to xm+1). So it can be

assumed that [g, h] ̸= 1. We prove that P =⟨G, x|xmgxh⟩ is aspherical. Let P be a re-

duced spherical picture over P with the assumption (A) stated in the proof of Lemma

3.1 and assign the angle function α3. By Remark 2.2(4)(i) the degree of a positive

region ∆ can only be 4 or 6. If ∆ is a positive 4-region with an h±1-corner then l(∆)

yields a contradiction, so assume otherwise. If now ∆ has a g±1 corner then l(∆) yields

the 4-regions shown in Figure 3.10.1. This leaves l(∆) = 11−111−1 which contradicts

(A) as in the proof of Lemma 3.1.

If ∆ is a 6-region, then either there is a contradiction or l(∆) ∈ {1−111−111−11,

1−111−1g1−1g, 1−1h1−1h1−1h}. The first two cannot be positive, while the last gives

the positive 6-region shown in Figure 3.10.1.
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Define the following distribution scheme which is given in Figure 3.10.1:

Γ(∆, ∆̂) =



c(∆)/2 if c(∆) = π and ∆ is separated from ∆̂ by a single bond

that is oriented from ∆ to ∆̂

c(∆) if 0 < c(∆) ≤ π
2 , ∆ is separated from ∆̂ by a single bond S

that is oriented from ∆ to ∆̂ and S is adjacent to a 1-corner

in ∆ with angle π

π/6 if c(∆) = π
2 and ∆ is separated from ∆̂ by a single bond

that is oriented from ∆̂ to ∆

0 otherwise
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Figure 3.10.1: Positive regions and distribution scheme in Case(2, 6̄, 3).

Let r be the number of corners of angle π in ∆. Then r ≤ n
2 (by Remark 2.2(4)(i)).

Let s denote the number of pairs (π2 ,
π
6 ) or (

π
6 ,

π
2 ) such that ∆̂ receives π

2 and π
6 across

adjacent edges in ∂∆̂, with the understanding that each π
2 and π

6 that ∆̂ receives appears

at most once in these pairs. Denote the remaining number of π
2 that ∆̂ receives by s1.

Also, let s2 denote the remaining number of π
6 that ∆̂ receives. As an example to show

how to get the values s, s1 and s2 see Figure 3.10.2.
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π/2

π/6

π/2

π/2

π/2π/2

π/6

π/6

π/6

Figure 3.10.2: n = 16, s = 2, s1 = 3, s2 = 2.

Remarks 3.9.

1. As shown in Figure 3.10.1, l(∆̂) ∈ {hg−1w, h−1gw} ⇒ d(∆̂) > 6 for otherwise

l(∆̂) yields a contradiction.

2. r ≤ n
2 − (s+ s1 + s2).

3. s+ s2 ≤ n
2 .

Let ∆̂ be a region such that c∗(∆̂) > 0. Then c∗(∆̂) ≤ (2 − n)π +
[
n
2 − (s + s1 +

s2)
]
π + (n2 + s+ s1 + s2)

π
2 + s(12 +

1
6)π + s1.

π
2 + s2.

π
6=

π
12(24− 3n+ 2s− 4s2), and so

c∗(∆̂) > 0 implies 24−3n+2s−4s2 > 0 ⇒ 3n < 24−4s2+2s ≤ 24−4s2+2(n2 − s2)=

24− 6s2 + n ⇒ n < 12.

Let n = 10. Then c∗(∆̂) > 0 ⇒ 24 − 3(10) + 2s > 4s2 ≥ 0 ⇒ s > 3. If s=4 or

5, then either l(∆̂)= (g−1h)4g−11 which contradicts [g, h] ̸= 1 or l(∆̂)= (g−1h)5 which

contradicts |gh−1| ≥ 6. This leaves n = 8. But checking the possible labels shows that

l(∆̂)= hg−11g−1h1−1h1−1 ⇒ c∗(∆̂) ≤ −π
3 (see Figure 3.10.3).

< π/2

g
_

_
1

1
_

∆^
π/6

π/2

h

1
h

g
_ h

Figure 3.10.3: n = 8.

3.11 Proof of Lemma 3.7: Case(3, 2, 6̄)

Here, we assume that |g| = 3, |gh−1| = 2 and |h| ≥ 6. Let P be a reduced spherical

picture over P and assign the angle function α1 to P. Observe that if c(∆̂) > 0, then
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l(∆̂) ∈ {1−1gw, h1−1w} (see Figure 2.2.6). It follows that all positively curved regions

are shown in Figure 3.11.1.

Define the following distribution scheme which is given in Figure 3.11.1:

Γ(∆, ∆̂) =


π/6 if c(∆) = π

2 and ∆ is separated from ∆̂ by an (m− 1)-bond

c(∆)/2 if 0 < c(∆) ≤ π
4 and ∆ is separated from ∆̂ by an (m− 1)-bond

0 otherwise
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Figure 3.11.1: Positive regions and distribution scheme in Case(3, 2, 6̄).

For a fixed region ∆̂ again set Γ6(∆̂) = |{∆ : Γ(∆, ∆̂) = π
6 }|.

Remarks 3.10.

1. The region ∆̂ receives each π/6 through an (m − 1)-bond in its boundary which

gives (1h−1)±1 as a sublabel of ∆̂.

2. ∆̂ receives π/6 only through edges that are oriented outwards ∆̂, and so ∆̂ does

not receive π/6 through consecutive edges in its boundary (Γ6 ≤ n
2 ). Also, for

each π/6 that ∆̂ receives, there are two corners in ∆̂ with angle 3π
4 . Therefore,

Γ6 ≤ r
2 , where r is the number of corners with angle 3π

4 in the boundary of ∆̂.

3. As shown in Figure 3.11.1, l(∆̂) = 1h−1w, which implies that d(∆̂) > 4 for

otherwise l(∆̂) yields a contradiction.

By using Γ6 ≤ r
2 , c

∗(∆̂) ≤ (2 − n)π + r.3π4 + (n − r).π2 + r
2 .

π
6 , and so c∗(∆̂) > 0

⇒ 2r > 3n− 12. Since r ≤ n, this implies that n < 12.
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Let ∆̂= (n, r) denote a region of degree n with r corners of angle 3π
4 and assume

that c∗(∆̂) > 0. Since 2r > 3n− 12 it follows that if n = 10 then r = 10; if n = 8 then

r = 7 or 8; and if n = 6 then r = 4, 5 or 6. If (n, r)= (10, 10) or (8, 8) then l(∆̂) implies

that h5 = 1 or h4 = 1 contradicting |h| ≥ 6. If (n, r)= (8, 7) then ∆̂ is given by Figure

3.11.2 (i) and l(∆̂) implies either h4 = 1 or g = h4 which is (E2). This leaves d(∆̂) = 6

and checking shows that l(∆̂)=1h−1gh−1g1−1 as in Figure 3.11.2 (ii), otherwise there

is a contradiction or condition (E2) occurs. But observe that if r > 3 in Figure 3.11.2

(ii) then r = 4 and since the ∆̂ corners of vertices u and v cannot have angle 3π
4 , this

forces x = h−1, a contradiction which completes the proof.
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Figure 3.11.2.

4 Proof of Theorem 1.1

As mentioned in the introduction, the proof of Theorem 1.1 has been done previously

for m= 2,3 and 4 except for the exceptional cases E4 and E5 of [2]. But by following

the proof of Lemma 3.6(3), Lemma 8(3) in [2] can be amended as follows: if |g|=2,

|gh−1| ≥ 4, |h| ≥ 4 and g ̸= h2, then P is aspherical even if [g, h] = 1; and so in these

two cases P is also aspherical. So it can be assumed that m ≥ 5. The ‘only if’ direction

of Theorem 1.1 follows from Lemmas 3.2, 3.3, 3.4 and 3.6(4). For the rest of the proof

we assume that none of the Conditions (1)-(7) of Theorem 1.1 is satisfied. We show

that either P is aspherical or exceptional.

If none of the conditions of Lemma 3.1 holds, then P is aspherical. Assume that

Condition 1 of Lemma 3.1 holds. Then |g| = ∞ (since Condition 1 of Theorem 1.1 does

not hold), and so P is aspherical by Lemma 3.2. So assume from now on that g ̸= h±1.

If Condition 2 of Lemma 3.1 holds, then it can be assumed without any loss that

g = h2. Then |h| ≥ 5 (by the negation of Condition 3 of Theorem 1.1). If |h| ∈ {5, 6}
then P is exceptional of type (E1) or (E2, g = h2); and if |h| ≥ 7, then P is aspherical

by Lemma 3.3. So assume from now on that g ̸= h2.
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If Condition 3 of Lemma 3.1 holds, then it can be assumed without any loss that

|g| = 2. Since g ̸= h, |gh−1| ≥ 2. If |gh−1| = 2 then |h| = ∞ (Condition 7 of

Theorem 1.1) and it follows that P is aspherical by Lemma 3.6(1). If |gh−1| = 3, then

|h| ≥ 6 (Condition 7 of Theorem 1.1). By Lemma 3.6(2), P is aspherical if g ̸= h3,

while if g = h3 then P is exceptional of type (E2, g = h3). If |gh−1| = 4 or 5 then

|h| ≥ 4 (Condition 7 of Theorem 1.1), and so P is aspherical by Lemma 3.6(3). Now

suppose that |gh−1| ≥ 6. By Lemma 3.5, if |gh−1| = ∞ then P is aspherical, so assume

otherwise. Then |h| ≥ 3 (Condition 7 of Theorem 1.1). If |h| = 3 then [g, h] ̸= 1,

otherwise Condition 6 of Theorem 1.1 holds, and so P is aspherical by Lemma 3.6(4).

If |h| ≥ 4, then P is aspherical by Lemma 3.6(3).

Finally, if Condition 4 of Lemma 3.1 is satisfied then it can be assumed without loss

that |g| = 3 and |gh−1| = 2. Hence |h| ≥ 6 (else, Condition 7 of Theorem 1.1 applies).

If g = h4 then P is exceptional of type (E2, g = h4); otherwise P is aspherical by

Lemma 3.7.
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