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Abstract—From the structure point of view, a repetitive
controller (RC) is considerably similar to a disturbance observer.
By adding a correction term to the traditional RC and
considering the disturbances as states, the repetitive controller
can be designed in the same way as a disturbance observer. This
paper presents therefore a new simple way of tuning a repetitive
controller. Simulations show that, when compared with the
traditional RC, the proposed RC configuration can achieve
greater stability margin. As opposed to the traditional plug-in RC,
the new RC structure studied in this paper is also shown to be
robust against variations in the inner loop delays if it is used in a
cascaded configuration. The immunity to plant parameter
variations is another added benefit of the proposed controller.
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I. INTRODUCTION

The repetitive controller (RC) is an effective solution for
rejecting periodic disturbances in closed loop control systems
for several reasons [1-17]. Among those, one of the key pros
of the repetitive control is the fact that the controller can be
designed by only knowing the frequency of the disturbance.
However, every coin has two sides; due to lack of information
about the plant, the design of the controller can be challenging
in terms of stability. For example, some main causes of
instability can be the parameter variations of controlled plant,
which modify the gain and phase of the whole system; or
variation of the plant delays, which consequently causes
unwanted phase shift between reference and response (output).

Therefore, for the sake of robust performance, careful
considerations should be given to the design of repetitive
controllers. Some of the most commonly used tuning methods
for repetitive control are based on the H-infinity control [1, 2],
Lyapunov function [3-5], Routh-Hurwitz stability criterion [6],
Nyquist stability criterion [7], small gain theorem [7, 8], pole
placement [9] and other optimization methods in robust
control [10, 11].

Besides, depending on the type of uncertainties contained
in the plant, it may be also necessary to enhance the
robustness of the repetitive controller with some other
adjustments in the control design. Some examples of the
adjustments are given as following:

(1) For disturbances with varying period, one solution is
to use variable sampling frequency: a strategy for calculating

the sampling frequency is proposed in [12], whereas an RC
compensator proposed in [10] can maintain the stability while
the sampling frequency is varying. Alternatively, for drive
applications, since the period of disturbances is a function of
rotor position, an angle-based RC is proposed in [13].

(2) For non-periodic disturbances, a repetitive signal filter,
which removes non-periodic components, is presented in [14];
an equivalent input disturbance estimator which provides
better attenuation to aperiodic disturbances is presented in [15].

(3) For parametric uncertainties, it is common to use an
observer in conjunction with the repetitive controller [2, 4, 5,
14, 16] to estimate uncertain states. In such way, taking
advantage of the learning ability of the repetitive controller,
the system is able to operate stably under parametric
uncertainties.

Moreover, the observer can be a state observer (SO), an
extended state observer (ESO) or a disturbance observer (DO),
depending on the availability of the states from the
measurements.

Authors in [16] have shown that, instead of SO which only
estimates system states, the ESO which also estimates
disturbance as an additional state can work better with the
repetitive controller for rejecting external disturbances.

It is also worth noting that, the RC and DO are similar
since they both can help rejecting external disturbances by
learning the disturbances. Authors in [14] have shown that the
RC proposed in their paper converges faster than a DO.

However, none of the works presented so far have
considered that, in case of a plug-in repetitive controller, the
structure becomes almost the same as a disturbance observer
without correction term. By adding the correction term to the
traditional RC, and considering the disturbance as an
additional state like in the ESO, this paper proposes a novel
methodology for designing the repetitive controller as a
reduced-order disturbance observer. Therefore, the tuning of
the RC is decoupled from the tuning of the plant controller.

In the following paper, Section II presents the equations
and design procedure of the proposed RC with the correction
term. Section III presents the comparison simulation results
for an example plant with the proposed RC and the traditional
RC, along with stability analysis. Section IV finally provides
some conclusions.
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II. DESIGN OF RC AS DO

Let us consider a typical two cascaded loops control
system as shown in the block diagram in Fig. 1.

Fig. 1. The block diagram of a typical two cascade loops control system

Where, P1(z) represents the inner loop as a whole, P2(z)
represents the plant for the outer loop, C(z) is the controller for
the outer loop, R(z), U(z), D(z), and Y(z) are the outer loop
reference, inner loop reference, disturbance, and output
respectively. Xm1(z) and Xm2(z) are the measurable subspaces
used as the inner and outer loop feedbacks respectively.

The design procedure for RC can be broken down into the
following three subsections.

A. Equation Derivation for DO

Before we can design the RC like a DO, it is worth now to
write the equation for the DO.

First, the state space equations for the dynamic system
from input U(z) to output Y(z) in Fig. 1 can be written as (1).
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a11, a12, a21, a22 and b1 are matrices of appropriate
dimensions according to the dimensions of Xm1 and Xm2. A is a
coefficient shows how the disturbance D(k) would affect Xm2-

(k+1). If the disturbance D(z) is periodic, and can be
modelled as the sum of sine wave of frequency fd and all its
multiple, its resulting dynamical model is
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The disturbance Xd is a vector of N elements, where the
relation N=fs/fd must hold. fs is the sampling frequency of the
control system.

Second, by combining system (1) and (2), (4) shows a state
space equation where the disturbance Xd(k) can be seen as an
additional state of the system.
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Rewriting the second and third lines of (4) we obtain
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Third, the estimated disturbance equation can then be
derived from (5) as a reduced order observer.
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where L is a vector of N gains, L1, L2 … LN-1, LN.

B. Modification of RC to Resemble DO

According to (6), the block diagram for DO is drawn in
Fig. 2 (a). Comparing to the traditional repetitive controller
[17] as shown in Fig. 2 (b), it can be seen from the orange part
that a feedback of the previous output, which yields a
correction term in the input is included in DO, while this
correction term is missing in the traditional RC.

(a) DO according to (6)

(b) Traditional RC
Fig. 2. The block diagram of DO and traditional RC



Apart from the correction term, the structures of the green
parts in both diagrams in Fig.2 are actually similar to each
other. Therefore, the block diagram of the proposed RC that
combines the traditional RC and the correction term of DO is
developed as shown in Fig.3.

Fig. 3. The block diagram of the proposed RC with correction term

In order to include the forgetting factor Q of the standard
repetitive controller as shown in Fig.2(b) in the matrix a33 as
shown in Fig. 2(a), matrix a33 has been modified from (3) to
(7).
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The stability filter in Fig. 2 (b) is chosen to be a simple
time advance filter zM, i.e. the equivalent delay introduced by
the inner loop P1(z) and the feedback path. To model it in the
state space representation, the Qf block has been added in
Fig.3, which is a one-by-N vector of zeros with only the Mth

value equals to 1. Effectively, this time advance filter chooses
one value from the estimated disturbance vector ܺௗ෢ .

C. Tuning RC as a DO

Following the design in Fig.3, it can be noticed that the
proposed RC becomes the same structure of a disturbance
observer, and thus shall share the same equation (6) with the
DO. Therefore, the poles of the proposed RC can be
determined by the eigenvalues of the matrix (a33-LAcd) in (6)
or matrix (a33

new-LAcd) to include the forgetting factor Q.
Hence, the gain vector L for the correction term can be
designed by choosing the roots of (8). As can be seen from (8),
the choice of L also depends on the choice of Q. Further
discussions will be given in part III.
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III. SIMULATION AND STABILITY ANALYSIS

The simulation model is built using Matlab/Simulink. For
comparison, both the new control scheme model of Fig. 3 and
the one of the traditional plug-in RC [17] shown in Fig. 4 have
been built. To be distinguishable by the quantities defined for
the proposed RC, G and F are defined as the gain and the
forgetting factor of the traditional RC respectively. URC2(z)
and YRC2(z) are the input and output of RC.

Fig. 4. The block diagram of the plug-in traditional RC

A simple system (9) is considered to perform a comparison
analysis between the proposed RC and its traditional version.
The inner loop is assumed to be a delay of two sampling
periods. The main frequencies of the periodic disturbances are
50 Hz and 300 Hz. The sampling frequency is 10 kHz, N is
200 (i.e. 10k/50). M is designed to be 3 since there is a delay
of 3Ts from the output of RC YRC(z) being applied to the inner
loop till the reading of the corresponding outcomes are
measured and transmitted back to RC.

2
1 2( ) , ( ) 0.1282 ( 0.9999)

( ) sin(100 ) 0.5sin(600 )

P z z P z z

D z t t 

  

 
(9)

It can then be calculated from (9) that:
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The bandwidth of the outer loop is chosen to be 100Hz and
the outer loop controller C1(z) is designed as a PI controller.

1( ) (0.3658 0.3597) / ( 1)C z z z   (11)

Moreover, (8) is simplified by choosing L1=L2=…= L199=0.
Therefore, the root location of λ only depends on the selection 
of gain L200 and forgetting factor Q. For locating the root
inside the unity circle, the choice needs to meet the following
criteria:
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Despite the stability margin, the selection of gain L200 and
forgetting factor Q also need to consider the performance as
analyzed below.

A. Choosing L200 and Q for the Best Performance

The outputs Y(z) with different gains and forgetting factors
are compared in Fig.5 using the model of the proposed RC and
the traditional RC.

(a) The proposed RC with forgetting factor Q=1

(b) The proposed RC with gain L200=1/A

(c) The traditional RC with forgetting factor F=0.98

(d) The traditional RC with gain G=1
Fig. 5. The response of the output Y(z) to disturbance D(z)

Fig. 5 (a) shows the influence of gain L200 on the output Y(z)
using the proposed RC model of Fig. 3, while Fig. 5 (b) shows
the influence of the forgetting factor Q. It can be seen that L200

mainly affect the convergence time and Q mainly affect the
steady state value. The best performance is obtained when
L200=1/A and Q=1 so that the poles of the proposed RC are all
located at the origin of z-plane (λ=Q-AL200=0).

Fig. 5 (c) and (d) show the influence of gain G and
forgetting factor F on the output Y(z) using the traditional RC
model of Fig. 4. It can be seen that the gain and forgetting
factor affect the response almost in the same way in both
models. However, the system is unstable if F ≥1 in the
traditional RC model since all the poles will be located on the
edge or outside the unity circle of z-plane (see later in (14)).
Therefore, by reducing F, the stability can be maintained, but
the performance is sacrificed.

B. Gain and Delay Margin at the Best Performance

The best performance setting of L200 and Q has been
confirmed above. It is now necessary to verify the resultant
gain and delay margins with such setting.

The open loop transfer functions GOP1(z) and GOP2(z) from
input R(z) to output Y(z) are derived according to Fig. 3 as (13)
and Fig. 4 as (14) in order to analyze the stability margins:
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The gain and delay margins are computed using Matlab
functions from the control toolbox. The proposed RC achieves
the results in Table 1 by setting L200=1/A and Q=1. The results
for the traditional RC when setting G=1 and F=0.98 are not
shown since the poles are close the unity circle, and the
software fails to compute the stability margins.

The results in Table 1 prove three main advantages of the
proposed RC:

 The system can still maintain stable behavior even
when the open loop gain increases by 13 times or the
open loop delays increase for 22 more sampling periods!
In the example, the inner loop P2(z) is assumed to be a
delay of 2Ts, which is true if a deadbeat control is
implemented. However, the assumption may not be true



when the deadbeat control is at its physical limit. Since,
even at physical limit, the delay of the deadbeat control
loop is unlikely to be more than 24Ts, the results prove
the stability of the system against the delay variation in
the inner loop.

 Meanwhile, taking benefit from the large gain and
phase margin, the system is also reasonably robust
against parameter variations in the plant.

 In addition, designing the repetitive controller as a
disturbance observer permits to decouple the tuning of
the RC from the tuning of the plant controller due to the
principle of separation of estimation and control.

For verifying the stability region and comparing with the
traditional RC, the outputs Y(z) using the proposed RC and the
traditional RC with increased system gain and delay are shown
in Fig.6. The gain and delay of the system is modified through
the transfer function of the inner loop plant P2(z). The gains
and forgetting factors for both the proposed and traditional RC
are chosen to be the combinations that give the best
performance in Fig.5. Therefore, L200=1/A, Q=1, G=1,
F=0.98.

(a) The proposed RC with the gain and delay of system both increase for
3.65dB and 16Ts

(b) The proposed RC and traditional RC with only the delay of system
increase for Ts

Fig. 6. The response of the output Y(z) with increased gain and delay in the
system

The results in Fig.6 show that with the gain and delay
increased for 3.65dB (=1.5 Absolute Units) and 16Ts in the
plant, the effectiveness of the proposed RC consequently
degrades, but the system is still stable. However, the system
with traditional RC fails to maintain the stability even when
the inner loop delays for only one more sampling period.
Therefore, the traditional RC used in the paper is more

sensitive to delay variations in the open loop system than the
proposed RC.

IV. CONCLUSION

A new way of designing repetitive controller has been
presented in this paper. The traditional repetitive controller is
modified to resemble a reduced order observer so that the gain
and forgetting factor of the repetitive controller can be tuned
following the same procedure of tuning an observer. Stability
analysis shows that the proposed repetitive controller can
achieve large stability margins without sacrificing the
performance, and the proposed controller is stable against
variations of delays and parameters in the plant.

The performance of this new RC configuration is
compared with the traditional RC structure, and it is found that
the proposed controller is able to cope with delay and
parameter deviations, which would push the traditional
controller to the limits of stability.

The authors are working on implementing the proposed
control on a test rig to better highlight its advantage over
existing schemes.

REFERENCES

[1] M. Wu, L. Zhou, and J. She, "Design of Observer-Based H-infinity
Robust Repetitive-Control System," IEEE Transactions on Automatic
Control, vol. 56, pp. 1452-1457, 2011.

[2] A. Noshadi, S. Juan, L. Wee Sit, S. Peng, and A. Kalam, "Repetitive
disturbance observer-based control for an active magnetic bearing
system," in Control Conference (AUCC), 2015 5th Australian, 2015,
pp. 55-60.

[3] E. Kurniawan, C. Zhenwei, and M. Zhihong, "Digital design of
adaptive repetitive control of linear systems with time-varying periodic
disturbances," IET Control Theory & Applications, vol. 8, pp. 1995-
2003, 2014.

[4] W. E. Dixon, E. Zergeroglu, D. M. Dawson, and B. T. Costic,
"Repetitive learning control: a Lyapunov-based approach," IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
vol. 32, pp. 538-545, 2002.

[5] X. Jian-Xin and X. Jing, "Observer based learning control for a class of
nonlinear systems with time-varying parametric uncertainties," IEEE
Transactions on Automatic Control, vol. 49, pp. 275-281, 2004.

[6] C. Weijie, X. Fangchun, W. Min, and S. Jinhua, "Design of a repetitive
control system based on the compensation of nonlinearities," in Control
Conference (CCC), 2013 32nd Chinese, 2013, pp. 182-186.

[7] J. Chao, P. Zanchetta, F. Carastro, and J. Clare, "Repetitive Control for
High-Performance Resonant Pulsed Power Supply in Radio Frequency

TABLE I
RESULTS OF STABILITY MARGIN ANALYSIS

Name Value

Gain Margin 13.0712 (Absolute
Units)

Phase Margin 64.274 [degree]
Frequency when Gain=0dB 6179.2 [rad/s]

Frequency when Phase=-180degree 491.448 [rad/s]
Delay Margin 22.8263

Stable 1



Applications," IEEE Transactions on Industry Applications, vol. 50, pp.
2660-2670, 2014.

[8] X. H. Wu, S. K. Panda, and J. X. Xu, "Design of a Plug-In Repetitive
Control Scheme for Eliminating Supply-Side Current Harmonics of
Three-Phase PWM Boost Rectifiers Under Generalized Supply Voltage
Conditions," IEEE Transactions on Power Electronics, vol. 25, pp.
1800-1810, 2010.

[9] M. Yamada, Z. Riadh, and Y. Funahashi, "Design of discrete-time
repetitive control system for pole placement and application,"
IEEE/ASME Transactions on Mechatronics, vol. 4, pp. 110-118, 1999.

[10] E. Kurniawan, C. Zhenwei, and M. Zhihong, "Design of Robust
Repetitive Control With Time-Varying Sampling Periods," IEEE
Transactions on Industrial Electronics, vol. 61, pp. 2834-2841, 2014.

[11] E. Kurniawan, Z. Cao, and Z. Man, "Design of decentralized repetitive
control of linear MIMO system," in Industrial Electronics and
Applications (ICIEA), 2013 8th IEEE Conference on, 2013, pp. 427-
432.

[12] P. Zanchetta, M. Degano, J. Liu, and P. Mattavelli, "Iterative Learning
Control With Variable Sampling Frequency for Current Control of
Grid-Connected Converters in Aircraft Power Systems," IEEE
Transactions on Industry Applications, vol. 49, pp. 1548-1555, 2013.

[13] Y. Yuan, F. Auger, L. Loron, S. Moisy, and M. Hubert, "Torque ripple
reduction in Permanent Magnet Synchronous Machines using angle-

based iterative learning control," in IECON 2012 - 38th Annual
Conference on IEEE Industrial Electronics Society, 2012, pp. 2518-
2523.

[14] C. Xu and M. Tomizuka, "New Repetitive Control With Improved
Steady-State Performance and Accelerated Transient," IEEE
Transactions on Control Systems Technology, vol. 22, pp. 664-675,
2014.

[15] M. Wu, B. Xu, W. Cao, and J. She, "Aperiodic Disturbance Rejection
in Repetitive-Control Systems," IEEE Transactions on Control Systems
Technology, vol. 22, pp. 1044-1051, 2014.

[16] A. H. M. Sayem, C. Zhenwei, M. Zhihong, and F. Chaohong,
"Performance comparison of SO and ESO based RC," in Systems,
Process & Control (ICSPC), 2013 IEEE Conference on, 2013, pp. 121-
124.

[17] Y. Wu-Sung and T. Mi-Ching, "Analysis and Estimation of Tracking
Errors of Plug-in Type Repetitive Control Systems," IEEE Transactions
on Automatic Control, vol. 50, pp. 1190-1195, 2005.


