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ABSTRACT 

Molecular machines are a key component in the vision of molecular nanotechnology, and have the 

potential to transport molecular species and cargo on surfaces. The motion of such machines should be 

triggered remotely, ultimately allowing a large number of molecules to be propelled by a single source, 

with light being an attractive stimulus. Here, we report upon the photo-induced translation of molecular 

machines across a surface by characterizing single molecules before and after illumination. Illumination 

of molecules containing a motor unit results in an enhancement in the diffusion of the molecules. The 

effect vanishes if an incompatible photon energy is used or if the motor unit is removed from the 

molecule, revealing that the enhanced motion is due to the presence of the wavelength-sensitive motor 

in each molecule. 

 

Molecular machines with internal motors are fascinating objects that transform energy into useful motion 

at the nanoscale.1–6 In nature many processes depend on molecular motors that perform specific 

mechanical tasks in living cells,7 a prototypical process is the directional motion of myosin.8 Several 

synthetic molecular motors have been synthesized,2,9,10 including a molecular motor developed by 

Feringa and co-workers that rotates at a frequency in the MHz regime.11–14 For ultimate control of 

molecular machines it is essential that the motor exhibits only one sense of rotation, resulting in 

unidirectional translation of the molecular machine on a surface, thus only forward and no backward 

motion, in contrast to random motion in all directions.2 For synthetic molecular machines to contribute 

to the vision of nanotechnology by transporting molecular species and cargo on surfaces, the motion of 
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such machines should be triggered remotely, ultimately allowing a large number of molecules to be 

propelled by a single source, such as light. Note that the constraints for light-driven processes are very 

different from those for autonomous chemically driven processes which must obey the constraints of 

microscopic reversibility.  

 While various molecular motors have been studied in solution, their investigation on surfaces is rare, 

due to experimental difficulties – e.g. molecule-surface interaction that inhibits molecular motion either 

via strong adsorption or by quenching electronic states which are required for the chemical process. 

However, surfaces offer important advantages:4 (i) The ability of local probe microscopy to image and 

characterize single molecules with submolecular resolution and to follow their motion,15 (ii) connection 

with the macroscopic world requires well-defined molecular locations and a solid interface, (iii) fixing 

the static parts of a molecular motor as for instance in the case of a single-molecule rotor16,17 and (iv) 

confinement on a surface, which can reduce the motor activity to two dimensions, thus reducing the 

complexity of the molecular process.  

In an asymmetric scanning tunneling microscope (STM) junction a molecular motor adsorbed on a 

surface can be activated by a local stimulus, such as electron injection, or a local gradient which distorts 

the potential energy landscape.16–18 However, in the case of molecular machines, remote control is key 

for any use where not only single molecules should be addressed locally, but many molecules should be 

triggered in parallel. The remote control of molecular machines removes the limitation of having to 

address single molecules and the requirement for ‘wiring’ the molecules to a power source.19 Several 

studies have focused on laser-induced diffusion of adsorbed molecules, including the femtosecond 



4 

 

 

 

irradiation of CO on Cu(110)20 and Cu(111),21 in both cases the mechanism for diffusion is the interaction 

of the laser with substrate electrons. 

 

For the molecular machines studied here (shown in Fig. 1), the rotation of the motor in solution 

(isolated structure shown in Fig. 1a) is known to be driven by (1) double bond isomerisation of the alkene 

 

Figure 1. NanoRoadster molecule, equipped with a motor. a, Chemical structure of the molecular 
motor with only one sense of rotation. b, Scheme of photo- and thermally induced steps required for 
operation of the motor (from ref. 13). c-d, Chemical structures of NanoRoadster (NR) and 
NanoRoadster Control (NC) molecules. e, Scheme for a potential operation mode of NR via thermal 
and photonic excitation. f, Geometry-optimized molecular models for two possible conformations of 
NR (details in Fig. S1). g, STM image of NR on Cu(111) at 6 K (Vsample-bias = -1 V; Itunnel = 10 pA; 
scale bar 4 nm); height profiles in Fig. S3. Molecular models in g are scaled to image dimension 



5 

 

 

 

unit connecting the stator to the rotor by photoexcitation,  𝜋𝜋 → 𝜋𝜋∗ transition, followed by (2) helix 

inversion via vibrational excitation as initiated by sufficient thermal energy (as discussed in reference 

13). Repetition of these two steps results in full 360o rotation (Fig. 1b). So far only one motorized 

molecule, characterized by scanning tunneling microscopy (STM) at low temperatures, exhibited lateral 

motion.18 Translation has been induced locally with an STM tip, in contrast to the goal here of remote 

light-induced actuation. Light activation is advantageous because it can actuate many molecules at once 

and avoids locally deformed potential energy landscapes that occur in STM manipulation.22 Additionally, 

it does not require fuel molecules on the surface, which are typically used by chemically driven biological 

machines in solution.19,23 Such a methodology therefore offers a promising route towards remote 

activation, and in the present work we demonstrate that the incorporation of a wavelength-sensitive motor 

can be used to enhance the diffusion of functionalised molecular machines. 

 

RESULTS AND DISCUSSION 

A three-wheeled Roadster motorcycle has a single drive wheel at the rear and two wheels at the front 

of the vehicle, hence we termed the molecules synthesized for this study as "NanoRoadsters"  (NR, Fig. 

1c), one of a family of nanovehicles, termed nanocars.24–26 The use of only one motor per vehicle 

eliminates the need for chiral resolutions in the synthesis since each motor has only one sense of possible 

rotary motion. Thus, opposing directional forces that can hinder translation in the case of two or more 

motors, as observed previously,18 are avoided.   

In analogy to operation of molecular motors in solution, the proposed concept for operation of NR 

(Fig. 1e) requires a combination of photoexcitation (where ℎ𝑣𝑣 is the correct energy to isomerise the 
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double bond connecting the stator to the rotor) and sufficient thermal energy (𝑘𝑘𝑏𝑏𝑇𝑇 > 𝐸𝐸𝑎𝑎 for the helical 

inversion). To study the motion of NR, they were deposited on an atomically flat Cu(111) surface under 

ultrahigh vacuum. Then, STM was used to follow the translation of individual molecular machines. 

Close-up images, acquired at 6 K, of the internal structure of NR (Fig. 1g) allow identification of the 

adamantane lateral groups (‘wheels’) and ‘motor’ (further details of characterisation are given in Figure 

S1 and Table S1). As a brief aside, it is worthwhile to note that while the use of ‘NanoRoadster’, ‘wheels’, 

and ‘motor’ are beneficial for understanding the structure and geometry of the molecules such terms are 

not intended to imply an exact ‘nanomapping’27 of the nanoscale properties of NR to those of a 

macroscopic motorized vehicle. 

 

Effect of laser illumination upon molecular diffusion.  After characterizing the molecules, we assess 

the influence of the presence of the motor by laser illumination of the sample at 6 K. This is done by (1) 

imaging individual molecules in their initial positions, (2) STM tip retraction to allow unobstructed in 

situ illumination of the sample and (3) tip approach to image exactly the same surface area and determine 

the molecular positions after illumination (see Fig. 2a, and Supporting Information (SI) for details on the 

difference images calculation). To get insight into the photo-sensitivity of the process, various 

wavelengths λ (635 nm, 355 nm or 266 nm) were used and compared with the same procedure without 

illumination. However, no diffusion of NR was observed in any of these experiments, which is in 

agreement with the premise that there is insufficient thermal energy for the helical inversion step at 6 K. 

Hence, we conclude that the incident photons are insufficient to induce lateral translation in the absence 

of additional thermal energy. The photo-isomerization step probably does occur at 6 K, as for molecular 
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switches at the same temperature,28 but a second thermal activation step is required for the motor rotation 

(Fig. 1b and e). One might expect the two different photo-induced isomers to result in different 

appearances within the STM images; however, this is not observed experimentally and is attributed to 

the fact that the non-planar nature of the motor unit may result in the two isomers appearing with a very 

similar structure in the STM data. 

To investigate the effect of increased thermal energy on molecular diffusion without illumination, we 

varied the substrate temperature between 6 K and 200 K. It is found that NR molecules start to diffuse at 

~150 K, while for sample temperatures above 170 K diffusion occurs on a timescale faster than the 

acquisition time of the STM imaging. Therefore NR measurements with illumination were conducted 

within this 150 K to 170 K temperature window. Diffusion of the molecules can be determined by 

comparing STM images acquired before and after a specified time interval and measuring the lateral 

displacement of the molecules.15,29 In addition, a control molecule, NanoRoadster control (NC; Fig. 1d), 

which is structurally similar to NR but without a motor unit has been synthesised. The chemistry of the 

NC molecule is identical to that of NR, lacking only the motor unit, thereby allowing a comparison of 

the effect of illumination between a molecule incorporating a motor and one without. Experiments 

without illumination show that thermally activated lateral motion of NC occurs within a temperature 

window between 140 K and 160 K, similar to that of NR. The slightly lower barrier for NC, 140 K 

compared to 150 K for NR, can be attributed to the reduced interaction of NC with the substrate due to 

its smaller dimensions.  

To assess the effect of the motor unit with increased thermal energy, we chose two elevated substrate 

temperatures (156 K and 161 K) in combination with illumination. Figure 2b shows STM observations 
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at 161 K for three characteristic cases: no illumination, λ = 266 nm and λ = 355 nm. The images show 

that several NR molecules have moved, as identified from the difference images (Fig. 2c) where the dark 

and bright features show the molecular position before and after illumination, respectively (see SI for 

additional details). In total 564 NR molecules were characterized of which 349 were observed to move 

(statistics are given in tables S2 and S3). 

 

 

Figure 2. Illumination experiments performed on the NanoRoadster molecules. a, Scheme of 
experimental procedure. b, STM images of NR on Cu(111) acquired at 161 K before and after 
illumination with a 266 nm laser.  c, Difference images of NR on Cu(111) acquired at 161 K for laser 
illumination experiments (266 nm, 355 nm, and no illumination). Difference images are obtained after 
drift correction by subtraction of the “before” image from the “after” image (Vsample-bias = +1 V; Itunnel 
= 10 pA; scale bars: 20 nm), and are of the same area for all cases. Additional examples and complete 
statistics in Fig. S4 and Tables S2-S3– for NR at 161 K 564 molecules were characterized of which 
349 were observed to move. 

 



9 

 

 

 

 

 

Figure 3. Histograms showing the distance moved by diffusing NR molecules after a 60 minute laser 
illumination for various laser wavelengths with the substrate held at 161K. The average distance moved 
(calculated from the mean value of all translation distances in the corresponding histogram) is indicated 
in each case by a pink bar with the error range highlighted as a grey box. The average values, and 
associated error bars (SE), demonstrate that the average distance moved by NR molecules illuminated 
with either of the UV lasers (266 nm or 355 nm) is greater than that moved by molecules illuminated 
by the 635 nm laser or during the experiment without light (the total number n of diffusing molecules 
is indicated for each histogram).  

 

A key observation is that several molecules move rather long distances of more than 5 nm (up to 23 

nm per hour are observed) for the illuminated cases at λ = 266 nm and 355 nm, but this is much less 

likely without illumination. At these temperatures thermal diffusion of the molecules is observed (left 

image Fig. 2c) and therefore a quantitative analysis to understand the enhanced diffusion induced by the 

laser illumination is required. The mean squared displacement (MSD) of NR is only 3.37 ± 1.00 nm2 
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without light but 7.21 ± 2.12 nm2 and 10.48 ± 4.10 nm2 for illumination with λ = 266 nm and 355 nm, 

respectively (full statistics are given in Tables S2 and S3). A similar trend is seen when the average 

distance moved by NR is considered (shown in Fig. 3), where the UV laser wavelengths (266 nm and 

355 nm) show considerably larger values (2.45 ± 0.23 nm and 2.76 ± 0.31 nm, respectively) as compared 

to the 635 nm laser and the case without illumination (1.95 ± 0.21 nm and 1.94 ± 0.16 nm, respectively) 

although the MSD is more appropriate to quantify distances of motion in two dimensions and can be 

used as the basis for determining diffusion characteristics (as shown below). 

These differences in the statistical average values, well beyond the experimental error, indicate that it 

is indeed a light-driven process due to the presence of the molecular motor that enables the long-distance 

displacements, which are added to the smaller distances of the thermal motion which occur in both 

illuminated and non-illuminated experiments. Thus, the remotely activated motor function is likely to be 

responsible for molecular translation. In order to test this interpretation, we compare the NR molecule 

with the NanoRoadster control molecule NC (Fig. 1d), which is the same molecule but without a motor 

unit and should therefore exhibit substantially different behaviour. 

To quantify the contribution of the motor activity to the observed molecular translation, as opposed to 

thermally driven diffusion, we calculate a hopping rate h, i.e. the number of molecules moving per second 

- similar to diffusion studies for non-motorized molecules,15,30,31 from:  

𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑡𝑡)
𝑁𝑁𝑇𝑇𝑇𝑇𝑠𝑠

= 𝑒𝑒𝑒𝑒𝑒𝑒(−ℎ𝑡𝑡) (1) 

where NTot is the total number of molecules observed, nstat(t) is the number of molecules that do not 

move over a time interval t (Table S2). Figure 4a shows NR hopping rates for three different sample 
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temperatures: 6 K, 156 K and 161 K (elevated temperatures were chosen so that diffusion occurs on a 

timescale accessible to STM, 800 molecules analyzed).  

 

 

At 6 K no diffusion is observed and hence h is zero for all cases. At 156 K the hopping rates are the 

same, within error, for the different laser illuminations. Raising the substrate temperature to 161 K results 

in an increase in h, irrespective of the laser wavelength, also in the experiment without light. The 

 

Figure 4. Statistical analysis of the molecular translation. a and b, Hopping rate for NR and NC, 
respectively, as obtained from Poisson statistics. c and d, D* for NR and NC, respectively, under 
different laser illumination conditions. D* increases for NR at 161 K when illuminated by the 355 nm 
and 266 nm lasers. e and f, Enhancement of D* for NR and NC, respectively, under different 
conditions. Data shown here represents the characterisation of over 1,000 molecules. 
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temperature-dependent results in Fig. 4a demonstrate that the number of moving NR molecules is only 

affected by the temperature but not by illumination, and the same is valid for NC (Fig. 4b). Hence, 

incident photons do not increase the likelihood of any one molecule moving and we therefore exclude 

that heating of the sample by the laser plays a role. 

Importantly, the hopping rate h concerns only the number of displaced molecules and contains no 

information on the distance moved by the molecules. To gain information on the translation distance, the 

tracer diffusion D* is calculated from:15,31,32 

𝐷𝐷∗ = 〈(∆𝑟𝑟)2〉
4𝑡𝑡

   (2) 

which is valid for two-dimensional diffusion on a Cu(111) surface.32  〈(∆𝑟𝑟)2〉 is the mean square 

displacement of the moving molecules (Table S3). Figure 4c shows D* for NR with different laser 

sources and at different temperatures (Fig. 4d for NC in comparison). At 6 K no molecular diffusion is 

observed and D* is zero in all cases, while at 156 K finite D* values are measured, but almost no 

difference is found between the different illumination experiments. This finding implies that NR 

diffusion is not influenced substantially by laser illumination at 156 K, and that the observed diffusion is 

predominantly thermal in origin.  

The major finding is that with the substrate held at 161 K there is an enhancement in D* when the 

sample is illuminated with either of the two UV lasers at 355 nm or 266 nm as compared to the 635 nm 

and no-illumination experiments. This effect is highlighted in Fig. 4e where 𝐷𝐷𝐸𝐸𝑛𝑛ℎ𝑎𝑎𝑛𝑛𝑎𝑎𝑎𝑎∗  [𝐷𝐷𝐸𝐸𝑛𝑛ℎ𝑎𝑎𝑛𝑛𝑎𝑎𝑎𝑎∗ =

𝐷𝐷∗(𝑤𝑤𝑤𝑤𝑡𝑡ℎ 𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒𝑟𝑟)/𝐷𝐷∗(𝑤𝑤𝑤𝑤𝑡𝑡ℎ𝑜𝑜𝑜𝑜𝑡𝑡 𝑙𝑙𝑙𝑙𝑙𝑙𝑒𝑒𝑟𝑟)], the enhancement factor of D* caused by laser illumination, is 

calculated. Notably, there is a threefold enhancement in D* for NR molecules if they are illuminated 

with the 355 nm laser and a twofold enhancement for the 266 nm laser. The increase in D* for the 635 
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nm laser is noticeably less pronounced. Importantly, NC lacks any such enhancement effect as the 

illumination of these molecules does not cause an increase of D*, and 𝐷𝐷𝐸𝐸𝑛𝑛ℎ𝑎𝑎𝑛𝑛𝑎𝑎𝑎𝑎∗  is ~1 in all cases (Fig. 

4f). Note that the difference in thermal diffusion between the two species is ‘normalized’ by considering 

the enhancement factor of the tracer diffusion (Fig. 4e and 4f), and therefore the difference in thermal 

diffusion does not preclude the use of NC as a control molecule. Hence, this result shows clear evidence 

that individual molecular motors are remotely activated by light. Moreover, it turns out that the efficiency 

of the photo-sensitive motor can be tuned via the wavelength. 

While these observations clearly show that the enhanced diffusion is directly related to the motor unit 

in the molecular structure, the exact mechanism is difficult to elucidate. In analogy to solution-phase 

measurements we can consider a mode of operation whereby the motor unit rotates in one direction only 

(as sketched in Fig.1e). The motor could also, in principle, flip back and forth between two isomers (e.g. 

the upper two states in Fig.1b) and therefore not complete the full cycle, at least sometimes. However, 

this second option seems unlikely as it does not correspond to the chemical characteristics of the motor 

unit, with very different rates for transcis and cistrans isomerization, respectively (in particular 

lower rates for the latter33), due to the diasteriomeric transition states between the two. The proposed 

mechanism is therefore in concert with the well-studied unidirectional rotation of the Feringa motor, 

which we use.11–14 

For the azimuthal orientation of the molecules on the surface a preference of the ‘wheel-wheel axle’ 

at multiples of 60° relative to the Cu(111) surface is found (Fig. 5a), reflecting arrangement with the 

underlying crystal directions. It should be noted that only a rather small fraction of molecules (between 

about 5% and 20%) changed their orientations (Fig. 5c) during translation. The fraction of molecules that 
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change their azimuthal orientation during lateral displacement (Fig. 5c) is approximately the same small 

percentage for both species, NR and NC, and for all cases, without light and with light of different 

wavelengths, meaning that both molecules preferentially maintain their translational orientation during 

motion. Such behavior has been observed for non-motorized molecules on Cu(111) where a preferred 

adsorption geometry hinders changes in azimuthal orientation.34 

 

 

 Wavelength sensitivity of the molecular motor. The pronounced wavelength sensitivity of the NR 

molecule to the UV photons (Fig.4e) can be directly related to the molecular motor. UV-vis absorption 

spectra in solution (i.e. without a surface) for the motor unit only (red spectra in Fig. 6) exhibit a strong 

absorbance between 340 nm and 400 nm, which is attributed to a 𝜋𝜋 → 𝜋𝜋∗ transition due to the absorption 

of a photon by the double bond connecting the stator to the rotor in the motor unit. Importantly, this band 

 

Figure 5. Azimuthal orientation of NR on Cu(111).  a, Histogram showing adsorption angle made by 
the ‘wheel-wheel axle’ of NR relative to a Cu(111) symmetry direction. Molecules preferentially 
orientate at multiples of 60o, reflecting the substrate symmetry. b, Difference image showing 
translation and rotation of NR molecules (161 K, 355 nm illumination). Before and after positions of 
a rotated molecule are marked. Scale bar 10 nm. c, Percentage of NR and NC molecules which rotated 
after laser illumination on Cu(111) at 161 K and 146 K, respectively. 
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is absent in the axle molecule (black spectra in Fig. 6). Hence, the 355 nm laser used in the surface 

experiments causes photoexcitation of the motor unit, in agreement with its function.  

 

 

Figure 6. UV-vis spectra (in solution) and chemical structures for NanoRoadster and molecular 
precursors named “motor” and “axle” (as indicated). All spectra are normalized to the maximum 
intensity and shifted vertically for better visibility (absorption intensities are zero at wavelengths >500 
nm for all spectra). The chemical structure of the NanoRoadster (NR) molecules is presented in Fig. 
1c. 

 

While all molecular compounds absorb the UV laser wavelength of 266 nm, it is important to note that 

there is no absorption band at 635 nm wavelength, which corresponds to the third laser used in the 

experiments. This is in agreement with our observation that the diffusion of molecules on the surface is 

strongly enhanced for the 266 nm and 355 nm wavelengths. Consequently in the case where photo-

isomerization of the molecular motor is coupled to diffusion, only photons with an energy suitable to 

induce double bond isomerization of the motor should lead to large enhancements in the molecular 

diffusion, which is exactly what is observed in the photo-selective increase of D* (Fig. 4e). Moreover, 

these spectra indicate that it is indeed the presence of the motor unit, and no other part, of the molecule 
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which is responsible for the translation, because the molecular ‘axle’ and ‘wheels’ do not absorb above 

320 nm (Fig. 6).  

A small enhancement in the diffusion is also observed for 635 nm illumination, which does not fit to 

the absorption properties of the motor unit in solution (Fig.6). However, it is important that this 

enhancement of diffusion is also caused by the molecular motor because – equivalently to the 266 nm 

and 355 nm cases – it does not occur in the absence of the motor unit (Fig.4f). We tentatively assign the 

small D* increase for the 635 nm laser to a surface-mediated isomerization step that occurs via electronic 

excitation of the d-electrons of the Cu substrate and at smaller photon energies than those required in 

solution. Such a mechanism that has been reported for isomerization of an azobenzene derivative on a 

metal surface (with 560 nm illumination instead of 340 nm).35 

It should be noted that the surface can play an important role for functional molecules adsorbed on 

surfaces, in comparison with the same molecules in solution.36 However, this influence depends strongly 

on the precise molecule-surface interaction as for example the isomerization of azobenzene derivatives 

on chemically and geometrically different substrates.37 It appears from our observations that in the 

present case the metallic surface does not, or at least not completely, hinder the effect of the motor in 

NR, in agreement with the tip-induced translational movement of a related molecule functionalized with 

similar motors on a supporting metallic substrate.18   

The exact nature of the induced translational motion of the NR under laser illumination which lead to 

the observed enhancement in diffusion is not captured within our experiments, but is potentially driven 

by one of two mechanisms: (1) The cyclic changes in the conformation of the motor (previously termed 

a ‘paddlewheel-like motion’26) may give rise to different preferential adsorption sites resulting in 
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translational motion. (2) The different photo-induced conformations of the motor may exhibit different 

diffusion properties (which are not accessible under non-illuminated conditions) leading to an increase 

in the observed diffusion. Either of these mechanisms could give rise to the observed enhanced diffusion, 

and as such enhancement is not observed in the absence of the motor (NC molecule) we may attribute 

this effect to an inherent property of the motor.  

 

CONCLUSIONS 

Our results demonstrate that the remote operation of a motor-functionalized molecule on a surface can 

be used to induce translation, as evidenced by enhanced diffusion, by combining light with sufficient 

activation temperatures. We emphasize the importance of the critical temperature, which we propose 

relates to the thermal energy required for the helical inversion step of the motor rotation. If this step is 

not enabled, isomerization may occur but not lead to a rotation of the molecular motor and thus lateral 

motion on the surface is suppressed, as seen at 6 K. However, if the temperature of the surface is too high 

then thermal energy dominates the process and random Brownian motion will occur.38 We find that the 

temperature for helical inversion, and consequently light-induced translation, of NR is similar to that 

required for thermal diffusion without light. This can be rationalized if one compares typical values for 

these processes. On the one hand, the activation barrier for helix inversion in our molecules has been 

determined (in solution) to be between 0.34 eV and 0.36 eV.11 The molecular diffusion barrier on the 

other hand is for instance 0.15 eV for benzenethiol on Cu(111)39 or between 0.41 eV and 0.44 eV for 

azobenzene on Cu(110).40 Note that benzenethiol is rather small and the diffusion barrier therefore 

presumably lower than in our study. Although the precise barrier height changes with the specific 
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molecule-surface interaction, these values confirm that typical activation barriers for molecular diffusion 

on low-index copper surfaces are within about the same range as the activation energy for helix inversion. 

It is therefore important to accurately control both heat and light for such motor-functionalized 

molecules, in the same way that biological systems only function in a relatively small range of 

temperatures and pH values.41 Our results demonstrate that the remote operation of a motor-

functionalized molecule on a surface can be used to induce translation by combining light with sufficient 

activation temperatures. These findings open the possibility of using light to actuate large arrays of 

remotely powered molecular machines with concerted motions across surfaces where the demonstrated 

photo-sensitivity should be of great interest for further motorized molecules. 

 

EXPERIMENTAL METHODS 

STM set-up and methodology. Scanning tunneling microscopy (STM) experiments were performed 

under ultrahigh vacuum (UHV) conditions (base pressure 10-11 mbar), with a separate chamber (base 

pressure 10-10 mbar) used for the preparation of the sample. A Cu(111) sample (MaTeck GmbH) was 

cleaned by argon ion sputtering (1.5 keV, Isample = ~4.5 μA, PAr = ~5×10-6 mbar, 20 min) and subsequent 

annealing at ~500 ºC for 10 minutes. STM images were obtained over a range of temperatures (<6 K; 

liquid He cooled, and from 140 K to 200 K; liquid N2 cooled with the sample counter-heated; STM data 

were acquired for sample temperatures of 6 K, 141 K, 146 K, 156 K, and 161 K), with an Omicron LT-

STM and Nanonis Electronics. The STM was operated in constant current mode and electrochemically 

etched tungsten tips were used, which were covered with copper from many routine indentations into the 

surface for tip optimization. NR and NC were deposited from a Knudsen-cell type evaporator (Kentax 
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GmbH) at 220 ºC and 207 ºC, respectively, onto a Cu(111) substrate held at room temperature. Note that 

the four adamantyl ‘wheeled’ variant of the NR molecule was found to be thermally labile at the required 

sublimation temperatures and hence could not be deposited without considerable fragmentation. 

Laser illumination set-up. Laser illumination was performed in situ, with optical access to the sample 

for both incident and reflected beams (angle of incidence approximately 70o to the surface normal) 

through CaF windows. In all cases laser illumination was conducted with the STM tip retracted (by 

several micrometres) and for a duration of 1 hour. Laser parameters: (1) 635 nm, CW, 4.5 mW, ~0.01 

cm2 spot size. (2) 355 nm, pulsed – 1 ns, rep. rate 10 kHz, 40.3 Mw, ~0.06 cm2 spot size. (3) 266 nm, 

pulsed – 1 ns, rep. rate 10 kHz, 7.3 mW, ~0.01 cm2 spot size. All lasers are s-polarized with respect to 

the surface. 
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