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Abstract:  5 

Tens of thousands of time-loss injuries and deaths are annually reported from the 6 

construction sector, and a high percentage of them are due to the workers being struck by 7 

mobile equipment on sites. In order to address this site safety issue, it is necessary to 8 

provide proactive warning systems. One critical part in such systems is to locate the 9 

current positions of onsite workers and mobile equipment and also predict their future 10 

positions to prevent immediate collisions. This paper proposes novel Kalman filters for 11 

predicting the movements of the workers and mobile equipment on the construction sites. 12 

The filters take the positions of the equipment and workers estimated from multiple video 13 

cameras as input, and output the corresponding predictions on their future positions. 14 

Moreover, the filters could adjust their predictions based on the worker or equipment's 15 

previous movements. The effectiveness of the filters has been tested with real site videos 16 

and the results show the high prediction accuracy of the filters. 17 
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INTRODUCTION 20 

The construction site is typically dirty, disordered, and cluttered with different kinds of 21 

resources. Also, it is characterized by a constantly changing environment with the 22 

movement and interactions between workers and equipment. In such a chaotic and 23 

dynamic place, an incredibly high number of construction activities take place, which 24 

easily lead to construction accidents and work-related injuries and deaths. For example, 25 

in Canada, around 27,000 accepted time-loss injuries and 200 fatalities were reported in 26 

the construction sector every year from 2010 to 2012, according to the Association of 27 

Workers’ Compensation Boards of Canada [1, 2]. Similarly, the U.S. Bureau of Labor 28 

Statistics noted that 183,000 construction workers were injured, and 775 workers died on 29 

the job with a fatal work injury rate of 9.5 deaths per 100,000 fulltime equivalent workers 30 

[3]. The large number of injuries and deaths makes the construction sector one of the 31 

most dangerous job sectors over the world. 32 

     Many of construction accidents are struck-by accidents, i.e. the workers being struck 33 

by mobile equipment on the construction sites [4]. The stuck-by accidents could occur, 34 

even when the workers wear high visibility clothing on the sites as required by existing 35 

safety codes and standards. In 2012, 156 fatalities due to the struck-by accidents were 36 

reported by the U.S. private construction industry [5]. In British Columbia, there were a 37 

total of 6,622 claims related to the struck-by accidents from 2006 to 2008, which 38 

represented 22% of claim volumes and 14% of claim costs resulting from construction 39 

accidents [6]. The situation becomes even worse in road construction projects, where 40 

workers might be struck by mobile equipment for construction and maintenance as well 41 

as by cars, vans, and motorcycles. 442 fatal injuries (53 percent) on road construction 42 
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sites during the 2003 - 2010 periods were due to the workers being struck by vehicles or 43 

mobile equipment [3].  44 

     In order to address this site safety issue, several research studies have been proposed. 45 

They focused on the use of remote locating and tracking techniques to perform simple 46 

equipment-worker close proximity alerts. These techniques include but are not limited to 47 

Radio Frequency Identification (RFID), Ultra Wideband (UWB), Global Positioning 48 

Systems (GPS) [7]. They require remote sensors to be physically installed on the 49 

equipment and workers, so that the signals sent from the sensors could be read and 50 

interpreted. This way, the positions of the equipment and workers on the site could be 51 

located and tracked.  52 

     Compared with existing research studies, this paper relies on computer vision 53 

techniques to estimate the positions of construction workers and equipment. Moreover, 54 

the movements of the workers and equipment are predicted to get their possible positions 55 

in a short period of time. This way, the potential collisions between the workers and 56 

equipment could be avoided in a proactive way. In the paper, both position estimation 57 

and prediction parts have been integrated into one framework. Under the framework, the 58 

current positions of the equipment and workers are first estimated with the live videos 59 

collected by two or more cameras on the construction site. These positions are then input 60 

to a Kalman filter. In general, the Kalman filter is an optimal estimator that is able to 61 

infer parameters of interest from indirect, inaccurate and uncertain observations [8]. Here, 62 

the filter is specially designed to model motions (i.e. positions, velocities, and 63 

accelerations) of equipment and workers based on a series of position measurements, 64 

including noise and other inaccuracies, observed over time. The designed filter adjusts its 65 



4 

prediction parameters with the positions newly input as well as the history of the 66 

positions estimated previously. This way, the predictions for the positions of the 67 

equipment and workers on the site could be made.  68 

     The framework in this paper does not require the installation of any remote sensors on 69 

the equipment and workers. This makes the method affordable at most construction sites, 70 

especially the large-scale ones, where hundreds of construction workers and equipment 71 

could be involved. Also, the method could be used in the case when the installation of 72 

physical sensors is not applicable. For example, in a highway construction project, the 73 

workers on the site might be struck by traffic vehicles, such as cars, vans, and 74 

motorcycles. However, it is difficult to install the physical sensors on the traffic vehicles 75 

and track their positions for the purpose of issuing the close proximity safety warnings to 76 

the workers.  77 

     The effectiveness of the proposed framework has been tested on real site videos 78 

collected by two cameras. The results showed that the average estimation errors were 79 

0.26 meters and 0.28 meters for the movement of the worker and vehicle, while the 80 

corresponding prediction errors were 0.38 meters and 0.18 meters. The longer the 81 

predictions were made, the more accuracy the predictions could reach. The low 82 

estimation and prediction errors during the tests indicated that the proposed method in 83 

this paper could approximately estimate and predict the movement of the equipment and 84 

workers in advance. The predictions could be used to reduce the chance of struck-by 85 

accidents and therefore has the potential to enhance construction site safety. The 86 

enhancement of on-site construction safety will bring several benefits. For example, it 87 

could improve the workers' morale and job satisfactions, and increase their productivity. 88 
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Also, it could reduce project costs directly and indirectly, especially considering that the 89 

average cost per case of death or injury could reach tens of thousands of dollars in the 90 

construction industry. The prevention of one death or injury per day might lead to the 91 

cost savings of millions of dollars per year.  92 

REMOTE LOCATING AND TRACKING FOR SITE SAFETY ENHANCEMENT 93 

Construction researchers and safety professionals believe that existing site safety 94 

regulations are not sufficient, considering the unsatisfactory safety records in the 95 

construction industry. Therefore, it is necessary to add an extra level of safety measures 96 

to protect construction workers [9]. One of the proactive safety measures is to provide 97 

equipment-workers close proximity warnings. It means that a safety warning will be 98 

issued to an equipment operator for his/her attention, when on-foot workers are near-by 99 

[4, 10]. The close proximity warnings were expected to reduce the accidents that 100 

happened in the blind areas of equipment, as investigated by Ruff [7]. Another proactive 101 

safety measure is to create virtual fences. Typically, the virtual fences are created around 102 

known dangerous areas on the job site. If workers are approaching the areas, alarms will 103 

be issued to alert them [11 - 13].  104 

     In order to provide both proactive safety measures, it is necessary to remotely locate 105 

and track on-foot workers and mobile equipment on the construction sites. So far, several 106 

remote sensing techniques have been investigated, including GPS, RFID, UWB, etc. GPS 107 

is an outdoor satellite-based worldwide navigation system, which relies on a constellation 108 

of Earth orbiting satellites to determine the positions of GPS receivers [14]. RFID is an 109 

automatic identification technology. It is mainly used for the identification of objects on 110 

the site, but could also approximately locate them based on the radio waves 111 
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communication between the RFID tags and readers [15]. UWB is a short pulse radio 112 

frequency waveform, which could provide accurate object location information based on 113 

the time-difference-of-arrival measurements [16, 17].  114 

     These remote sensing techniques mentioned above all require attaching physical 115 

signal readers and tags on the equipment and workers. For example, in the method of 116 

Marks and Teizer [4], they have an in-cab device for mobile equipment and personal 117 

device for ground workers, which contain antenna, reader, chip, battery, etc. Similarly, 118 

Ruff had the GPS antennas installed on the surface mining equipment in order to locate 119 

the equipment and evaluate its GPS-based proximity warnings [7]. If the workers and 120 

equipment need to be physically tagged, it would lead to a significant amount of 121 

additional costs for the general contractors, although the price of the tags and sensors 122 

keeps decreasing. In addition, tagging construction workers could be opposed by the 123 

unions due to the associated privacy issues and health concerns. Moreover, in a highway 124 

construction project, the workers need to be protected from traffic vehicles, such as cars, 125 

vans, and motorcycles, but it is impossible to tag, locate and track those traffic vehicles 126 

for providing the proximity warnings.  127 

     Compared with the remote sensing techniques with physical signal sensors, readers, 128 

and tags, the vision techniques could also provide the potentials to remotely locate and 129 

track the workers and equipment on the construction site. One of well-known techniques 130 

to provide three dimensional (3D) position information is referred to as stereo vision, 131 

which reconstructs the 3D position of an object through the camera calibration and 132 

triangulation principles [18]. So far, several research studies based on stereo vision have 133 

been introduced and applied in the construction field, but most of them focused on the 134 
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reconstruction of static scenes. For example, Son and Kim used a stereo vision system to 135 

acquire and recognize 3D structural components [19]. Rashidi et al. relied on stereo 136 

vision to generate dense depth maps for the transportation infrastructure, such as highway 137 

bridges [20]. Fathi and Brilakis proposed a novel method for creating as-built models of 138 

sheet metal roof panels to facilitate the digital roof fabrication process with the aid of 139 

stereo vision [21].  140 

     As for enhancing site safety, Steele et al. once mount a stereo camera on the rear of an 141 

off-highway dump truck [22]. The stereo camera helped the truck driver to identify 142 

possible obstacles on the mining site [7]. Han and Lee analyzed workers' unsafe actions 143 

that may cause incidents (e.g. fall from a ladder due to leaning too far to one side or 144 

reaching too far overhead) from the videos captured by stereo cameras [23]. Weerasinghe 145 

and Ruwanpura developed a conceptual model, Automated Multiple Objects Tracking 146 

System, to track construction objects, such as workers and tools, with fixed video 147 

surveillance cameras [24].  148 

     One main benefit of using vision techniques to locate and track construction workers 149 

and equipment is that the workers and equipment do not have to be physically tagged. 150 

Therefore, several issues related to physically tagging the workers and equipment in the 151 

remote sensing techniques could be addressed. Also, it becomes more and more common 152 

to place the cameras around the site to capture job site activities and record project 153 

construction progress [25]. The cameras could take pictures or videos with a high 154 

resolution and wide field of view. Therefore, the workers equipment, and even non 155 

project-related entities, such as traffic vehicles in highway construction projects, could be 156 

remotely monitored with a limited number of cameras.  157 
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OBJECTIVE AND SCOPE 158 

The ultimate goal of this ongoing research work is to investigate the feasibility of 159 

creating a proactive, real-time safety alert system with the live video frames from 160 

construction cameras. In order to achieve this goal, it is necessary to estimate the current 161 

3D positions of the workers and equipment. Also, it is important to predict their future 162 

movements. Consider the recent writers' work on estimating 3D positions of the workers 163 

and equipment [26], which will be briefly described later. The specific focus of this paper 164 

is placed on evaluating whether their future positions could be reasonably predicted based 165 

on their previous estimated positions. If the tests show the prediction results are also 166 

promising, both positions estimation and prediction together will build a solid foundation 167 

for creating a vision-based proactive, real-time safety alert system to provide equipment-168 

workers close proximity warnings and creating virtual fences on the construction sites.   169 

     The work presented in this paper does not intend to enhance the visibility of onsite 170 

construction cameras. It is assumed to function when the videos collected by the cameras 171 

are clear with acceptable quality and a limited degree of occlusions. The occlusions could 172 

be one of the major obstacles that affect the performance of vision techniques. However, 173 

this issue could be addressed or at least alleviated by installing the cameras at a certain 174 

level of height and carefully selecting the camera placements on the construction sites. 175 

      In addition, this research work does not plan to replace the role of onsite inspectors, 176 

such as construction site health and safety management guarantors in Quebec. Those 177 

inspectors are responsible to identify and address potential onsite safety issues, if there 178 

are any. Therefore, this research work is not to replace them but facilitate their onsite 179 
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work by helping them monitor construction workers and equipment, and predict their 180 

motions with real-time feedbacks. 181 

PROPOSED FRAMEWORK 182 

In order to achieve the above-mentioned objective, a novel vision-based framework has 183 

been proposed here. The framework includes two main steps, as illustrated in Figure 1. 184 

Under the framework, two or more construction cameras are placed at a construction site 185 

to monitor job site activities from different angles. The site videos captured by the 186 

cameras are transferred to a workstation for analysis. There, the onsite positions of the 187 

workers and equipment in the videos are estimated using the triangulation principle. 188 

Based on the estimated positions, the future positions of the workers and equipment on 189 

the site are predicted through the Kalman filtering [27]. Moreover, the prediction 190 

parameters in the Kalman filter are frequently updated by comparing its predictions with 191 

the onsite positions estimated later.  192 

<Insert Figure 1 here> 193 

Positions Estimation from Multi-View Videos 194 

The estimation of the 3D positions from videos mainly follows the procedure proposed 195 

by Park et al. [26], which includes 1) camera calibration, 2) pose estimation, 3) visual 196 

detection and tracking and 4) triangulation (Figure 2). Both camera calibration and pose 197 

estimation are performed offline, while the work of visual detection and tracking and 198 

triangulation are done online. When the cameras are installed on the construction site, it 199 

is necessary to make sure they have partially overlapping views of the site. The cameras 200 

are then calibrated using Bouguet’s calibration toolbox [28] to calculate their intrinsic 201 

parameters (focal length, lens distortion, etc.). Also, the external orientation and position 202 



10 

of one camera in relation to another are estimated and represented as a rotation matrix (R) 203 

plus a translation vector (t). Moreover, the essential matrix is computed using the 204 

normalized eight-point algorithm [18]. The points required in the algorithm are extracted 205 

and matched with the Scale-Invariant Feature Transform (SIFT) [29] combined with the 206 

Maximum a Posteriori Sample Consensus (MAPSAC) [30] to remove potential feature 207 

outliers. 208 

<Insert Figure 2 here> 209 

     After the camera calibration and pose estimation, the 3D positions of the equipment 210 

and workers on the construction site could be automatically estimated through visual 211 

detection, tracking, and triangulation. First, the construction workers and equipment are 212 

detected based on their respective visual features. The detection results then initialize a 213 

kernel-based 2D tracking algorithm [31], which could track the detected workers and 214 

equipment subsequently in each site video frame. The video-based tracking results 215 

produce 2D centroids in each video frame, which indicate the positions of the workers 216 

and equipment in the videos. The 2D centroids are combined with the camera intrinsic 217 

and extrinsic parameters through the triangulation. This way, the 3D positions of the 218 

workers and equipment on the construction site could be estimated. 219 

Positions Prediction through the Kalman Filtering 220 

The measured 3D positions are fed into a Kalman filter to predict the positions of the 221 

workers and equipment at the next moment. In order to prepare the filter, first, the state of 222 

the worker or equipment at time step t  is expressed as a vector (Eq. 1), which includes 223 

the positions ),,( zyx , velocities ),,( zyx  , and accelerations ),,( zyx  along the three 224 
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coordinate axes. Then, the dynamics of the worker's or equipment's motion on the 225 

construction site is modeled as a time-invariant system (Eq. 2)  226 
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where tS is the system state at step t and tW is a white noise process with power spectral 229 

density. Suppose t is the time step size of two consecutive measurements. This way, the 230 

state transition matrix tA  could be defined in Eq. 3. Meanwhile, the measurement matrix 231 

is correspondingly set (Eq. 4), since the only measurement available is the 3D positions 232 

of the worker or equipment without any information of the velocities and accelerations.   233 
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     After the preparation of the filter, the next state of the system is predicted by the filter 236 

based on the previous measurements and the state transition matrix. Also, the prediction 237 

results are compared with the real measurements at the next moment. The difference 238 

between the two is further used to update the filter for the sake of correcting its 239 

predictions in the future. The prediction and update processes could be described with the 240 

following equations (Eq. 5 - 10) (Welch and Bishop, 1997).  241 

 Prediction:  242 

 1
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where 


t
S and 

t
S are the predicted and estimated mean of system states before and after 250 

seeing the real measurements; 


t
P and 

t
P are the predicted and estimated covariance of 251 

the system states before and after seeing the real measurements; Q is the process noise 252 

covariance; R is the measurement noise covariance; tv is the measurement residual on 253 

time step t ; 
t

K is defined as the filter gain, which indicates how much corrections should 254 

be made on time step t . 255 
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     Figure 3 illustrates the overall process for the position prediction and update with the 256 

Kalman filtering. Specifically, Eq. 5 and 6 are predictor equations. They are used to 257 

compute the predicted mean and error covariance of the motion system to obtain the 258 

priori position estimates for the next time step. Eq. 7 – 10 are corrector equations. They 259 

are responsible for obtaining a posteriori position estimate, when the new position 260 

measurement is incorporated. The first step during the update is to compute the Kalman 261 

gain (Eq. 7). Then, the actual measurement of the motion system is made and 262 

incorporated to generate a posteriori estimate for the system (Eq. 8 and 9). The final step 263 

is to estimate a posteriori error covariance (Eq. 10). The process for the prediction and 264 

update is repeated with the previous posterior estimates to predict the new priori 265 

estimates in a recursive nature.  266 

<Insert Figure 3 here> 267 

EXPERIMENTS AND RESULTS 268 

The methods in the proposed framework were tested with the videos recorded by two 269 

high-definition (HD) camcorders, Canon VISXIAHF S100, under the resolution of 1,920 270 

× 1,080 pixels at 30 frames per second. The camcorders were located to collect the video 271 

frames of the construction site, where a facility was to be built for indoor football 272 

practices. The site was managed by Barton Malow Company.  In order to get the stereo 273 

videos, the cameras were placed separately at the distance of 8.3 meters apart from each 274 

other. The relative positions between the cameras, worker, and vehicle have been 275 

illustrated in Figure 4.  276 

<Insert Figure 4 here> 277 
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     Figure 5 shows the examples of the video frames collected by the two cameras. These 278 

video frames recorded the movement of a worker and a vehicle on the construction site. 279 

Based on the video frames, the 3D positions of the worker and vehicle were estimated. 280 

These positions were compared with the position information collected by a total station 281 

to determine the estimation accuracy. The overall effectiveness of estimating the 3D 282 

positions of the worker and vehicle has been summarized in Table 1. It was found the 283 

average errors of estimating the 3D positions of a worker and vehicle from two video 284 

cameras were 0.26 meters and 0.28 meters with the standard deviations of 0.19 meters 285 

and 0.19 meters respectively. The maximum estimation errors were limited to 1.05 286 

meters for a worker and 0.90 meters for a vehicle. More details about the experiments 287 

and results could be found in the recent work of Park et al. [26]. 288 

<Insert Figure 5 here> 289 

<Insert Table 1 > 290 

      The positions prediction work took the 3D positions measured from the videos before 291 

as input and produced the predictions at each time step as output. Figure 6 and 7 292 

compared the 3D positions measurements and predictions for the movement of the 293 

construction worker and vehicle in 2D views (X-Z plane). The numerical comparison 294 

results have been summarized in Table 2 and 3. Compared with the measurements, it was 295 

found that the mean error in predicting the movement of the worker was 0.32 meters with 296 

the standard deviation of 2.38 meters, and the mean error in predicting the movement of 297 

the vehicle was 0.18 meters with the standard deviation of 1.08 meters. More specifically, 298 

the mean errors in X-, Y-, and Z- directions were 0.06 meters, 0.08 meters, and 0.28 299 

meters with the standard deviations of 0.03 meters, 0.70 meters, and 2.28 meters, when 300 
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predicting the worker's movement. The mean errors in X-, Y-, and Z- directions were 301 

0.06 meters, 0.08 meters, and 0.28 meters with the standard deviations of 0.04 meters, 302 

0.02 meters, and 0.16 meters, when predicting the vehicle's movement.  303 

<Insert Figure 6 here> 304 

<Insert Figure 7 here> 305 

<Insert Table 2 here> 306 

<Insert Table 3 here> 307 

     The large prediction errors were typically made at the initial prediction stage. For 308 

example, it was noted in Table 2 that the maximum error from the first 90 predictions 309 

was 55.91 meters, and the maximum prediction errors in Y-, and Z- directions could 310 

reach 16.36 and 53.44 meters, when predicting the worker's movement. Similarly, when 311 

predicting the vehicle's movement, the maximum errors from the first 90 predictions was 312 

32.61 meters, and the maximum prediction errors in Y-, and Z- directions could reach 313 

2.88 and 32.48 meters. This is mainly because the designed Kalman filter did not have 314 

the sufficient "prior knowledge" of the movement of the workers and/or equipment to 315 

make accurate predictions. 316 

     The "prior knowledge" could be automatically accumulated by the filter. During the 317 

tests, the filter updated its parameters through identifying and correcting its previous 318 

prediction mistakes. This way, the knowledge to make accurate predictions was learned. 319 

Typically, the learning process was done in a fast way. Consider the cameras captured 30 320 

video frames per second (FPS). It means that it was possible to make 30 measurements in 321 

one second. Therefore, the initial 90 predictions could be done to cover the movement of 322 

the worker or vehicle in their initial 3 seconds. 323 
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     When the sufficient "prior knowledge" has been obtained, the predictions made by the 324 

filter reached a reasonable accuracy. As illustrated in Table 2, the maximum prediction 325 

errors in X-, Y- and Z- directions were limited to 0.15 meters, 0.05 meters, and 0.20 326 

meters for predicting the worker's movement, if the first 90 predictions were ignored. 327 

Correspondingly, the maximum error in 3D was reduced to be 0.22 meters. As for 328 

predicting the vehicle's movement, the maximum errors of the movement perditions in X-, 329 

Y- and Z- directions were limited to 0.25 meters, 0.09 meters, and 0.56 meters, and the 330 

maximum error in 3D was 0.56 meters (Table 3).  331 

As illustrated in Figure 4, the cameras were set up about 30 ~ 40 meters away from 332 

the worker. When the measurements and predictions are made at 30 frames per second 333 

(fps) by default, the prediction error could reach 0.02 meters after initial 90 predictions. 334 

The prediction error is increased with the reduction of the frequency for the 335 

measurements and predictions. Figure 8 showed that  the errors for predicting worker’s 336 

movement would increase to 0.44 meters, 0.73 meters, and 1.58 meters, when the 337 

measurements and predictions are made every 0.5, 1, and 1.5 seconds. Similar findings 338 

were also noted when predicting the movement of the vehicle in the tests. 339 

<Insert Figure 8 here> 340 

CONCLUSIONS AND FUTURE WORK 341 

This paper designed Kalman filters to predict the future positions of onsite workers and 342 

mobile equipment. The predictions were made based on the current positions of the 343 

workers and equipment on the sites and also their previous movement records. The 344 

prediction results could indicate the movements of the workers and equipment in a short 345 

period of time from the current moment. This information is useful to create a proactive 346 
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warning system to prevent immediate potential collisions on the construction site and 347 

therefore enhance construction site safety.  348 

     The Kalman filters designed in the paper has been tested with real site videos. The test 349 

results showed that the position predictions made by the filters could reflect the real 350 

movement of the worker and equipment. Specifically, the average errors in predicting the 351 

worker's and vehicle's movements could reach 0.38 meters and 0.18 meters. More 352 

accurate predictions could be achieved, when the Kalman filter got sufficient knowledge 353 

from its previous prediction errors. For example, the average prediction errors for the 354 

worker's and vehicle's movements could be reduced to 0.10 meters and 0.11 meters, when 355 

the first 90 predictions within approximately 3 seconds were ignored. The high prediction 356 

accuracy indicated the effectiveness of the Kalman filters designed in this paper. Future 357 

work will focus on creating a pro-active collision warning system based on the work 358 

presented in this paper. 359 

Future work will be focused on two aspects. First, more experiments will be 360 

performed to test the tolerance of the predictions made by the work in this paper on 361 

various motion routes. Also, a pro-active collision warning system will be developed at 362 

construction jobsites to check the cost effectiveness of implementing the system in 363 

construction projects. The authors have been working with the local industry to create a 364 

multi-camera environment on a construction site in Montreal. The site will be used as a 365 

test bed to implement the collision warning system. Compared with existing safety 366 

enhancement research studies with the reliance on remote sensing techniques, the system 367 

relies on the videos remotely captured by high-definition cameras. It is not necessary to 368 
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physically install or put any sensors or tags on the workers and equipment, which is 369 

supposed to make the system more affordable.    370 
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Table 1: Errors of Estimating 3D Positions using Stereo Vision System 

Object Type 
Error (m) 

Max Mean Std. 

Worker 1.05 0.26 0.19 

Vehicle 0.90 0.28 0.19 

 

 

 

 

 



Table 2: Errors in Predicted 3D Positions in Worker Movement 

Errors (m) 
Initial 90 predictions Remaining predictions All 

Max Min Mean Std. Max Min Mean Std. Mean Std. 

X-Direction 0.16  0.00  0.06  0.04  0.15  0.00  0.06  0.03  0.06  0.03  

Y-Direction 16.36  0.01  0.46  1.80  0.05  0.00  0.01  0.01  0.08  0.70  

Z-Direction 53.46  0.01  1.50  5.88  0.20  0.00  0.08  0.05  0.28  2.28  

3D Distance 55.91  0.02  1.58  6.14  0.22  0.02  0.10  0.04  0.32  2.38  

 



Table 3: Errors in Predicted 3D Positions in Vehicle Movement 

Errors (m) 
Initial 90 predictions Remaining predictions All 

Max Min Mean Std. Max Min Mean Std. Mean Std. 

X-Direction 0.06  0.00  0.02  0.02  0.25  0.00  0.05  0.04  0.04  0.04  

Y-Direction 2.88  0.00  0.08  0.32  0.09  0.00  0.01  0.01  0.02  0.10  

Z-Direction 32.48  0.00  0.93  3.57  0.56  0.00  0.09  0.08  0.16  1.08  

3D Distance 32.61  0.02  0.93  3.58  0.56  0.01  0.11  0.09  0.18  1.08  

 

 


