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Giant and tunneling magnetoresistance are physical phenomena used for reading information in
commercial spintronic devices. The effects rely on a conserved spin current passing between a reference
and a sensing ferromagnetic electrode in a multilayer structure. Recently, we have proposed that these
fundamental spintronic effects can be realized in unconventional collinear antiferromagnets with
nonrelativistic alternating spin-momentum coupling. Here, we elaborate on the proposal by presenting
archetype model mechanisms for the giant and tunneling magnetoresistance effects in multilayers
composed of these unconventional collinear antiferromagnets. The models are based, respectively, on
anisotropic and valley-dependent forms of the alternating spin-momentum coupling. Using first-principles
calculations, we link these model mechanisms to real materials and predict an approximately 100% scale
for the effects. We point out that, besides the giant or tunneling magnetoresistance detection, the alternating
spin-momentum coupling can allow for magnetic excitation by the spin-transfer torque.
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I. INTRODUCTION

In the nonrelativistic band structure of ferromagnets, the
exchange interaction induces an energy gap between spin-
up and spin-down states, making one spin state more
populated and the other one less. This results in different
Ohmic resistivities of the majority and minority spin
channels and in spin-dependent density of states. The
former is the basis of the giant magnetoresistance
(GMR) effect in a trilayer stack comprising two ferromag-
netic metal electrodes separated by a nonmagnetic metal
spacer [1]. The different densities of states of the majority
and minority spins then govern the tunneling magneto-
resistance (TMR) in a trilayer with a tunnel barrier between
the ferromagnetic electrodes [1]. In both GMR and TMR,
the resistance of the stack depends on whether the ferro-
magnetic electrodes are magnetized parallel or antiparallel,
with typically the higher-resistance state corresponding to
the antiparallel configuration. The well-conserved spin
currents in collinear ferromagnets, enabling the GMR or

TMR readout of the magnetization reversal, can also
facilitate efficient electrical switching of the magnetization
via a spin-transfer torque (STT) [2]. The superior on-off
characteristics of the devices with STT switching and GMR
or TMR readout allowed spintronics to revolutionize the
magnetic storage and memory industry [1,3].
Conventionally, nonrelativistic spin-split bands are con-

sidered to be excluded in collinear antiferromagnets due to
the antiparallel atomic moments in the crystal [4–9]. A
characteristic example are antiferromagnets with a sym-
metry combining time reversal with space inversion, which
results in Kramers spin degeneracy of electronic bands over
the entire Brillouin zone [10]. Considering such a model
antiferromagnet, a STT mechanism was theoretically pro-
posed more than a decade ago which differs fundamentally
from STT in ferromagnets [6]. It is based on transmitting a
staggered spin polarization from one to the other anti-
ferromagnet where the spin polarization and the antiferro-
magnetic orders in the electrodes are all commensurate [6].
This is a subtle, spin-coherent quantum-interference phe-
nomenon relying on perfectly epitaxial commensurate
multilayers [6,11,12]. Similarly delicate were the proposed
GMR and TMR effects in these antiferromagnetic struc-
tures [11], which might explain why a nonrelativistic
spintronics concept based on the conventional collinear
antiferromagnets with spin-degenerate bands has not been
experimentally viable.
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Research in electrical detection and manipulation of the
antiferromagnetic order turned, instead, to reading and
writing principles based on relativistic spin-orbit coupling
phenomena [13–23]. The resulting successful demonstra-
tions of experimental memory devices, showcasing among
others the insensitivity of antiferromagnets to magnetic
fields or their ultrafast dynamics, prompted extensive
fundamental and applied research interest in antiferromag-
netic spintronics [18,24–30]. However, the realization of
antiferromagnetic counterparts of the nonrelativistic GMR,
TMR, and STT phenomena, driven by robust conserved
spin currents, remained elusive.
In this paper, we theoretically develop a GMR and

TMR concept [31] based on unconventional collinear
antiferromagnetism with a nonrelativistic alternating spin-
momentum coupling of two forms illustrated in Fig. 1. The
first form, whichwe show enables the GMR, has anisotropic
spin-polarized bands resulting in different conductivities of
the opposite spin channels despite the zero equilibrium
magnetization [32–37] [Figs. 1(a)–1(c)]. The second form,
favoring the TMR, has spin-polarized band-structure valleys

with the corresponding spin-dependent densities of
states [31] [Figs. 1(d)–1(f)].
Since the alternating spin-momentum coupling plays a

central role in our study, we first summarize its key
characteristics as emerging from recent literature [31–
36,38]. Next, we present our archetype GMR and TMR
models with the anisotropic and valley-dependent spin-
momentum couplings. We then discuss the correspondence
of these models to density-functional-theory (DFT) cal-
culations in the unconventional antiferromagnetic phases
of representative materials RuO2 [32–34,36,37] and
Mn5Si3 [31]. Based on the DFT calculations of spin-
dependent conductivities and densities of states, we predict
large magnitudes of GMR and TMR in these materials. In
the final section, we discuss GMR and TMR in the
unconventional collinear antiferromagnets from a broader
materials perspective, focusing on the general symmetry
criteria. We conclude the section by proposing that, apart
from the GMR and TMR detection, the alternating spin-
momentum coupling can also facilitate magnetic excitation
by the STT.

Anisotropic Valley-dependent

(a) (d)

(b) (e)

(f)(c)

FIG. 1. Archetype GMR and TMR model mechanisms in unconventional antiferromagnets. Red and blue correspond to up and down
spins, respectively, and a gray arrow marks the applied current direction. (a) The GMR stack with a metallic spacer in a current-in-plane
geometry. As an example, we show the antiparallel configuration of the Néel vectors in the two electrodes AF1 and AF2. Interfaces are
oriented along one of the main axes of the elliptic spin-dependent bands. (b) Energy band cuts highlighting the anisotropic alternating
spin-momentum coupling around the Γ point in the Brillouin zone, resulting in anisotropic spin-dependent conductivities. (c) The tight-
binding model band dispersion. The dashed rectangle highlights the region with the anisotropic spin-momentum coupling around the Γ
point. (d) The TMR stack with an insulating barrier. As an example, we show the parallel configuration of the Néel vectors in the two
electrodes. (e) Energy band cuts highlighting the valley-dependent alternating spin-momentum coupling around the M1 and M2 points
in the Brillouin zone, resulting in valley and spin-dependent densities of states. (f) The tight-binding model band dispersion. The dashed
rectangles highlight the valleys with opposite spin splitting, marked by the magenta arrows.
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II. NONRELATIVISTIC ALTERNATING
SPIN-MOMENTUM COUPLING

DFT and model calculations by several groups reveal
lifted spin degeneracies in the nonrelativistic band struc-
ture of unconventional collinear antiferromagnetic
crystals which lack a symmetry combining time reversal
with space inversion or translation [31–43]. The phe-
nomenon is microscopically associated with a Fermi-
liquid instability in an anisotropic spin interaction channel
[33] and with anisotropic real-space magnetization den-
sities [32,37]. Formalisms of electromagnetic multipoles
[34,41] or symmetry groups [35,38,43,44] are employed
to study materials exhibiting this unconventional collinear
antiferromagnetism. The lifted spin degeneracy in the
equilibrium band structure of the unconventional collinear
antiferromagnets is linked to anomalous responses,
including a Hall effect generated by the compensated
collinear magnetic order [31,32,36], or nonrelativistic
spin currents flowing transverse to the applied electrical
bias [37,45,46].
The type of compensated magnetic crystal order con-

sidered in the above studies can be summarized as follows.
The crystals are composed of two or multiple sublattices
which can contain, besides magnetic atoms, also non-
magnetic atoms, and the corresponding elements between
the sublattices are chemically equivalent. In these crystals,
the nuclear-position (charge) structure has at least one
spatial symmetry operation (translation, inversion, rotation,
or a combination of these) that transposes one sublattice
onto the other—an intersublattice transposing symmetry
[4,47]. Nonrelativistic electron-electron Coulomb inter-
actions can lead to quantum ground states that have
nonzero magnetic moments on the sublattices, and the
transposing symmetry favors states with magnetic
moments of precisely equal magnitudes. An antiparallel
magnetic order then can give a strictly zero net magneti-
zation in the absence of spin-orbit coupling [4,47].
The conventional spin-degenerate antiferromagnetic

bands correspond to the above magnetic crystals in the
case when the intersublattice transposing symmetries are
inversion or translation. On the other hand, the unconven-
tional antiferromagnetic band structures with the alternat-
ing spin-momentum coupling correspond to the case in
which the transposing symmetries contain a crystal rotation
operation. In the context of our GMR and TMR study, we
highlight the following characteristics of the alternating
spin-momentum coupling: (i) The band structure with the
alternating spin-momentum coupling arises from the non-
relativistic part of the DFT Hamiltonian. (ii) It gives a zero
net magnetization when integrated over the whole Brillouin
zone. (iii) It enables one to define a momentum-indepen-
dent spin-quantization axis. (iv) It breaks the time-reversal
symmetry in the momentum space and can have lifted
spin degeneracy at low-symmetry momenta, as well as at
high-symmetry time-reversal-invariant momenta, except

the Γ point. (v) The bands are inversion symmetric in
the momentum space, EsðkÞ ¼ Esð−kÞ, where s is the spin
index of the energy band EsðkÞ, and, thus, are even
(quadratic) in momentum. (vi) We note that the band
structures with the alternating spin-momentum coupling
can be classified into ten centrosymmetric spin point
groups [38]. Here, in contrast to the relativistic magnetic
symmetry groups, the nonrelativistic spin groups con-
sider symmetry operations in uncoupled real and spin
spaces [38,48–50] and use the decomposition into the
intersublattice transposing and nontransposing symmetries
[4,31–33,38,47], where the latter transform a magnetic
sublattice on itself. The nonrelativistic spin symmetries
which determine the nonrelativistic spin-momentum cou-
pling can be, thus, written as a pair of symmetry operations,
½C2jjCi�, where C2 is the 180° spin rotation in the spin space
around an axis perpendicular to spins and Ci is the
symmetry transformation in the real crystallographic space
[38,50]. The resulting spin group can be labeled by the
Hermann-Mauguin symbol of, e.g., a form 2m2m1m. Here,
the normal font corresponds to the spin symmetry trans-
formation (2 stands for the spin rotation and 1 for identity),
while the subindex corresponds to the paired crystallo-
graphic operation (m stands for mirror) [38,48,50]. We use
this notation for describing the nonrelativistic symmetry
group of our model and of the magnetic crystals of RuO2

and Mn5Si3.

III. ANISOTROPIC AND VALLEY-DEPENDENT
SPIN-MOMENTUM COUPLINGS
AND GMR AND TMR MODELS

For our GMR and TMR study, it is instructive to
distinguish between anisotropic and valley-dependent
spin-momentum couplings, whose specific realizations
are also identified in the earlier studies [31–35]. The two
types of alternating spin-momentum coupling differ by
their local band-structure shapes in the momentum space
(see Fig. 1): The anisotropic coupling is characterized by its
local band anisotropy (and does not have to exhibit
opposite-polarization valleys separated in momentum).
On the other hand, the valley-dependent coupling is
characterized by the opposite spin-polarized valleys which
are decoupled in the momentum space (and do not have to
be anisotropic). We remark that we study here the two types
of spin-momentum coupling in their pristine form, while, in
general band structures, both types can coexist. We now
describe the two types of alternating spin-momentum
coupling in more detail.
The anisotropic alternating spin-momentum coupling

corresponds to two perfectly spin-polarized, but mutually
rotated bands which are highly anisotropic in momentum:

∂2EsðkÞ
∂k2x ≠

∂2EsðkÞ
∂k2y ; ð1Þ
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where spin is marked by s and momentum as k ¼ ðkx; kyÞ.
In other words, the anisotropic spin-momentum-coupled
bands of a form EsðkÞ ∼ αsk2x þ βsk2y exhibit strongly
anisotropic coefficients αs ≠ βs (see also the explicit
model Hamiltonian in the next section). We illustrate
the anisotropic alternating spin-momentum coupling on
the band structures in Fig. 1(b). Here, we observe the spin-
degenerate Γ point accompanied by the two elliptical
Fermi surfaces with opposite spin polarization. The
opposite-spin Fermi surfaces are related by the ½C2jjC4�
symmetry, which ensures that the two spin-polarized
valleys are equally populated. The two spin-polarized
bands, thus, exhibit spin-dependent anisotropic group
velocities ½∂EþðkÞ=∂ki� ≠ ½∂E−ðkÞ=∂ki�, where � refers
to the spin index. This results in spin-dependent aniso-
tropic conductivities which can take the form σþ;xx ≠ σ−;xx,
σþ;yy ≠ σ−;yy, and σ�;xx ¼ σ∓;yy [Fig. 1(b)]. Applying the
current along, e.g., the x direction, the conductivity of
the GMR stack depends on whether the Néel vectors in
the two layers separated by the nonmagnetic metallic
spacer are parallel or antiparallel, in analogy to ferro-
magnetic GMR.
From the ratio of the conductivities of the spin-up and

spin-down channels, Rσ ¼ σþ;xx=σ−;xx ¼ σþ;xx=σþ;yy ¼
σ−;yy=σ−;xx, the GMR can be estimated from the conven-
tional current-in-plane GMR expression derived in ferro-
magnets [1]:

GMR ¼ 1

4

�
Rσ þ

1

Rσ
− 2

�
: ð2Þ

The expression explicitly highlights that the GMR is
maximized in band structures with a strong spin-dependent
anisotropy. We use this expression below in the section on
first-principles calculations.
The valley-dependent spin-momentum coupling is char-

acterized by spin-polarized energy eigenstates in a region
around a momentum Mν, which typically corresponds to a
band extremum:

∂EsðkÞ
∂k

����
k→Mν

¼ 0: ð3Þ

This is commonly referred to as a valley, and ν is the
valley index. The valley-dependent spin-momentum cou-
pling features the characteristic oppositely spin-polarized
valleys, which are well separated in momentum, and where
the bands can be locally isotropic, i.e., EsðkÞ ∼ αðk2x þ k2yÞ,
as illustrated on the circular Fermi surfaces in Fig. 1(e).
These characteristics contrast the anisotropic spin-
momentum coupling. The spin polarization of each
momentum-space valley is perfectly compensated by a
counterpart valley with the opposite spin polarization. The
spin- and momentum-dependent energies in the two valleys
are connected by the intersublattice transposing symmetry,

containing a real-space rotation operation (C4), augmented
with a 180° spin rotation marked by C2 [38], i.e., EþðM1Þ¼
½C2jjC4�E−ðM2Þ.
We emphasize that, unlike the relativistic spin-orbit-

coupling-induced valleys [51], the nonrelativistic alternat-
ing spin-polarization valleys are distributed symmetrically
in the momentum space [EsðMνÞ ¼ Esð−MνÞ], do not
require inversion symmetry breaking, and can occur at
time-reversal-invariant momenta [31].
The pairs of momentum-space valleys with opposite spin

polarizations result in the equal net population of spin-up
and spin-down states, while the densities of states within a
given valley become spin dependent: nþðM1Þ ≠ n−ðM1Þ,
nþðM2Þ ≠ n−ðM2Þ, and n�ðM1Þ ¼ n∓ðM2Þ. For tunnel-
ing which conserves the valley index, parallel and anti-
parallel configurations of the Néel vectors in the two layers
separated by the tunnel barrier give different conductances,
in analogy to ferromagnetic TMR. We can then apply the
Jullière TMR formula [1] per valley:

TMR ¼ 1

2

�
Rn þ

1

Rn
− 2

�
; ð4Þ

where the ratio of the spin-up and spin-down
densities of states in the valley Rn¼nþðM1Þ=n−ðM1Þ¼
nþðM1Þ=nþðM2Þ¼n−ðM2Þ=n−ðM1Þ. Again, we use this
expression below in the first-principles TMR calculations.
An important feature of the valley-dependent spin-

momentum coupling is that it provides for a large momen-
tum separation [marked by Δ in Fig. 1(e)] of the opposite
spin states at a given energy. Each of the spin-polarized
momentum-space valleys corresponds to a ferromagnetic-
Zeeman-like spin-split band structure [31] and, therefore,
allows for the TMR when intervalley scattering is not
dominant. We remark that the alternating spin valleys
shown in Fig. 1(e) are isotropic, i.e., would not generate
the GMR derived from the anisotropic spin-dependent
conductivities.

IV. MODEL TIGHT-BINDING HAMILTONIAN
AND NUMERICAL SIMULATIONS

We now proceed with presenting a 2D tight-binding
model Hamiltonian describing the nonrelativistic alternat-
ing spin-momentum couplings. In the Hamiltonian, we
parametrize the kinetic nearest-neighbor hopping by t and
describe the alternating spin-momentum coupling by a
spin-dependent hopping parametrized by tJ [31]:

HðkÞ ¼ 2tðcos kx þ cos kyÞ1
þ 2tJðcos kx − cos kyÞσ · d: ð5Þ

Here, d is a unit vector along the Néel vector, 1 is the unit
matrix, and σ is the vector of Pauli spin matrices.
The Hamiltonian describes a magnetic lattice shown

in Fig. S1 in Supplemental Material [52]. The model
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corresponds to a (2D) nonrelativistic spin symmetry space
(point) group P241m2m (241m2m), which lacks inversion
and translation intersublattice transposing symmetries but
exhibits a transposing symmetry containing a real-space
rotation. (We use the Hermann-Mauguin notation of the
nonrelativistic spin symmetry groups [38,48,50].)
The spin-up (þ) and spin-down (−) energy bands are

given by

E�ðkÞ ¼ 2tðcos kx þ cos kyÞ � 2tJðcos kx − cos kyÞ: ð6Þ

The anisotropic spin-momentum coupling, shown in
Fig. 1(b) and highlighted by a dashed rectangle in
Fig. 1(c), is obtained by performing the k · p approxima-
tion around the Γ point, for which the energy spectrum can
be written as

E�ðkÞ ¼ 4t − ðt� tJÞk2x − ðt∓ tJÞk2y; ð7Þ

and by taking, e.g., t > 0 and tJ ¼ 0.4t.

On the other hand, the valley-dependent spin-momentum
coupling shown in Fig. 1(e) and highlighted by dashed
rectangles in Fig. 1(f) is obtained from Eq. (6) by per-
forming the k · p approximation inM1 andM2 valleys. For
t ¼ 0 and tJ > 0, we obtain

E�ðM1;kÞ ¼ �tJð4 − k2Þ;
E�ðM2;kÞ ¼ ∓tJð4 − k2Þ: ð8Þ

Before discussing the DFT calculations, we show in
Fig. 2 numerical simulations of the quantum conductance
of a tunnel junction based on the tight-binding model (5).
We consider two illustrative sets of parameters. The first
case, shown in Figs. 2(b) and 2(c), has the Hamiltonian
parameters in the leads corresponding to Fig. 1(c), i.e., t ¼
tL > 0 and tJ ¼ tLJ ¼ 0.4tL. The second case, shown in
Figs. 2(d)–2(f), corresponds ro the Hamiltonian parameters
of Fig. 1(f), i.e., t ¼ tL ¼ 0 and tJ ¼ tLJ > 0. In both cases,
we model the nonmagnetic tunneling barrier by setting the
Hamiltonian parameters in the barrier to tJ ¼ tBJ ¼ 0 and

(a) (b) (c)

(e) (f)(d)

FIG. 2. Model transport calculations in a quasi-two-dimensional tunnel junction. (a) Schematics of the geometry of the leads
representing the unconventional antiferromagnets, the scattering region separating the leads (spacer), and selected parameters used in the
calculations. (b) Spin-up (red) and spin-down (blue) energy bands in the lead as a function of kx plotted for the discrete set of transverse
wave-vector parameters corresponding to Ny ¼ 20 lattice points in the direction parallel to the lead-spacer interface. Hamiltonian
parameters in the lead correspond to Fig. 1(c) and the first case described in the text. (c) Conductances for parallel (P) and antiparallel
(AP) configurations of the Néel vectors in the leads and the corresponding relative difference of the P and AP conductances. (d) Top
view of the energy bands with the alternating spin-momentum coupling in the lead in the first Brillouin zone. Hamiltonian parameters in
the lead correspond to Fig. 1(f) and the second case described in the text. Magenta circles mark the alternating spin-polarized valleys.
(e),(f) The same as (b),(c) for Hamiltonian parameters in the lead corresponding to Fig. 1(f) and the second case described in the text. In
(b),(e), the magenta arrows mark the energy ranges with decoupled spin-up and spin-down channels due to the spin-polarized valleys in
the band structure.
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t ¼ tB ¼ 0.025tLJ . In the barrier, we also add an on-site
energy term EB ¼ 10tLJ . We set the number of sites in the
barrier along the x axis to Nx ¼ 2 and in the barrier and
leads along the y axis to Ny ¼ 20 [Fig. 2(a)].
The transport calculations are done using the Kwant

package [53]. (For more details on our three-dimensional
antiferromagnetic junctions, see Supplemental Material
[52], Secs. 1 and 2). As anticipated in the above discussion
of Fig. 1,we obtain a higher conductance for the parallel than
for the antiparallel Néel vector configurations [Figs. 2(c)
and 2(f)].
The sensitivity of the ratio R¼ ½ðCP−CAPÞ=ðCPþCAPÞ�

to the transport energy and model parameters can be
understood by analyzing the spin-projected energy bands
of the leads shown in Figs. 2(b) and 2(e). According to our
qualitative analysis in Fig. 1, we expect the limiting ratio
R ≈ 100% for the energy regions of the band structurewhere
the spin-up and spin-down channels are decoupled and well
separated in the momentum space. This situation arises for
the second set of Hamiltonian parameters for the energy
regions marked by the magenta arrows in Fig. 2(e), i.e., for
E≳ 0.8t and E≲ −0.8t. The energy states in a given valley
exhibit perfect spin polarization of one sign and are well
separated in themomentum space from thevalley containing
the opposite spin states [see Δ in Fig. 1(e)]. As a result, the
opposites spins are decoupled for all transport kx channels,
and the tunneling sensitivity to themutual orientation of the
Néel vectors in the two electrodes is strongly enhanced,
resulting in R ≈ 100% in Fig. 2(f). In contrast, for zero
energy, the spin-up and spin-down bands are degenerate
and form the nodal lines [31] marked by the black lines in
Figs. 2(d) and 2(e). This explains the suppression of R
around zero energy, seen in Fig. 2(f).
For the first set of Hamiltonian parameters, the situation

is different. Within the energy bands, there is no energy
region where the spin-up and spin-down transport channels
are completely decoupled; i.e., the spin-up and spin-down
bands partly overlap [see Fig. 2(b)]. However, the M1ð2Þ
valley splittings are still present, marked by magenta arrows
in Fig. 2(b). The corresponding energy regions exhibit the
largest conductance ratio R [see Fig. 2(c) around zero
energy]. We note that the particle-hole asymmetry in the
conductance signal arises as the states with higher energies,
i.e., closer to the top of the tunneling barrier, have a higher
tunneling probability.
In summary, a large tunneling magnetoresistance is

achieved at the energy regions corresponding to the alternat-
ing spin-polarized valleys. The model tunnel-junction sim-
ulations, thus, corroborate our qualitative analysis in Fig. 1.

V. FIRST-PRINCIPLES CALCULATIONS
IN RuO2 AND Mn5Si3

We start our discussion of first-principles GMR and
TMR calculations with RuO2, which crystallizes in a

rutile structural space group P42=mnm. The unconven-
tional antiferromagnetic order shown in Fig. 3(a) corre-
sponds to the nonrelativistic spin space (point) group
P2421=m2n1m (241=m2m1m) [38]. The spin group lacks
inversion and translation intersublattice transposing sym-
metries but exhibits a transposing symmetry containing a
real-space rotation C4z [see Fig. 3(a)] [38]. As a result,
RuO2 has the band structure with the nonrelativistic
alternating spin-momentum coupling [32,33,37,38], analo-
gous to the 2D tight-binding model discussed in the
previous section.
We calculate the electronic structure in the pseudopo-

tential DFT code Vienna Ab Initio Simulation Package
(VASP) [54], within Perdew-Burke-Ernzerhof ðPBEÞ þU þ
SOC (a spherically invariant version of DFTþ U), and we
use an energy cutoff of 500 eV. We set the Hubbard U to
1.6 eV. The lattice parameters are a ¼ b ¼ 4.5331 and c ¼
3.1241 Å [32]. Wannier functions are obtained using the
Wannier90 code [55]. The longitudinal conductivity is calcu-
lated separately for each spin channel using the Boltzmann
equation with a 1603 crystal momentum mesh and with the
scattering rate of 6.6 meV corresponding to the exper-
imental conductivity [36]. (We also confirm the results by
calculations using the WannierBerri code [56], which we show
in Supplemental Material [52].)
The spin-resolved band structure is shown in Figs. 3(b)

and 3(c), and the spin-dependent conductivities and
GMR are plotted in Figs. 3(d) and 3(e). The dashed
rectangles in Fig. 3(c) depict the parts of the spectrum
with the anisotropic spin-momentum coupling, correspond-
ing to our GMR model in Figs. 1(a)–1(c). The anisotropic
spin-dependent group velocities in this part of the spectrum
are further highlighted in Fig. 3(b). As expected from
our model discussion, the difference between the conduc-
tivities of the opposite spin channels, and the corresponding
GMR magnitude, are maximized when the Fermi level
crosses the regions with the anisotropic spin-momentum
coupling. Here, the GMR reaches a 100% scale. We note
the correspondence of our GMR with the earlier evaluated
transverse spin currents in RuO2, which also originate from
the difference between the spin-up and spin-down con-
ductivities [37].
Figure 4(a) shows DFT calculations of momentum-

and sublattice-resolved energy bands in RuO2, while
Fig. 4(b) shows sublattice- and spin-resolved densities
of states. When combined, these two figures can be used
to estimate the TMR in RuO2. For example, when focusing
on energies around 0.5 eV [see the dotted line in Figs. 4(a)
and 4(b)], we see from Fig. 4(b) that spin-up electrons are
primarily on the spin sublattice “1.” In Fig. 4(a), we then
see a valley between Γ and S points associated with the
sublattice 1. This valley has a spin-up polarization. On
the other hand, the valley between Γ and S0 points has a
spin-down polarization. In this part of the spectrum, the
unconventional antiferromagnet effectively acts as two
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intertwined half-metallic ferromagnets. For a valley-con-
served tunneling, the TMR can be then estimated from the
ratio of spin-up and spin-down densities of states projected
on a sublattice. We emphasize that this approach is

applicable only when the band structure has the valley-
dependent form of the alternating spin-momentum cou-
pling. In agreement with our model discussions in Figs. 1
and 2, the DFT TMR ratio is maximized at energies with

(a)

(c)

(d)

(e)

(b)

FIG. 3. First-principles calculations of GMR in RuO2 [32]. (a) Crystal structure of RuO2. Red and blue mark opposite magnetic
moments on the first and second Ru sublattices. The presence of an intersublattice transposing symmetry containing a crystal rotation
operation (C4z) and the absence of translation (t) and inversion (P) transposing symmetries are also highlighted. (b) Fermi surface plots
for spin-up (left) and spin-down (right) states. The color coding corresponds to the group velocities, highlighting the strong anisotropy of
the two spin-channel conductivities. (c) Spin-projected nonrelativistic energy bands of RuO2 with marked anisotropic spin-momentum
coupling aroundR and Z points. (d) Longitudinal spin-up and spin-down conductivities. (e) GMR ratio. For comparison, also shown is
the transverse spin current relative to the longitudinal charge current (SCR) calculated in Ref. [37].

(a) (b)

(e)

(f)

(c)

(d)

FIG. 4. First-principles calculations of TMR in RuO2 [32] and Mn5Si3 [31]. (a)–(c) are for RuO2 and (d)–(f) for Mn5Si3. (a) Wave-
vector- and sublattice- (blue and red, respectively) resolved energy bands. (b) Sublattice- (blue and red) and spin- (left and right)
resolved density of states as a function of energy. (c) Energy-dependent TMR and spin polarization parameter (see the text). (d)–(f) The
same as (a)–(c) for Mn5Si3.
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the dominant contribution from the spin-polarized valleys,
where it reaches a 100% scale.
On a quantitative level, RuO2 is not optimal for TMR

because of the low and weakly spin-dependent density of
states at the Fermi level. A more favorable candidate is
Mn5Si3. It has a structural space group P63=mcm. The
four-sublattice checkerboard-antiparallel magnetic order
[31], generated by the nonrelativistic electron-electron
Coulomb interactions, is again precisely compensated,
owing to the presence of the intersublattice transposing
symmetry. Its nonrelativistic spin space (point) group
P1m2m2a (1m2m2m) lacks inversion and translation trans-
posing symmetries [31,38]. Correspondingly, it also has the
band structure with the alternating spin-momentum cou-
pling. Unlike RuO2, however, it contains spin-polarized
valleys at time-reversal-invariant momenta M1 and M2

[31], analogous to the model in Figs. 1(d)–1(f). Additional
spin-polarized channels are found at the L1 and L2 points
of the Mn5Si3 Brillouin zone. Our DFT calculations plotted
in Figs. 4(d)–4(f) show that this metallic antiferromagnet
with the valley-dependent spin-momentum coupling at
high-symmetry points in the Brillouin zone is a favorable
candidate for large TMR ratios even at the Fermi level.
For illustration, we plot in Figs. 4(c) and 4(f) also the

spin-polarization parameter given by the relative difference
of the sublattice-projected spin-up and spin-down densities
of states. We see that its energy dependence correlates with
the dependence of the TMR ratio.

VI. DISCUSSION

We now discuss the GMR and TMR in unconventional
antiferromagnets from a more general materials perspec-
tive. Apart from RuO2 and Mn5Si3, other materials were
previously identified to host nonrelativistic alternating
spin-momentum coupling, including MnF2 [35], CaCrO3

[46], or organic crystals [45]. However, these may not be
optimal materials for GMR and TMR, because they either
are insulating [35,45] or exhibit only a weakly anisotropic
spin-momentum coupling [46]. Additional candidates can
be found in databases of magnetic materials that were
recently discussed from the perspective of the nonrelativ-
istic spin-split band structures in unconventional antiferro-
magnets [41,43]. However, only structural and relativistic
magnetic symmetry groups of the materials are listed. The
determination of the nonrelativistic spin symmetry groups
for the extensive set of materials in the magnetic databases,
thus, represents an important future task.
To connect the nonrelativistic spin symmetry group

classification of the band structures [38] to GMR and
TMR, we now discuss the nonrelativistic symmetry criteria
for the two effects in the unconventional antiferromagnets.
In principle, TMR can be realized in all materials with
nonrelativistic alternating spin-momentum coupling. Their
band structures can then be associated with one of the ten
centrosymmetric spin point groups listed in Ref. [38].

In addition, we explicitly show in the present work that
TMR is enhanced in systems with valley-dependent spin-
momentum coupling. Here, the spin-polarized valleys can
form around high-symmetry points in the Brillouin zone,
such as the M1;2 valleys in Mn5Si3, or around low-
symmetry points, such as the band extrema along the
Γ − S lines in RuO2. However, an enhanced TMR can arise
also from more generic spin-polarized quasiparticles out-
side the band extrema, as long as they are well separated in
the momentum space and provide for the sufficiently
decoupled spin transport channels. (A systematic analysis
of the general spin-polarized quasiparticles favorable for a
large TMR in unconventional antiferromagnets is beyond
the scope of the present work.)
The current-in-plane GMR, derived from the aniso-

tropic spin-momentum coupling and the corresponding
anisotropic spin-dependent conductivities, is symmetry-
wise more restrictive. We find that only four out of the
ten centrosymmetric spin point groups classifying the
band structures with the alternating spin-momentum
coupling [38] allow for GMR. Specifically, these four
GMR spin point groups are 222=m, 2m2m1m, 241=m,
and 241=m2m1m.
In terms of robustness, we point out that the non-

relativistic symmetry criteria for GMR and TMR do not
depend on the orientation of the Néel vector with respect to
the crystal axes and that the alternating spin-momentum
coupling is due to the nonrelativistic part of the DFT
Hamiltonian. The weaker relativistic spin-orbit coupling
then typically plays only a minor role (see Supplemental
Material [52] and Ref. [37]).
The spin polarization in the transport channels can

decohere due to, e.g., electron-electron or disorder scatter-
ing. However, calculations confirm the persistence of
alternating spin-momentum coupling even in the presence
of strong electronic correlations [33]. In analogy to conven-
tional valleytronics in 2D materials [51], the opposite spin
polarization also suppresses intervalley scattering in uncon-
ventional antiferromagnets. In addition, we recall that
the typically dominant small-angle elastic scattering off
isotropic impurities does not significantly mix states from
different valleys, as long as they are well separated in
momentum space.
Next, we comment on the comparison from the

symmetry perspective of the GMR and TMR and the
anomalous Hall effect (AHE), which is another transport
tool to detect the Néel vector reversal. Alternating spin-
momentum coupling is shown to provide the time-
reversal symmetry-breaking mechanism for the AHE in
the unconventional collinear antiferromagnets RuO2 or
Mn5Si3 [31,32,36,57]. However, in case of the AHE, the
time-reversal symmetry breaking is connected to the trans-
verse electrical response by the relativistic spin-orbit
coupling [31,32,36,57]. The symmetry criteria for the
AHE are, therefore, fundamentally distinct from those of
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TMR or GMR. They are formulated by means of the
relativistic magnetic symmetry groups with coupled sym-
metry operations in the real and spin space. The symmetry
criterion is that the relativistic magnetic group allows for
the presence of an odd-under-time-reversal axial vector
[32,57]. Note that both the Hall effect and magnetization
follow this symmetry criterion, and, indeed, the presence of
the Hall effect in the unconventional antiferromagnets can
be accompanied by the formation of a weak relativistic
magnetization [31,32,36,57].
All the anomalous Hall antiferromagnets can be asso-

ciated with one of the ten relativistic centrosymmetric
magnetic point groups which fulfill the above symmetry
criterion [57]. We emphasize that these are unrelated to the
ten nonrelativistic centrosymmetric spin point groups
classifying the band structures with alternating spin-
momentum coupling [38]. For instance, the nonrelativistic
spin symmetry group of RuO2, which enables GMR
and TMR, is independent of the orientation of the Néel
vector. On the other hand, the relativistic magnetic
symmetry group of RuO2 changes when the Néel vector
is rotated from the [001] axis to the (001) plane, and
only in the latter case is the AHE allowed by symmetry
[32,36,57].
In the final paragraphs, we comment on our anisotropic

and valley-dependent spin-momentum couplings in the
context of the excitation by the STT. In ferromagnetic
stacks, in the limit of long carrier spin lifetime, injected
carriers with spin polarization p from one ferromagnet
precess around the magnetization m of the other ferro-
magnet. The resulting nonequilibrium spin polarization in
the second ferromagnet, s ∼m × p, depends on the mag-
netization m. The corresponding (anti)dampinglike STT,
T ∼m × ðm × pÞ, can compete with the Gilbert damping
and, thus, excite the second ferromagnet [2].
Earlier studies have already demonstrated that antiferro-

magnets, including conventional ones with spin-degenerate
bands, can be also efficiently excited by a spin-polarized
current injected into the antiferromagnet [16,18,58]. Here,
local nonequilibrium spin polarizations driving the (anti)
dampinglike STT at sublattice “1” and “2,” s1 ∼m1 × p
and s2 ∼m2 × p, have opposite sign on the two sublattices
since m1 ¼ −m2. This makes the (anti)dampinglike STT
due to the injected spin current principally equally efficient
in antiferromagnets as in ferromagnets [16,18,58].
Previously, the considered spin-current injectors into the

antiferromagnet were either ferromagnetic or relativistic
[16,18,58]. Our present study implies that nonrelativistic
alternating spin-momentum coupling allows for spin-
current injection also from an unconventional antiferro-
magnet. As in the case of GMR and TMR, anisotropic
spin-momentum coupling is more favorable for STT in
metallic stacks and in the current-in-plane geometry, while
valley-dependent spin-momentum coupling is more suit-
able for STT in the tunneling structures.

ACKNOWLEDGMENTS

We acknowledge funding from the Czech Science
Foundation Grants No. 19-18623X and No. 21-28876J,
the Ministry of Education of the Czech Republic Grant
No. LM2018110, LNSM-LNSpin, the EU FET Open RIA
Grant No. 766566, Deutsche Forschungsgemeinschaft
Grant No. TRR 173 268565370 (Project No. A03), and
Johannes Gutenberg University Grant TopDyn, the com-
puting time granted on the supercomputer Mogon at
Johannes Gutenberg University Mainz.

Note added.—Recently, we became aware of a related study
by Shao et al. [59] on TMR in an antiferromagnetic tunnel
junction.

[1] C. Chappert, A. Fert, and F. N. Van Dau, The Emergence of
Spin Electronics in Data Storage, Nat. Mater. 6, 813 (2007).

[2] D. C. Ralph and M. D. Stiles, Spin Transfer Torques,
J. Magn. Magn. Mater. 320, 1190 (2008).

[3] A. Brataas, A. D. Kent, and H. Ohno, Current-Induced
Torques in Magnetic Materials, Nat. Mater. 11, 372 (2012).

[4] E. A. Turov, Physical Properties of Magnetically Ordered
Crystals (Academic, New York, 1965).
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