
A Self-adaptive Multimeme Memetic Algorithm

Co-evolving Utility Scores to Control Genetic

Operators and Their Parameter Settings

Ender Özcana, John H. Drakeb, Cevriye Altıntaşc, Shahriar Astaa

aASAP Research Group, School of Computer Science, University of Nottingham, NG8 1BB,

Nottingham, UK
bThe OR Group, Queen Mary University of London, Mile End Road, London, E1 4NS, UK

cSüleyman Demirel University, Isparta, Turkey

Abstract

Memetic algorithms are a class of well-studied metaheuristics which combine

evolutionary algorithms and local search techniques. A meme represents con-

tagious piece of information in an adaptive information sharing system. The

canonical memetic algorithm uses a fixed meme, denoting a hill climbing oper-

ator, to improve each solution in a population during the evolutionary search

process. Given global parameters and multiple parametrised operators, adap-

tation often becomes a crucial constituent in the design of MAs. In this study,

a self-adaptive self-configuring steady-state multimeme memetic algorithm (SS-

MMA) variant is proposed. Along with the individuals (solutions), SSMMA

co-evolves memes, encoding the utility score for each algorithmic component

choice and relevant parameter setting option. An individual uses tournament

selection to decide which operator and parameter setting to employ at a given

step. The performance of the proposed algorithm is evaluated on six combina-

torial optimisation problems from a cross-domain heuristic search benchmark.

The results indicate the success of SSMMA when compared to the static MAs

as well as widely used self-adaptive Multimeme Memetic Algorithm from the

scientific literature.

Keywords: Memetic Algorithms, Multimeme Memetic Algorithms,

Reinforcement Learning, Hyper-heuristics, Combinatorial Optimisation

Preprint submitted to Elsevier July 17, 2016

1. Introduction

Many real-world optimisation problems create a search space which is so

large that it becomes impractical to exhaustively search all possible states.

Heuristics, in the field of optimisation, seek to find good quality solutions to

a problem given a ‘rule of thumb’ using some intuition, with no guarantee of

solution quality. In essence, a metaheuristic is a high-level strategy which is de-

signed to guide a computational search for any problem where heuristics exist

to modify the current state of a given solution [64]. Traditional heuristics are

liable to become trapped in local, suboptimal areas of the search space, never

to discover the globally optimal solution. Metaheuristics are designed to escape

local optima, often offering a good trade-off between computational effort and

solution quality.

Memetic Algorithms (MAs) [41] are a hybrid metaheuristic approach to

problem solving which combine evolutionary algorithms with local search tech-

niques. The term Memetic Algorithm was first used to cover a number of

techniques using the idea of a meme [18] as a ‘unit of cultural transmission’

which is considered analogous to the local search/hill climbing process. MAs

have previously been used to solve problems in a large number of different prob-

lem domains. The taxonomy provided by Ong et al. [50] identifies three main

categories of Memetic Algorithms, considering how the algorithmic components

and their settings are decided based on feedback received during the evolution-

ary search process. The first category of MAs do not use any feedback, hence,

they are referred to as static MAs. The canonical MA which utilises a single

hill climbing operator or makes a random choice among multiple operators falls

into this category. The second category consists of adaptive MAs which embed

a method to receive feedback during the search process and influence the choice

of a meme at a given decision point. The third category of MAs are self-adaptive

algorithms that use evolution itself for adaptation and the selection of an appro-

priate meme. Adaptation strategies are crucial for the second and third types

of MAs, determining the overall performance of a given algorithm.

2

The generic Multimeme Memetic Algorithm (MMA) of Krasnogor and Smith

[35] is a self-adaptive MA, which co-evolves memetic material encoded into each

individual at the same time as evolving solutions to a given problem. Although

MMA was proposed as a general method, particular choices have been made

regarding adaptation and inheritance. For example each meme option is directly

encoded into the memetic material, referred to as a memeplex, and is perturbed

with a certain probability. Özcan and Onbaşıog̃lu [58] used an MMA to solve

a parallel processing problem. The authors tested three different strategies

to decide which meme to use as a hill climbing operator, showing that this

algorithmic choice influences the performance of MMA on this problem.

There are a limited number of studies addressing the issue of how to select a

meme in addition to choosing what to encode within a meme. In this study, we

introduce a Steady-state Multimeme Memetic Algorithm (SSMMA), a new self-

adaptive MA which employs a different encoding of options to a generic MMA.

The utility score for each option is separately maintained within each individual

in a population and gets updated using a strategy inspired by Reinforcement

Learning [30, 57]. Based on these scores, a meme is selected when needed using

tournament selection. To the best of authors’ knowledge this approach, which

diminishes the need for the innovation rate parameter, is used for the first time

within MMAs.

One of the main limitations of self-adaptive MAs by Krasnogor and Smith

is that the general framework was mostly theoretical and had no actual imple-

mentation. The performance of SSMMA is evaluated on six different problem

domains including real-world problems from the HyFlex cross-domain heuristic

search benchmark [48]. Overall, the empirical results show that the proposed

MMA improves upon the original MMA presented by Krasnogor and Smith [35]

in many cases.

The subsequent sections of this paper are organised as follows. In Section

2, an overview of Memetic Algorithms and the HyFlex benchmark is given. In

Section 3, we describe the details of the Memetic Algorithms which are tested in

this study. Section 4 presents the experimental design and parameter settings

3

used during experimentation before presenting the empirical results and analy-

ses. Finally, some concluding remarks and potential future work are provided

in Section 5.

2. Related Work

2.1. Memetic Algorithms

Evolutionary algorithms are a class of search techniques inspired by the nat-

ural process of evolution, of which by far the most well-known are Genetic Algo-

rithms (GAs) [25]. A GA iteratively updates a population of solutions through

the use of mutation and crossover operators, which modify a solution or recom-

bine multiple solutions respectively. Hill climbing methods for local search are

a relatively simple class of heuristics, utilising the concept of locality between

candidate solutions for a given problem. A typical hill climbing algorithm moves

through the search space from one solution to another non-worsening solution

within a neighbourhood, where a neighbour is defined as any state that can be

reached from the current solution through some modification. A core challenge

when using such methods is the trade-off between intensification and diversifi-

cation, where intensification refers to the exploitation of the current area of the

search space and diversification refers the exploration of new regions of search

space [4, 16].

Memetic Algorithms (MAs) were introduced by Moscato [41] as a set of

evolutionary algorithms that make heavy use of hill climbing. A simple MA

introduces a local search phase into a GA after crossover and mutation have

been performed during the evolutionary process. Since their emergence, MAs

and subsequent variants of MAs have been applied to a wide variety of problems,

including educational timetabling [2, 10, 56, 60, 59], multi-objective optimisation

problems [31, 24], permanent-magnet synchronous motor (PMSM) design [11],

Optimal Placement of PMUs [37], permutation flow shop scheduling [28], the

economic load dispatch problem [51, 52], protein folding [33], HIV therapy design

[44], the quadratic assignment problem [39] and the travelling salesman problem

4

[42, 5, 26]. As well as the application of MAs to practical optimisation problems,

a number of studies have sought to understand the concepts underpinning MAs

and the behaviour of memes [34]. Indeed the performance of an MA has been

observed to be strongly linked to the choice of local search mechanism used [58,

54], with competition and cooperation between different local search methods

beneficial to to overall search process [49].

Previous studies have tried to address the issues in the design of MAs.

Nguyen et al. [45] highlighted a number of design decisions within MAs, namely,

the trade-off between intensification and diversification within the context of

MAs, the choice of which individuals to improve if not all solutions undergo

local search and choosing which meme to use when multiple memes are avail-

able depending on the problem currently being solved. A result of note from

this work was that the choice of local search mechanism was found to be more

critical to the overall performance of an MA than the choice of underlying

population-based search strategy. Acampora et al. [1] tested a large number

of MA configurations applied to ontology alignment, based on the issues out-

lined in Nguyen et al. [45], with the best MA found to be competitive with

state-of-the-art ontology alignment systems.

In addition to the traditional MAs described above, a separate branch of

evolutionary algorithms which are capable of adapting parameter settings and

algorithmic component choices also exist [19, 14]. Self-adaptive Multimeme

Memetic Algorithms (MMAs) [35, 33, 32] contain individuals that are made

up of both genetic and memetic material. The memes denoting the choices for

operators including hill climbing and their settings are co-evolved along with

the genes during the search process.

Jakob [29] proposed a cost-benefit adaptation strategy for multi-meme algo-

rithms in which adaptation is guided by the costs and benefits of a local search

run. As a by-product, the strategy maintains a balance between intensification

and diversification. Smith [63] described a co-evolutionary memetic algorithm in

which the depth and resolution of the local search heuristics as well as the pivot

function are co-evolved alongside the population of candidate solutions. This

5

study showed that a simple co-evolutionary model is able to maintain a balance

between intensification and diversification. However, extensive experiments in

the study failed to establish a logical and problem-independent link between the

size of the meme pool and the evaluation accuracy of a meme’s value at various

points in the search space. Epitropakis et al. [23] used Separability Prototype

for Automatic Memes (SPAM), initially proposed by Caraffini et al. [12], in

which a success-based adaptation strategy is employed. This strategy, which

is based on recent advances in hyper-heuristics, rewards promising memes and

increases their chance to be used in subsequent stages of the search. Nogueras

and Cotta [47] studied self-adaptation in spatially structured multi-memetic al-

gorithms where populations use specific topologies within which operator inter-

actions are constrained. The authors observed that these MMAs are sensitive to

self-adaptation and suggest to use variable length memes to increase robustness

for various population structures.

An overview of some adaptation schemes using multiple memes can be found

in [50, 62]. Previous studies on learning, adaptation and evolution have led to

the more general concept of Memetic Computing which introduces co-evolution,

machine learning, cognitive observation of other individuals and memory util-

isation for operator and parameter control, as well as the generation of the

methods/rules used by them, into the evolutionary search process [13, 43]. In

this study, we present a variant of the co-evolutionary MMA with a novel adap-

tation mechanism for operator selection and parameter setting.

2.2. Hyper-Heuristics and HyFlex

Hyper-heuristics form a class of high-level methods which search a space of

low-level heuristics or components, rather than solutions, while solving com-

putationally hard problems [7]. There are two main classes of hyper-heuristic

methods: selection hyper-heuristics that mix and control a given set of low-

level heuristics and generation hyper-heuristics that construct low-level heuris-

tics from a set of given components [8]. Hyper-heuristics have been successfully

applied to a range of domains including single objective timetabling problems

6

[9] and multi-objective scheduling problems [46].

Originally hyper-heuristic research set out to develop methods which are

more general than the traditional search and optimisation techniques, with re-

cent research focussing considerably on cross-domain heuristic search. HyFlex

v1.0 (Hyper-heuristics Flexible framework) [48] was introduced mainly to sup-

port the first Cross-domain Heuristic Search Challenge (CHeSC 2011) [6]. The

results obtained from the selection hyper-heuristics competing in this challenge

currently serve as a benchmark for comparison of selection hyper-heuristic meth-

ods. The HyFlex v1.0 framework provides means for rapid implementation and

performance evaluation of high-level adaptive search methods. HyFlex v1.0 im-

poses a logical barrier between the problem domain implementation and the

high-level method controlling a set of low-level operators operating over the do-

main. This barrier does not allow any problem domain specific information, such

as solution representation, to be accessed by the high-level method. HyFlex v1.0

supports six problem domains, including Boolean Satisfiability (MAX-SAT),

One Dimensional Bin Packing (BP), Permutation Flow Shop (PFS), Person-

nel Scheduling (PS), Travelling Salesman Problem (TSP) and Vehicle Routing

Problem (VRP). Each domain comes with a set of low-level heuristics (opera-

tors) from four different categories: (i) mutation, (ii) local search/hill climbing,

(iii) ruin-recreate, and (iv) crossover. Each operator implemented in a domain

is given a unique ID and a high-level method can access a chosen operator using

this ID. Table 1 provides the ID and type of each low-level heuristic for each

Hyflex v1.0 problem domain, where C, M, R and L indicate a crossover, mu-

tation, ruin-recreate, and hill climbing operator respectively. As an example,

Bin Packing has eight low-level heuristics in total: one crossover, three muta-

tion, two ruin-recreate and two hill climbing. These IDs will be used later in

Section 3.1 to identify particular memeplexes. Permutation Flow Shop has the

most low-level heuristics available, with 15 in total.

Ruin-recreate operators form a partial solution using a given complete so-

lution, and then rebuild a complete solution. In this study, ruin-recreate op-

erators are considered as mutation operators, since they do not guarantee a

7

Table 1: The nature of each low level heuristic with a given unique ID implemented in each

HyFlex v1.0 problem domain.

Domain LLH0 LLH1 LLH2 LLH3 LLH4 LLH5

MAX-SAT M1 M2 M3 M4 M5 M6

BP M1 R1 R2 M2 L1 M3

PS L1 L2 L3 L4 L5 R1

PFS M1 M2 M3 M4 M5 R1

TSP M1 M2 M3 M4 M5 R1

VRP M1 M2 R1 R2 L1 C1

Domain LLH6 LLH7 LLH8 LLH9 LLH10 LLH11

MAX-SAT R1 L1 L2 C1 C2

BP L2 C1

PS R2 R3 C1 C2 C3 M1

PFS R2 L1 L2 L3 L4 C1

TSP L1 L2 L3 C1 C2 C3

VRP C2 M3 L2 L3

Domain LLH12 LLH13 LLH14

PFS C2 C3 C4

TSP C4

8

non-worsening solution as output. All crossover operators in HyFlex take two

solutions as input, then recombine them to yield a new solution. Addition-

ally, the mutation and hill climbing low-level heuristics have an adjustable pa-

rameter to modify their behaviour. In the case of mutation and ruin-recreate,

the intensity of mutation parameter is a value in [0, 1] specifying the extent

to which a low-level heuristic will perturb a solution. Setting this parame-

ter to a higher value will result in a mutation low-level heuristic performing

larger perturbations to the original solution. In the case of hill climbing, the

depth of search parameter will dictate the number of steps executed during

local search. This parameter also takes a value in [0, 1], with a higher value

indicating a greater number of local search steps. More details on the imple-

mentation of problem domains, including specifics of the low-level heuristics,

and the selection hyper-heuristics that competed in the challenge can be found

at the CHeSC 2011 website1.

Four different frameworks for selection hyper-heuristics were described by

Özcan et al. [55]. Their work observed that a selection hyper-heuristic based on a

framework distinguishing between mutation and hill climbing operators outper-

forms traditional approaches which use all operators together. This framework

used the idea of explicitly enforcing diversification and intensification processes

in hyper-heuristics, in a similar way to other existing approaches such as iter-

ated local search [38] and MAs. Özcan et al. [53] evaluated the performance of

two static MAs on the six problem domains of the HyFlex benchmark described

above. The first approach, a Steady-State Memetic Algorithm (SSMA), is a tra-

ditional MA which applies a random crossover operator to two individuals from

the population before applying a random mutation and hill-climbing operator

to the resultant solution. The new individual then replaces the worst individual

in the current population. The second, a Transgenerational Memetic Algorithm

(TGMA), generates an entire new population at each generation rather than

using steady-state replacement to update the existing population. Both SSMA

1http://www.asap.cs.nott.ac.uk/external/chesc2011/

9

and TGMA generate the first population using the initialisation methods pro-

vided with the problem domains. They do not control the parameter settings

for the operators and they make a random choice from five different discrete

settings. Both approaches are static MAs with external adaptation under the

taxonomy of [50]. The experimental results in [53] showed that SSMA performs

better than TGMA overall, however most of the single-point-based search se-

lection hyper-heuristics entrants to CHeSC 2011 outperform both MAs.

Although the hyper-heuristic and MA research communities have evolved

separately, they are closely linked, with a number of shared goals. In the case of

multiple operators and a range of values to choose from for parameter setting,

adaptation is crucial. In this study, we propose a new steady state Multimeme

Algorithm which employs a new encoding for the adaptation of genetic operators

and their parameter settings. We compare its performance to MMA [35] on six

problem domains of the HyFlex benchmark.

3. Self-Adaptive Memetic Algorithms for Cross-Domain Heuristic Search

As discussed in the previous sections, self-adaptive MAs inherit memes across

generations [50]. The Multimeme Memetic Algorithm (MMA) of Krasnogor

and Smith [35] is a canonical self-adaptive MA, which co-evolves a set of local-

search heuristics acting as memes, at the same time as evolving solutions to

computationally difficult problems. Each individual in an MMA consists of two

parts, its own independent genetic material (chromosome) and memetic material

(memeplex). In the context of hyper-heuristics, MMAs are able to adaptively

select appropriate low-level heuristics to use for different problem instances,

different stages of a given search or for different individuals in a population.

Individual memes can adapt through changes to their parameter settings or the

neighbourhoods in which they operate. Here we will present a new memeplex

structure for MMAs and compare to the MMA of Krasnogor and Smith [35].

Due to the success of using a steady state approach as reported by Özcan et

al. [53], the same replacement scheme is used in this study. The proposed MMA

10

variant, a Steady-state Multimeme Memetic Algorithm (SSMMA), supports the

adaptation of genetic operators including hill climbing and their settings through

the use of Reinforcement Learning [30] with the memeplex encoding. MMA and

SSMA both make use of Lamarckian learning, placing an improved individual

back into the population to compete within the next generation of evolution,

and local-level adaptation as defined by Ong et al. [50]. Local-level adaptation

indicates that some previous historical knowledge is used when deciding which

meme to use among multiple memes. MMA and SSMMA are implemented as a

high-level search method within HyFlex, enabling us to test their performance

on six different problem domains. We also compare their performance to two

other static MAs studied in [53] and a number of previously proposed single-

point-based search selection hyper-heuristics from the scientific literature.

3.1. Multimeme Memetic Algorithm (MMA)

The MMA of Krasnogor and Smith [35], using steady state replacement, is

implemented as shown in Algorithm 1. Each individual in the population con-

sists of a candidate solution and a memeplex containing the memetic information

associated with that individual. A memeplex, denoted as Cc{M or R}mIiLlDd,

represents the cth crossover operator (C), mth mutation (M) or ruin-recreate op-

erator (R) using an intensity of mutation (I) parameter setting of i ∈ [0, 1] and

lth hill climbing method (L) using a depth of search (D) parameter setting of d ∈

[0, 1]. As an example, the MAX-SAT domain of HyFlex contains two crossover,

seven mutation (one of them being a ruin-recreate operator) and two hill climb-

ing operators (labelled LLH0-LLH10 in Table 1 above). Assuming that there

are five discrete choices for each parameter setting, i.e. {0.2, 0.4, 0.6, 0.8, 1.0}, a

memeplex for this domain can encode 2× 7× 5× 2× 5 = 700 different memes.

Given C1M2I0.6L1D0.8, this meme denotes that crossover with low-level heuristic

LLH9, mutation with low-level heuristic LLH1 having an intensity of mutation

setting of 0.6 and hill climbing with low-level heuristic LLH7 having a depth of

search setting of 0.8 are going to be used at a given decision point during the

evolutionary search process.

11

The first generation of candidate solutions is created using the initialisation

methods provided for each HyFlex domain, with values for each of the five com-

ponents of the memeplex initialised randomly. At this point, a hill climbing

heuristic is applied to each initial individual for improvement. Following the

initialisation phase, the evolutionary cycle starts its execution. Tournament

selection is used to choose two individuals from the population with which to

perform crossover. Each parent is selected by comparing the fitness (objec-

tive value/quality of a solution) of ‘tournament size’ randomly selected indi-

viduals from the population and choosing the one with the better fitness. In

the case of equal quality individuals, an arbitrary individual is selected. The

stronger of the two parents with the better fitness is designated Parent1. A

new Child solution is generated by performing crossover between the solutions

of the two parents using the crossover operator from the meme of Parent1. The

Simple Inheritance Mechanism as proposed by Krasnogor and Smith [35] is

utilised, which propagates memetic material from one generation to the next

by directly passing the meme of a parent to a child. The mutation opera-

tor encoded in the inherited meme is then applied to the solution using the

intensity of mutation parameter setting from the same memeplex. During the

mutation process, memetic material is also mutated with a probability labelled

as Innovation Rate (IR). A meme is mutated to another option value randomly.

This mechanism is used to introduce ‘new’ memetic material into the evolution-

ary process. If IR is high then the memes will be perturbed in each generation

and each algorithmic component choice will be almost random. If IR is low,

then new memetic material might not be introduced and the search could stag-

nate. Following mutation, the hill climbing operator is applied to the Child

solution with the given depth of search parameter setting from the meme. The

evolutionary cycle continues until the termination criteria is satisfied.

3.2. Steady-state Multimeme Memetic Algorithm (SSMMA)

The MMA described above needs the IR parameter to ensure that every

potential algorithmic choice has a non-negative chance of appearing during the

12

Algorithm 1 Pseudocode of Multimeme Memetic Algorithms (MMA) [35]

1: Create a population of popSize random individuals.

2: Apply a random hill climber to each individual

3: while termination criteria is not satisfied do

4: Parent1 ← Select-Parent(population, tour-size)

5: Parent2 ← Select-Parent(population, tour-size)

6: if Parent2 has a better fitness than Parent1 then

7: Swap(Parent1, Parent2)

8: end if

9: Child ← ApplyC(Parent1crossover, Parent1, Parent2)

10: Copy the meme of Parent1 to Child

11: Child ← ApplyM(Childmutation, Childintensity, Child)

12: Mutate meme of Child with a probability of IR

13: Child ← ApplyL(Childhillclimber, Childdepth, Child)

14: Child replaces the worst individual in the population

15: end while

13

search process. Each meme directly encodes the choices of algorithmic compo-

nents to use. The memetic material used during evolution is restricted to the

material that the first population introduces, particularly if the IR setting is

low. Increasing the innovation rate increases the likelihood of (re)introducing

new memes into the search process. In previous studies, a fixed setting is sug-

gested for IR, however, managing the interaction between IR and population

size becomes crucial, especially if the number of potential memes is large which

is the case in this study. Using the simple inheritance mechanism, the likelihood

of good memes propagating thorough generations increases with the population

size. As a result the population size arguably represents the memory size, with

IR representing the probability of forgetting and refreshing that memory.

Here we propose a new variant of a self -adaptiveMA, a Steady-state Multi-

meme Memetic Algorithm (SSMMA). In this approach we build on the original

MMA by introducing a feedback loop, increasing the potential to remember

previous performance in a way that is not limited by population size. Rather

than simply encoding a specific operator or parameter setting in each meme, a

set of utility scores for each possible option is maintained as a meme. The struc-

ture of this encoding is shown in Figure 1. The proposed approach increases

the memory requirement for the memes, however this increase is reasonable

considering that it will be within a factor of the number of algorithmic compo-

nents. For example, for the MAX-SAT domain of HyFlex, a meme consists of

2+ 7+5+2+5 = 21 entries where each entry holds the utility score (or option

value) for each algorithmic component choice. The pseudocode for SSMMA is

given in Algorithm 2.

Initially the first generation of candidate solutions is created using the meth-

ods in HyFlex and a hill climbing heuristic is applied to every individual, with

the utility scores in the memeplex set to 0. The evolutionary cycle operates in

almost the same manner as MMA. Tournament selection is again used to choose

two individuals from the population with which to perform crossover, with the

stronger of the two parents with the best fitness taken to be Parent1. A crossover

low-level heuristic, mutation low-level heuristic, local search low-level heuristic

14

CID Score

MID Score

Value Score

LID Score

Value Score

C1 4

M1 6

0.2 0

L1 4

0.2 2

C2 2

M2 1

0.4 9

L2 2

0.4 3

… …

… …

 … …

… …

 … …
CP 8

LR 8

1.0 3

1.0 7

MQ 9

Solution C M I L D

Chromosome Memeplexes

Figure 1: Encoding of an individual in SSMA

Algorithm 2 Pseudocode of Steady-state Multimeme Memetic Algorithm (SS-

MMA)

1: Create a population of popSize random individuals.

2: Apply a random hill climber to each individual

3: while termination criteria is not satisfied do

4: Parent1 ← Select-Parent(population, tour-size)

5: Parent2 ← Select-Parent(population, tour-size)

6: if Parent2 has a better fitness than Parent1 then

7: Swap(Parent1, Parent2)

8: end if

9: Tournament selection of Parent1crossover, Parent1mutation,

Parent1hillclimber, Parent1intensity and Parent1depth

10: Child ← ApplyC(Parent1crossover, Parent1, Parent2)

11: Child ← ApplyM(Parent1mutation, Parent1intensity, Child)

12: Child ← ApplyL(Parent1hillclimber, Parent1depth, Child)

13: Copy the meme of Parent1 to Child

14: Update the scores of the meme of Child

15: Child replaces the worst individual in the population

16: end while

15

and values for intensity of mutation and depth of search are selected (using

tournament selection), based on the scores encoded in the meme of Parent1. In

each case, the operator or parameter setting with the highest value within the

tournament size of options, indicating superior past performance, is favoured.

In the case of equal scores, an arbitrary option is selected. For example, assume

that the solver is operating on a MAX-SAT problem instance and it is time for

mutation, and score for each one of the seven mutation operators is given as

[1, 0, 4, 2, 3, 3, 5]. As an example, if the tournament size is 2 and 0th and 6th

operators are chosen, then based on their scores which are 1 and 5 respectively,

the 6th operator with the highest value option would be chosen. In the case of

equal scores, an operator is chosen arbitrarily. The crossover low-level heuristic

is applied to recombine the two selected parents and generate a new solution, the

mutation low-level heuristic is applied using the intensity of mutation param-

eter and finally the local search low-level heuristic is applied with the selected

depth of search parameter. Finally the meme of Parent1 is copied to the Child

individual. In the case that the Child solution is an improvement over the par-

ent, the scores for each of the five memes within the memeplex of the Child

are modified using an additive Reinforcement Learning scheme [57], with each

value incremented by 1. In the case that the Child solution is of equal or poorer

quality than the parent then no modification is made to the scores within the

memeplex of the Child. This is similar to the Simple Inheritance Mechanism

proposed by Krasnogor and Smith [35] which propagates memetic material from

one generation to the next by directly passing the meme of a parent to a child.

4. Experimental Results

4.1. Experimental Design and Parameter Settings

In order to evaluate the performance of the proposed Steady-state Multi-

meme Memetic Algorithm (SSMMA), we have used the CHeSC 2011 dataset

which contains five instances per domain and six different problem domains as

introduced in Section 2.2. All problems in HyFlex are modelled as minimisation

16

problems, with a lower objective value indicates a better fitness. The perfor-

mance of SSMMA is compared to the self-adaptive MMA [35] and two static

MAs from Özcan et al. [53] over 30 instances. In both SSMMA and MMA,

population size is set to 10 in line with the MAs of Özcan et al. [53]. The

intensity of mutation and depth of search parameters are able to take one of a

set of five discrete values in {0.2, 0.4, 0.6, 0.8, 1.0}. In MMA, the innovation rate

(IR) in MMA is fixed as 0.2 [35, 58, 54], parent selection is performed using

tournament selection with a tournament size of 2 and all memetic values are

initialised randomly. In SSMMA tournament selection with tournament size 2

is used for both parent selection, and meme selection. In both cases, the parent

or meme with highest score is kept with the other discarded. The scores for

each low-level heuristic and parameter setting of each meme are initially set to

0, giving each option an equal chance of selection.

All experiments were performed on an Intel Core Duo 3.16 GHz machine

with 2 GB RAM. Each trial is run for a notional duration of 600 seconds and

repeated 31 times, in line with the standard used by the CHeSC 2011 organ-

isers. The original duration was determined based on the configuration of the

machine used for ranking the competitors. The organisers provided a bench-

marking tool to compute the equivalent time required for termination of a trial

on another machine. The equivalent duration using our machine calculated by

the benchmark tool is 576 seconds. Although this is not the primary goal of

this study, using the same termination criterion as in CHeSC 2011 enables us to

compare the performance of memetic algorithms to a range of adaptive heuristic

optimisation methods which competed at CHeSC 2011, including the state of

the art methods [48].

Using this termination criteria gives us a fair base for performance com-

parison of algorithms for cross domain search, where the run-time efficiency of

heuristic implementations could vary not only for a given domain, but from one

domain to another. It is worth noting that the execution time of a program does

not only depend on the CPU speed. There are other influential factors ranging

from memory to operating system of the computer used. Although benchmark-

17

ing tools make an attempt to take such factors into account, the use of time

limit for termination could still pose some validity risk [17] on the precision

of results obtained from a time-contract algorithm which terminates when the

given time expires.

4.2. Performance comparison of SSMMA and MMA

Firstly we will compare the performance of SSMMA and MMA [35] using

six HyFlex problem domains. Table 2 shows the average and best fitness values

obtained by each method over 31 runs of each instance used in the CHeSC

2011 competition, with the better of the two methods given in bold. Where

this table refers to a particular ID number, this represents the order in which

this instance appears in the list of the instances tested for CHeSC 2011, rather

than the HyFlex index of that problem instance. The vs. column indicates the

results of Wilcoxon signed-rank tests within a 95% confidence interval, which is

performed to assess the statistical significance of the performance variation of

two algorithms using the results from 31 runs for each instance. Here, > (<)

denotes that SSMMA (MMA) performs statistically significantly better than

MMA (SSMMA) on the given instance. Additionally, ≥ (≤) denotes that there is

no significant performance variation between the two methods, however SSMMA

(MMA) performs slightly better on average.

SSMMA performs better than the original MMA in some problem domains,

however each of the MAs have different strengths in different problem domains.

SSMMA is very strong in the case of MAX-SAT, Bin Packing and Personnel

Scheduling, outperforming MMA with a statistically significant difference in all

five instances of MAX-SAT and four of the five instances of Personnel Schedul-

ing in terms of both average performance and best solution found. For Bin

Packing, SSMMA outperforms MMA in all five instances, however this differ-

ence is not statistically significant. Conversely, in the case of Permutation Flow

Shop and the Travelling Salesman Problem, MMA is statistically significantly

outperforming SSMMA in terms of average and best performance in all prob-

lem instances of these two domains. Although SSMMA is designed to be more

18

Table 2: Performance comparison of SSMMA and MMA based on best and average fitness

obtained from 31 trials for each instance of CHeSC 2011

SSMMA MMA

domain ID avr. best vs. avr. best

SAT

1 3.129 1.0 > 18.709 10.0

2 2.774 1.0 > 51.258 24.0

3 2.225 0.0 > 33.967 9.0

4 2.741 1.0 > 24.870 15.0

5 8.387 7.0 > 18.032 14.0

BP

1 0.0345 0.0193 ≥ 0.0551 0.0483

2 0.0031 0.0272 ≥ 0.0097 0.007

3 0.0077 0.0038 ≥ 0.0151 0.0112

4 0.1091 0.1087 ≥ 0.109 0.1088

5 0.0194 0.0107 ≥ 0.0262 0.0208

PS

1 31.419 25.0 > 32.451 26.0

2 10129.32 9815.0 > 13829.45 10255.0

3 3232.806 3160.0 > 3465.806 3242.0

4 1781.613 1585.0 > 2045.226 1665.0

5 380.225 345.0 ≤ 353.903 321.0

PFS

1 6342.581 6306.0 < 6253.161 6238.0

2 26953.38 26914.0 < 26840.52 26773.0

3 6387.903 6369.0 < 6347.645 6303.0

4 11507.32 11472.0 < 11401.45 11377.0

5 26753.65 26674.0 < 26662.61 26603.0

TSP

1 49032.385 48722.154 < 48239.358 48194.921

2 2.138E7 2.1186E7 < 2.111E7 2.0896E7

3 6996.01 6955.616 < 6824.295 6800.543

4 70430.13 69284.88 < 67608.168 66534.788

5 58200.41 55752.75 < 54299.139 53010.404

VRP

1 69122.21 66244.735 > 72159.779 63373.559

2 12740.57 12303.28 > 13768.666 13335.578

3 158509.3 148839.8 < 148975.804 144089.757

4 20670.185 20655.206 > 21321.299 20656.798

5 152092.27 148151.9 < 150243.193 148397.623

19

flexible and adaptive than the original MMA, it is clearly not performing well

in these problem domains. The case of the Vehicle Routing Problem is slightly

more complex with both SSMMA and MMA statistically significantly outper-

forming one another in different instances. It is also the case in Vehicle Routing

Problem Instance 1 and Vehicle Routing Problem Instance 5 that the method

performing best on average does not find the best result of the two over 31

runs. As MMA has a shorter memory length than SSMMA, these results could

be an indication that SSMMA needs a better mechanism to forget and refresh

its memory. However, such a mechanism would require the design of multiple

components, including a method to decide when to forget and another to decide

how to update which utility score, adding significant complexity to the proposed

simple approach.

4.3. Performance comparison of static versus self-adaptive MAs

Figure 2 shows box and whisker plots of the best fitness values obtained from

31 runs on a selected instance from each of the six problem domains using four

MAs. In addition to the self-adaptive SSMMA and MMA we also report the

results for the static MAs, SSMA and TGMA, presented by Özcan et al. [53].

The results of a Freidman test [61] within a 95% confidence interval over the me-

dian results of each of the 30 problems tested indicate that MMA and SSMMA

perform statistically significantly better than SSMA and TGMA. No statisti-

cally significant difference is shown between SSMMA and TGMA using this test.

These box and whisker plots give us some indication of the performance con-

sistency of a given MA over the 31 runs of each instance. Rather than provide

all 30 figures for each individual instance, these six instances have been chosen

as representative of each problem domain. Any significant variations within

problem domains are highlighted and discussed below.

In the case of MAX-SAT, shown in Figure 2(a), SSMMA clearly outperforms

the other three MAs on average. The relatively small distance between the first

and third quartiles indicate that SSMMA is consistently achieving good quality

solution values on this problem instance. This instance is typical of all five in-

20

(a) MAX-SAT - Instance 4 (b) BP - Instance 3

(c) PS - Instance 2 (d) PFS - Instance 4

(e) TSP - Instance 2 (f) VRP - Instance 5

Figure 2: Boxplot of the best fitness values obtained from 31 runs of Memetic Algorithms on

a sample instance from each CHeSC 2011 problem domain

21

stances of MAX-SAT, with SSMMA clearly and consistently achieving the best

results and TGMA the second best method ahead of MMA and SSMA. For

Bin Packing, the relative performance of all four MAs is again similar in all five

problem instances, with Bin Packing Instance 3 shown as a typical example. SS-

MMA is again the best performing MA on average in each of the five instances.

On Bin Packing, self-adaptive MAs perform better than the static MAs. Sim-

ilarly, Figure 2(c) shows the results for the Personnel Scheduling domain, in

which a clear performance split between the self-adaptive MAs and static MAs

can be observed. Learning through evolution seems to make a difference in these

two cases, with the design of operators in Bin Packing and Personnel Schedul-

ing enabling the more dynamic self-adaptive MAs to learn the best choice of

algorithmic components during the search process.

In both the Permutation Flow Shop and Travelling Salesman Problem do-

mains, SSMMA is the worst of the four methods tested as can be seen in Fig-

ure 2(d) and Figure 2(e). Typically in both of these problem domains SSMA

and MMA offer similar performance, ahead of TGMA. The poor performance

of SSMMA in these problem domains may be an unintended consequence of the

Reinforcement Learning scheme which does not ‘forget’ while controlling meme

selection. SSMMA focusses on the improvement of solution quality and there-

fore intensification over diversification within the search. If at one point of the

search a particular set of memes performs well, dominating the Reinforcement

Learning scores, some other memes may have a very low chance of selection. It

could be the case that those other memes are more beneficial to the search later

on, however with such low probability of selection, those memes will struggle to

improve their score and therefore their chance of selection within the time limit.

This is not the case within SSMA and MMA, where when mutation occurs,

each meme has equal probability of being reintroduced and applied. Finally in

the Vehicle Routing Problem, we have included the box and whisker diagram

for Instance 5 of the competition set. This instance is one of the cases where

SSMMA was outperformed by MMA on average in Table 2. Again, in general

the self-adaptive MAs outperform the static MAs of Özcan et al. [53] in this

22

domain, with SSMMA outperforming MMA in some instances and vice versa in

others.

4.4. An analysis of the behaviour of SSMMA

This section provides an analysis of the performance and behaviour of SS-

MMA on a per-domain basis. Figure 3 shows the progress of the best fitness

value observed with respect to time for a sample run of SSMMA on a single

instance selected from each of the six CHeSC 2011 problem domains. In all

cases the first instance from the competition test set is used.

In all six problem domains there is a large improvement made in the best-

of-run solution quality within the early stages of the search. This indicates that

typically upon solution initialisation, the starting point for each search is in

an area of the search space containing very poor quality solutions. The rate

of improvement in solution quality appears to be more drastic in some cases

than others depending on the problem domain. In MAX-SAT and Personnel

Scheduling, SSMMA converges to a high quality solution rapidly, while in Per-

mutation Flow Shop, in which SSMMA does not perform well on average, the

search seems to get stuck at a local optimum very quickly. In these domains,

very little improvement in the best solution found occurs after the first 100 sec-

onds of running time. In the remaining three problem domains, Bin Packing,

Travelling Salesman Problem and Vehicle Routing Problem, the convergence

to the final best-of-run solution is somewhat more gradual, with improvements

observed later on in the search. In the case of Bin Packing in particular, a large

number of small improvements are observed almost continually throughout the

run. Arguably in this domain the search has not converged on the best solu-

tion it is capable of achieving within the time limit. For the Travelling Salesman

Problem, after an initial sharp improvement in best-of-run solution, the amount

of improvement levels off to a more gradual rate, however better quality solu-

tions are again observed later on in the search. This shows that in this domain,

the best quality solutions that this method is capable of finding are again not

necessarily found within the fixed time limit.

23

(a) MAX-SAT - Instance 3 (b) BP - Instance 1

(c) PS - Instance 1 (d) PFS - Instance 1

(e) TSP - Instance 1 (f) VRP - Instance 3

Figure 3: Best-of-run fitness value plotted against time from a sample run of SSMMA on a

sample instance from each CHeSC 2011 problem domain

24

An evolutionary activity plot provides the progress of the cumulative utility

score of a meme in a population at each time step. If a meme is not used, then

it is ignored in the plots. In an evolutionary activity plot, slope denotes the

rate of increase in the utility score of the related meme among the individuals

in the population during the evolutionary process. Figures 4–9 provide the

evolutionary activity plot of memes based on their utility scores averaged over

31 trials for each HyFlex problem domain separately. Part (a) in each figure

focusses on the memes encoding combination of crossover, mutation and hill

climbing operators while part (b) provides the evolutionary activity plot of

the best performing operator combination taking into account its parameter

settings. For the ease of visualisation, instead of the ID of a parameter setting,

its exact value is used in the plots. The evolutionary activity plots show that two

memeplexes differing in one of the genetic operators are favoured over the others

overall. The parameter settings for intensity of mutation and depth of search

vary depending on the problem instance.

Figure 4(a) shows that the meme C1M4L1 performs the best on the In-

stance 3 in MAX-SAT, however, this figure ignores the parameter settings of

the mutation and hill climber operators. Figure 4(b) provides the evolutionary

activity plot of all memes including their parameter settings for that combi-

nation of operators, which shows that adaptation preferred low values (0.2) for

intensity of mutation and depth of search for this particular instance. In gen-

eral, these figures provide some insight into particular operators and parameter

settings that are performing well in the instances considered. Figures 5(a) and

5(b) show that in the case of Instance 1 of the Bin Packing domain, L1 (ID#4)

is a preferable hill climbing heuristic in combination with most other memes

and for the best set of operators, the intensity of mutation setting is best at

a low value of 0.2. For the Personnel Scheduling problem and Travelling Sales-

man Problem (Figure 6 and 8), whilst there are clearly better operator choices

evidenced by their high likelihood of appearing in high quality memeplexes, the

choice of intensity of mutation and depth of search does not seem to influence

performance. This is particularly true in the case of the Travelling Salesman

25

Problem, a domain that SSMMA seems to perform poorly in overall. In the case

of Permutation Flow Shop and the Vehicle Routing Problem the combination of

two operators is particularly effective (C41 and R1 for Permutation Flow Shop

and C1 and L2 for the Vehicle Routing Problem). Also for these two domains

there is a clear distinction in performance related to depth of search parameter

setting, with lower values clearly performing better but little difference can be

observed between different values for intensity of mutation.

As seen in the previous subsections, the proposed adaptation method with

long-term memory outperforms previous MAs which either contain no learning

or learning on a more short-term basis. Despite this, SSMMA does not par-

ticularly perform well on the Permutation Flow Shop and Traveling Salesman

Problem domains. The sample evolutionary activity plots from these two do-

mains reveal that there could be several reasons for this poor performance. All

memes in the Traveling Salesman Problem seem to have been used and the ap-

proach cannot figure out the best parameter setting for the relevant operators

either. Although SSMMA detects several useful memes in Permutation Flow

Shop, those memes cause the search to get stuck. Remembering that SSMA us-

ing random choice with a fixed parameter setting performs better than SSMMA

in both of these domains, the proposed adaptation method is struggling to de-

tect a similar strategy. The search process turns into almost a random walk for

Traveling Salesman Problem, while the adaptation cannot recover from initially

detected extremely successful memes which seem to mislead the search process

causing it to get stuck for Permutation Flow Shop within the given limited time.

4.5. Performance comparison of SSMMA and MMA to the CHeSC 2011 en-

trants

The goal of this study is to provide a novel Multimeme Memetic Algorithm

using a novel encoding, with the potential to outperform generic Multimeme Al-

gorithms, not to provide a hyper-heuristic approach which performs well across

different domains. However as we have utilised the HyFlex cross-domain search

framework as a benchmark and testbed, this enables us also to compare SSMMA

26

and MMA in terms of relative performance against the selection hyper-heuristics

which competed in CHeSC 2011. Following the competition, median results of

31 runs for each of the 30 problem instances were made available for each of

the 20 competitors. SSMMA and MMA are compared independently to the

20 CHeSC 2011 entrants, based on the median score obtained in 31 runs of

each instance, using the scoring metric used in the competition. CHeSC 2011

used a points-based scoring system inspired by a system used previously by

Formula One motor racing to rank the performance of hyper-heuristics entered

to the competition. This ranking system assigns a number of points to each

competitor based on their performance for each of the 30 instances tested. The

method which obtains the best objective value for a given instance is awarded

10 points, the method in second is given 8 points and then each subsequent

method is awarded 6, 5, 4, 3, 2, 1 and 0 points respectively. As this system

only allocates scores to the top 8 ranked contestants, all entrants which are

ranked ≥ 9th position are allocated a score of 0. It is worth noting that the

Formula One ranking system cannot be used to compare for statistically sig-

nificant differences between methods, unlike other comparison methods such

as Null Hypothesis Significance Testing (NHST) and Chess Rating System for

Evolutionary Algorithms (CRS4EAs) [65]. However as the Formula One ranking

system was used in the original CHeSC 2011 competition, using it here allows

us to easily compare with a wide variety of existing methods from the literature.

Table 3(a) and 3(b) provide the relative ranking of MMA and SSMMA, re-

spectively compared to the selection hyper-heuristics entered into CHeSC 2011

based on the Formula 1 scoring system described above. Please note that here

we are comparing SSMMA and MMA to the CHeSC2011 competitors indepen-

dently. In each case, the 21 hyper-heuristics compared compete for a total of

1170 points, with a maximum of 300 points available to a single hyper-heuristic.

This accounts for the slightly different values for some methods in this table.

From these tables, we can clearly see that SSMMA outperforms MMA, with

each method scoring 75.85 and 26.25 points respectively. The static MAs dis-

cussed previously, TGMA and SSMA, were shown to generalise poorly over dif-

27

Table 3: Ranking of (a) MMA, and (b) SSMMA with respect to the CHeSC 2011 competitors

based on Formula 1 scores.

(a)

Rank Name Score

1 AdapHH 178

2 VNS-TW 132

3 ML 130.5

4 PHunter 90.25

5 EPH 85.25

6 NAHH 75.1

7 HAHA 75

8 ISEA 68

9 KSATS-HH 66.5

10 HAEA 50

11 GenHive 36.5

12 ACO-HH 36.4

13 MMA 26.25

14 SA-ILS 24.25

15 DynILS 24

16 XCJ 22.5

17 AVEG-Nep 21

18 GISS 16.75

19 SelfSearch 7

20 MCHH-S 4.75

21 Ant-Q 0

(b)

Rank Name Score

1 AdapHH 175.1

2 VNS-TW 126.6

3 ML 123

4 PHunter 89.25

5 EPH 84.75

6 SSMMA 75.85

7 NAHH 70.5

8 HAHA 68.85

9 ISEA 64.5

10 KSATS-HH 58.35

11 HAEA 51

12 ACO-HH 37

13 GenHive 34.5

14 SA-ILS 22.25

15 DynILS 25

16 XCJ 20.5

17 AVEG-Nep 17.5

18 GISS 16.25

19 SelfSearch 6

20 MCHH-S 3.25

21 Ant-Q 0

28

ferent problem domains compared to the selection hyper-heuristics in the com-

petition. If these two MAs were entered into the original competition, TGMA

would have scored 0 points, and SSMA would have scored 7.5 points [53]. Here,

both self-adaptive MAs outperform these methods by some distance. The ability

to ‘learn’ which memes are useful in an adaptive manner is clearly beneficial in

the context of cross-domain optimisation. SSMMA ranks 6th overall compared

to the CHeSC 2011 competitors.

Table 4 separates the results given in Table 3(a) and Table 3(b), breaking

down performance in each problem domain. The most striking figure within this

table is that SSMMA is performing extremely well in the MAX-SAT problem

domain, in fact outperforming all 20 CHeSC 2011 competitors. These results

are also superior to the previous state-of-the-art results of Drake et al. [20],

which scored 32.85 points in this problem domain. Despite extremely encour-

aging results overall, SSMMA still performs relatively poorly in the Travelling

Salesman Problem and Permutation Flow Shop problem domains, two domains

in which MMA does score some points. Although scoring 0 points in a sin-

gle domain indicates poor performance using this ranking system, it should be

highlighted that this corresponds to a method not being one of the top 8 com-

petitors. This does not necessarily mean that it is one of the worst of the 21

methods compared.

Interestingly, the performance of SSMMA is extremely similar to the Mod-

ified Choice Function - All Moves (MCF-AM) hyper-heuristic presented by

Drake et al. [21] both in terms of overall performance (MCF-AM scored 73.7

points compared to the CHeSC 2011 competitors) and the individual problem

domains in which it is stronger and weaker. This version of MCF-AM used a

framework introduced by Drake et al. [22] to manage crossover low-level heuris-

tics, which were omitted from the set of low-level heuristics in the original MCF-

AM [20]. They suggested that in the case of the Travelling Salesman Problem,

where the top three methods ML [36], AdapHH [40], and VNS-TW [27] were

also the top three in the competition overall, a hyper-heuristic framework which

enforces hill climbing was desirable in order to perform well in this domain. This

29

Table 4: Number of Formula One points scored in each CHeSC 2011 problem domain by

SSMMA and MMA

Domain SSMMA MMA

SAT 36.85 0

BP 21 0

PS 10 0

PFS 0 10.25

TSP 0 12

VRP 8 4

Total 75.85 26.25

doesn’t seem to be the case here, where SSMMA uses a hill climbing operator at

each step through the use of memes, with relatively poor performance observed

in this problem domain.

Overall, single-point-based adaptive search methods outperform self-adaptive

multi-point evolutionary algorithms for cross domain search. However, consid-

ering the advances in CPUs and multi-core/multi-threaded hardware technolo-

gies, it is not difficult to see the underlying potential in this area. There has

been a large increase in the number of parallel processing methods proposed

in the literature, at least partially as a result of the availability of affordable

multi-core computers as well as general purpose GPUs. Combining MAs with

hyper-heuristics which exploit the underlying computer architecture has the po-

tential to lead to more efficient and effective solvers. Asta et al. [3] described

such an approach which was the winner of an international challenge solving a

project scheduling problem.

5. Conclusion

Adaptation and control are crucial in many metaheuristics considering that

many applications often require implementation of multiple operators, poten-

tially with various internal system setting options, such as parameters defining

30

the neighbourhood move or number of steps for repeating a chosen process. In

this study, we propose a new self -adaptive Memetic Algorithm [50], referred

to as Steady-state Multimeme Memetic Algorithm (SSMMA) with a new adap-

tation mechanism having a long-term memory for controlling genetic operators

and their parameter settings during the search process. SSMMA co-evolves

utility scores, indicating the success of producing an improved solution for all

algorithmic component choices encoded as a meme in each individual. The

simple inheritance mechanism is used for transmitting memes from parents to

offspring, however memetic material does not get mutated as is the case in the

Multimeme Memetic Algorithm (MMA) of Krasnogor and Smith [35]. The util-

ity scores are maintained based on a simple Reinforcement Learning strategy,

increasing the score of a meme if an improved solution is produced.

The performance of SSMMA is evaluated using a software library, referred

to as HyFlex, containing six problem domains. The empirical results show that

SSMMA performs significantly better than MMA on 12 out of 15 instances

across three of the domains. It is slightly better than MMA on 5 instances on

another domain, while MMA performs significantly better than SSMMA on 10

instances from the remaining two domains on average. Based on Formula 1

ranking used in CHeSC2011, SSMMA performs better than MMA with a score

of 75.85 against 26.25 and memetic algorithm variants without operator control

as well as fifteen other previously proposed algorithms.

Both methods were shown to be vastly superior to traditional static Memetic

Algorithms. Additionally, SSMMA is able to offer results that are competitive

with some of the state-of-the-art methods from CHeSC 2011, outperforming

all 20 entrants in the five instances of the MAX-SAT problem domain used in

the competition. The results in this domain are also an improvement over the

previously best results reported in the literature for these instances.

Looking into the cases for which SSMMA performs poorly, there seems to be

an issue with the use of long term memory, i.e., memory length. The proposed

approach might need a ‘forgetting’ mechanism, however this will require design

of multiple additional algorithmic components, covering when to forget, what

31

to forget and how to forget. We intend to continue our work in this area in

future by analysing the effect of the Reinforcement Learning mechanism used

to select a low-level heuristic of a given type and memory length. Currently

SSMMA relies on tournament selection to choose a heuristic to apply based on

previous performance, however a different component can be used instead, such

as Roulette Wheel or Choice Function [15], and even this choice could be co-

evolved. A more ‘intelligent’ selection mechanism could lead to a more reactive

system, capable of quickly learning which heuristics are effective at a particular

point in the search.

Considering the success of selection hyper-heuristics performing single-point-

based search in the control of operators, Memetic Algorithms embedding se-

lection hyper-heuristics is another research direction we plan to take. There

is already empirical evidence that such approaches could yield improved per-

formance, particularly when implemented in a distributed processing setting

exploiting the underlying computer architecture with multiple cores [3].

References

[1] G. Acampora, V. Loia, A. Vitiello, Enhancing ontology alignment through

a memetic aggregation of similarity measures, Information Sciences 250

(2013) 1–20.

[2] A. Alkan, E. Özcan, Memetic algorithms for timetabling, in: Proceedings

of the IEEE Conference on Evolutionary Computation (CEC 2003), vol. 3,

IEEE Press, Canberra, Australia, 2003, pp. 1796–1802.

[3] S. Asta, D. Karapetyan, A. Kheiri, E. Özcan, A. J. Parkes, Combining

Monte-Carlo and hyper-heuristic methods for the multi-mode resource-

constrained multi-project scheduling problem, CoRR abs/1511.04387.

URL http://arxiv.org/abs/1511.04387

[4] C. Blum, A. Roli, Metaheuristics in combinatorial optimization: Overview

32

http://arxiv.org/abs/1511.04387

and conceptual comparison, ACM Computing Surveys 35 (3) (2003) 268–

308.

[5] L. Buriol, P. M. França, P. Moscato, A new memetic algorithm for the

asymmetric traveling salesman problem, Journal of Heuristics 10 (5) (2004)

483–506.

[6] E. K. Burke, M. Gendreau, M. Hyde, G. Kendall, B. McCollum, G. Ochoa,

A. J. Parkes, S. Petrovic, The cross-domain heuristic search challenge - an

international research competition, in: C. A. C. Coello (ed.), Proceedings

of Learning and Intelligent Optimization (LION 2011), vol. 6683 of LNCS,

Springer, Rome, Italy, 2011, pp. 631–634.

[7] E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, R. Qu, Hyper-

heuristics: A survey of the state of the art, Journal of the Operational

Research Society 64 (12) (2013) 1695–1724.

[8] E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, J. R. Woodward, A

classification of hyper-heuristic approaches, in: M. Gendreau, J.-Y. Potvin

(eds.), Handbook of Metaheuristics, vol. 146 of International Series in Op-

erations Research & Management Science, Springer US, 2010, pp. 449–468.

[9] E. K. Burke, G. Kendall, M. Mısır, E. Özcan, Monte carlo hyper-heuristics

for examination timetabling, Annals of Operations Research 196 (1) (2012)

73–90.

[10] E. K. Burke, J. D. L. Silva, The design of memetic algorithms for scheduling

and timetabling problems, in: W. E. Hart, J. Smith, N. Krasnogor (eds.),

Recent Advances in Memetic Algorithms, vol. 166 of Studies in Fuzziness

and Soft Computing, Springer Berlin Heidelberg, 2005, pp. 289–311.

[11] A. Caponio, G. L. Cascella, F. Neri, N. Salvatore, M. Sumner, A fast

adaptive memetic algorithm for online and offline control design of pmsm

drives, IEEE Transactions on Systems, Man, and Cybernetics, Part B:

Cybernetics 37 (1) (2007) 28–41.

33

[12] F. Caraffini, F. Neri, L. Picinali, An analysis on separability for memetic

computing automatic design, Information Sciences 165 (2014) 1–22.

[13] X. Chen, Y.-S. Ong, M.-H. Lim, K. C. Tan, A multi-facet survey on

memetic computation, IEEE Transactions on Evolutionary Computation

15 (5) (2011) 591–607.

[14] H. G. Cobb, An investigation into the use of hypermutation as an adaptive

operator in genetic algorithms having continuous, time-dependent nonsta-

tionary environment, Tech. Rep. NRL Memorandum Report 6760, U. S.

Navy Center for Applied Research in Artificial Intelligence Information

Technology Division (1990).

[15] P. Cowling, G. Kendall, E. Soubeiga, A hyperheuristic approach to schedul-

ing a sales summit, in: E. K. Burke, W. Erben (eds.), Proceedings of

the International Conference on the Practice and Theory of Automated

Timetabling (PATAT 2000), vol. 2079 of LNCS, Springer, Konstanz, Ger-

many, 2001, pp. 176–190.

[16] M. Črepinšek, S.-H. Liu, M. Mernik, Exploration and exploitation in evo-

lutionary algorithms: a survey, ACM Computing Surveys 45 (3) (2013)

35.

[17] M. Črepinšek, S.-H. Liu, M. Mernik, Replication and comparison of compu-

tational experiments in applied evolutionary computing: common pitfalls

and guidelines to avoid them, Applied Soft Computing 19 (2014) 161–170.

[18] R. Dawkins, The Selfish Gene, New York City: Oxford University Press,

1976.

[19] K. A. De Jong, An analysis of the behavior of a class of genetic adap-

tive systems., Ph.D. thesis, University of Michigan, Ann Arbor, MI, USA,

aAI7609381 (1975).

[20] J. H. Drake, E. Özcan, E. K. Burke, An improved choice function heuristic

selection for cross domain heuristic search, in: C. A. C. Coello, V. Cutello,

34

K. Deb, S. Forrest, G. Nicosia, M. Pavone (eds.), Proceedings of Parallel

Problem Solving from Nature (PPSN 2012), Part II, vol. 7492 of LNCS,

Springer, Taormina, Italy, 2012, pp. 307–316.

[21] J. H. Drake, E. Özcan, E. K. Burke, A modified choice function hyper-

heuristic controlling unary and binary operators, in: Proceedings of the

IEEE Congress on Evolutionary Computation (CEC 2015), IEEE Press,

Sendai, Japan, 2015, pp. 3389–3396.

[22] J. H. Drake, E. Özcan, E. K. Burke, A case study of controlling crossover in

a selection hyper-heuristic framework using the multidimensional knapsack

problem, Evolutionary Computation.

[23] M. Epitropakis, F. Caraffini, F. Neri, E. Burke, A separability prototype

for automatic memes with adaptive operator selection, in: Foundations of

Computational Intelligence (FOCI), 2014 IEEE Symposium on, 2014, pp.

70–77.

[24] C.-K. Goh, Y.-S. Ong, K. C. Tan, Multi-Objective Memetic Algorithms,

Springer Berlin Heidelberg, 2009.

[25] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine

Learning, Addison-Wesley, Boston, MA, USA, 1989.

[26] G. Gutin, D. Karapetyan, A memetic algorithm for the generalized travel-

ing salesman problem, Natural Computing 9 (1) (2010) 47–60.

[27] P.-C. Hsiao, T.-C. Chiang, L.-C. Fu, A vns-based hyper-heuristic with

adaptive computational budget of local search, in: Proceedings of the

IEEE Congress on Evolutionary Computation (CEC 2012), IEEE Press,

Brisbane, Australia, 2012, pp. 1–8.

[28] H. Ishibuchi, T. Yoshida, T. Murata, Balance between genetic search and

local search in memetic algorithms for multiobjective permutation flowshop

scheduling, IEEE Transactions on Evolutionary Computation 7 (2) (2003)

204–223.

35

[29] W. Jakob, A general cost-benefit-based adaptation framework for multi-

meme algorithms, Memetic Computing 2 (3) (2010) 201–218.

[30] L. P. Kaelbling, M. L. Littman, A. W. Moore, Reinforcement learning: a

survey, Journal of Artificial Intelligence Research 4 (1996) 237–285.

[31] J. Knowles, D. Corne, Memetic algorithms for multiobjective optimization:

Issues, methods and prospects, in: W. E. Hart, J. Smith, N. Krasnogor

(eds.), Recent Advances in Memetic Algorithms, vol. 166 of Studies in

Fuzziness and Soft Computing, Springer Berlin Heidelberg, 2005, pp. 313–

352.

[32] N. Krasnogor, Studies on the theory and design space of memetic algo-

rithms, Ph.D. thesis, University of the West of England, Bristol, UK (2002).

[33] N. Krasnogor, B. Blackburne, E. Burke, J. Hirst, Multimeme algorithms

for protein structure prediction, in: J. Guervós, P. Adamidis, H.-G. Beyer,

H.-P. Schwefel, J.-L. Fernández-Villacañas (eds.), Proceedings of Parallel

Problem Solving from Nature (PPSN 2002), vol. 2439 of LNCS, Springer,

Granada, Spain, 2002, pp. 769–778.

[34] N. Krasnogor, S. Gustafson, A study on the use of ”self-generation” in

memetic algorithms, Natural Computing 3 (1) (2004) 53–76.

[35] N. Krasnogor, J. Smith, Emergence of profitable search strategies based on

a simple inheritance mechanism, in: L. Spector, E. Goodman, A. Wu, W. B.

Langdon, H. M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. Garzon,

E. Burke (eds.), Proceedings of the Genetic and Evolutionary Computation

Conference (GECCO 2001), Morgan Kaufmann, San Francisco, CA, US,

2001, pp. 432–439.

[36] M. Larose, A hyper-heuristic for the chesc 2011, in: CHeSC2011 Competi-

tion, 2011.

[37] O. Linda, D. Wijayasekara, M. Manic, M. McQueen, Optimal placement

of phasor measurement units in power grids using memetic algorithms, in:

36

Proceedings of the IEEE International Symposium on Industrial Electronics

(ISIE 2014), IEEE Press, Istanbul, 2014, pp. 2035 – 2041.

[38] H. R. Lourenço, O. C. Martin, T. Stützle, Iterated local search: frame-

work and applications, in: M. Gendreau, J.-Y. Potvin (eds.), Handbook of

Metaheuristics, vol. 146 of International Series in Operations Research and

Management Science, Springer US, 2010, pp. 363–397.

[39] P. Merz, B. Freisleben, Fitness landscape analysis and memetic algorithms

for the quadratic assignment problem, IEEE Transactions on Evolutionary

Computation 4 (4) (2000) 337–352.

[40] M. Mısır, K. Verbeeck, P. De Causmaecker, G. V. Berghe, An intelligent

hyper-heuristic framework for chesc 2011, in: Y. Hamadi, M. Schoenauer

(eds.), Proceedings of Learning and Intelligent Optimization (LION 2012),

vol. 7219 of LNCS, Springer, Paris, France, 2012, pp. 461–466.

[41] P. Moscato, On evolution, search, optimization, genetic algorithms and

martial arts: Towards memetic algorithms, Caltech concurrent computa-

tion program, C3P Report 826 (1989) 1989.

[42] P. Moscato, M. G. Norman, A memetic approach for the traveling salesman

problem implementation of a computational ecology for combinatorial opti-

mization on message-passing systems, Parallel Computing and Transputer

Applications 1 (1992) 177–186.

[43] F. Neri, C. Cotta, Memetic algorithms and memeting computing optimiza-

tion: A literature review, Swarm and Evolutionary Computation 2 (2012)

1–14.

[44] F. Neri, J. Toivanen, G. L. Cascella, Y.-S. Ong, An adaptive multimeme

algorithm for designing hiv multidrug therapies, IEEE/ACM Transactions

on Computational Biology and Bioinformatics 4 (2) (2007) 264–278.

37

[45] Q. H. Nguyen, Y.-S. Ong, N. Krasnogor, A study on the design issues of

memetic algorithm, in: Proceedings of the IEEE Congress on Evolutionary

Computation (CEC 2007), IEEE Press, Singapore, 2007, pp. 2390 – 2397.

[46] S. Nguyen, M. Zhang, M. Johnston, K. C. Tan, Automatic design of

scheduling policies for dynamic multi-objective job shop scheduling via co-

operative coevolution genetic programming, IEEE Transactions on Evolu-

tionary Computation 18 (2) (2014) 193–208.

[47] R. Nogueras, C. Cotta, On meme self-adaptation in spatially-structured

multimemetic algorithms, in: I. Dimov, S. Fidanova, I. Lirkov (eds.), Nu-

merical Methods and Applications, vol. 8962 of LNCS, Springer Interna-

tional Publishing, 2015, pp. 70–77.

[48] G. Ochoa, M. Hyde, T. Curtois, J. Vazquez-Rodriguez, J. Walker, M. Gen-

dreau, G. Kendall, B. McCollum, A. Parkes, S. Petrovic, E. Burke, Hyflex:

A benchmark framework for cross-domain heuristic search, in: J.-K. Hao,

M. Middendorf (eds.), Proceedings of the European Conference on Evolu-

tionary Computation in Combinatorial Optimisation (EvoCOP 2012), vol.

7245 of LNCS, Springer, Malaga, Spain, 2012, pp. 136–147.

[49] Y.-S. Ong, A. Keane, Meta-lamarckian learning in memetic algorithms,

IEEE Transactions on Evolutionary Computation 8 (2) (2004) 99–110.

[50] Y.-S. Ong, M.-H. Lim, N. Zhu, K.-W. Wong, Classification of adaptive

memetic algorithms: a comparative study, IEEE Transactions on Systems,

Man, and Cybernetics, Part B: Cybernetics 36 (1) (2006) 141–152.

[51] S. Orike, D. W. Corne, Improved evolutionary algorithms for economic

load dispatch optimization problems, in: Proceedings of the 12th Annual

Workshop on Computational Intelligence (UKCI 2012), 2012, pp. 1–8.

[52] S. Orike, D. W. Corne, A memetic algorithm for dynamic economic load

dispatch optimization, in: Proceedings of the IEEE Symposium on Com-

38

putational Intelligence in Dynamic and Uncertain Environments (CIDUE

2013), IEEE Press, Singapore, 2013, pp. 92 – 99.

[53] E. Özcan, S. Asta, C. Altıntaş, Memetic algorithms for cross-domain heuris-

tic search, in: Y. Jin, S. A. Thomas (eds.), Proceedings of the 13th Annual

Workshop on Computational Intelligence (UKCI 2013), IEEE Press, Sur-

rey, UK, 2013, pp. 175–182.

[54] E. Özcan, C. Başaran, A case study of memetic algorithms for constraint

optimization, Soft Computing 13 (8-9) (2009) 871–882.

[55] E. Özcan, B. Bilgin, E. E. Korkmaz, A comprehensive analysis of hyper-

heuristics, Intelligent Data Analysis 12 (1) (2008) 3–23.

[56] E. Özcan, E. Ersoy, Final exam scheduler - fes, in: Proceedings of the IEEE

Congress on Evolutionary Computation (CEC 2005), vol. 2, IEEE Press,

2005, pp. 1356–1363.

[57] E. Özcan, M. Mısır, G. Ochoa, E. K. Burke, A reinforcement learning

- great-deluge hyper-heuristic for examination timetabling, International

Journal of Applied Metaheuristic Computing 1 (1) (2010) 39–59.

[58] E. Özcan, E. Onbaşıog̃lu, Memetic algorithms for parallel code optimiza-

tion, International Journal of Parallel Programming 35 (1) (2007) 33–61.

[59] E. Özcan, A. J. Parkes, A. Alkan, The interleaved constructive memetic

algorithm and its application to timetabling, Computers & Operations Re-

search 39 (10) (2012) 2310–2322.

[60] D. Qaurooni, A memetic algorithm for course timetabling, in: Proceedings

of the Genetic and Evolutionary Computation Conference (GECCO 2011),

ACM, Dublin, Ireland, 2011, pp. 435–442.

[61] D. J. Sheskin, Handbook of parametric and nonparametric statistical pro-

cedures, CRC Press, 2003.

39

[62] J. Smith, Coevolving memetic algorithms: A review and progress report,

IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics

37 (1) (2007) 6–17.

[63] J. Smith, Meme fitness and memepool sizes in coevolutionary memetic

algorithms, in: Proceedings of the IEEE Congress on Evolutionary Com-

putation (CEC 2010), IEEE Press, 2010, pp. 1–8.

[64] K. Sörensen, F. W. Glover, Metaheuristics, in: S. I. Gass, M. C. Fu (eds.),

Encyclopedia of Operations Research and Management Science, Springer

US, 2013, pp. 960–970.

[65] N. Veček, M. Mernik, M. Črepinšek, A chess rating system for evolutionary

algorithms: A new method for the comparison and ranking of evolutionary

algorithms, Information Sciences 277 (2014) 656–679.

40

(a)

(b)

Figure 4: Evolutionary activity versus time plot averaged over 31 runs on Instance 3 of the

MAX-SAT problem domain.

41

(a)

(b)

Figure 5: Evolutionary activity versus time plot averaged over 31 runs on Instance 1 of the

Bin Packing problem domain.

42

(a)

(b)

Figure 6: Evolutionary activity versus time plot averaged over 31 runs on Instance 1 of the

Personnel Scheduling problem domain.

43

(a)

(b)

Figure 7: Evolutionary activity versus time plot averaged over 31 runs on Instance 1 of the

Permutation Flow Shop problem domain.

44

(a)

(b)

Figure 8: Evolutionary activity versus time plot averaged over 31 runs on Instance 1 of the

Travelling Salesman Problem.

45

(a)

(b)

Figure 9: Evolutionary activity versus time plot averaged over 31 runs on Instance 3 of the

Vehicle Routing Problem.

46

	Introduction
	Related Work
	Memetic Algorithms
	Hyper-Heuristics and HyFlex

	Self-Adaptive Memetic Algorithms for Cross-Domain Heuristic Search
	Multimeme Memetic Algorithm (MMA)
	Steady-state Multimeme Memetic Algorithm (SSMMA)

	Experimental Results
	Experimental Design and Parameter Settings
	Performance comparison of SSMMA and MMA
	Performance comparison of static versus self-adaptive MAs
	An analysis of the behaviour of SSMMA
	Performance comparison of SSMMA and MMA to the CHeSC 2011 entrants

	Conclusion

