
Articles
https://doi.org/10.1038/s41588-022-01041-y

1CRUK Cambridge Institute, University of Cambridge, Cambridge, UK. 2Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland. 
3Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland. 4Department of Histopathology, Addenbrookes Hospital, Cambridge, UK. 5MRC 
Biostatistics Unit, University of Cambridge, Cambridge, UK. 6Department of Pathology, University of Nottingham, Nottingham, UK. 7British Columbia 
Cancer Agency, University of British Columbia, Vancouver, British Columbia, Canada. ✉e-mail: bernd.bodenmiller@uzh.ch; carlos.caldas@cruk.cam.ac.uk; 
raza.ali@cruk.cam.ac.uk

The breast tumor microenvironment (TME) contains spe-
cialized cells that behave in a highly coordinated manner1,2. 
Single-cell analyses have revealed the extent of TME cellular 

diversity1,2 but have not addressed how these cells are organized in 
space. It is clear, however, that characteristic multicellular spatial 
organization influences tumor phenotype and treatment response. 
The presence of tertiary lymphoid structures (TLSs), for example, 
is associated with response to immunotherapy in melanoma and 
sarcoma3–5. Several methods now make highly multiplexed imaging 
of tissues feasible, enabling precise cell classification in the context 
of spatial relationships6–10. Use of these techniques to analyze solid 
tumors has begun to uncover principles that govern TME organiza-
tion11–14. A targeted analysis of TME structures in a breast cancer 
cohort that is large enough to encompass its characteristic heteroge-
neity has, however, been lacking.

A related question is whether somatic alterations within tumor 
cells impact TME organization. Some oncogenic alterations have 
collateral effects that modify the TME, whereas others confer a fit-
ness advantage to cells subject to local selection pressures such as 
immune predation. Some somatic mutations, for example, dampen 
the immune response (IR) by causing immune checkpoint over-
expression15–17, compromised antigen presentation18,19 or aberrant 
interferon signaling20. Somatic alterations could therefore trigger a 
cascade that changes how cells self-organize.

To investigate the landscape of TME structure in breast cancer and 
its relationship to genomic features and clinical outcome, we used 
imaging mass cytometry (IMC)6 to generate 37-dimensional images 
of breast tumors from 693 patients recruited to the METABRIC 
study for whom clinical and genomic data are available21,22.  

We identified ten recurrent TME structures, including quiescent 
vascularized stroma and several variants of structures associated 
with an active IR. These TME structures showed distinct associa-
tions with somatic alterations and genomic breast cancer subtypes. 
Regulatory T cells (Treg cells) and dysfunctional T cells co-occurred 
in large TME structures with high cellular diversity and proliferative 
cells, which predicted poor outcome. The curated data are available 
as a resource that, together with our experimental and analytical 
approach, pave the way for future work to understand principles of 
spatial organization in cancer tissues.

Results
Enumeration of key TME cell phenotypes in situ. We set out to 
understand the functional states of the TME in breast cancer. We 
reasoned intercellular spatial organization would be a strong indi-
cator of function. Using IMC with a panel of antibodies conju-
gated to isotopically pure rare earth metal reporters (Fig. 1a and 
Supplementary Table 1), we detected proteins involved in vascular 
and stromal heterogeneity, antigen presentation and myeloid and 
lymphoid lineages to identify the cells of the TME and their spa-
tial relationships. Antibodies to immune checkpoint proteins, a 
costimulatory protein and markers of cell proliferation and apopto-
sis were included to probe activation states. Antibodies to cytokera-
tins and canonical breast cancer proteins were included to account 
for cancer cell heterogeneity. Antibodies were used to label tissue 
microarray (TMA) slides of breast tumor tissues obtained from 693 
patients recruited to the METABRIC study for whom clinical and 
genomic data are available21. The stained slides were analyzed using 
IMC to generate high-dimensional images (Fig. 1b and Extended 
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Data Fig. 1a). Tumor samples were excised before systemic therapy. 
The TMAs include tumors of all clinical and molecular subtypes, 
accounting for intertumor heterogeneity of breast cancer (Fig. 1c).

The key phenotypic distinction between cells in breast tumor tis-
sues is whether they are epithelial or non-epithelial; the latter belong 
to the TME. To make this distinction most accurately, we adopted 
two approaches: Gaussian mixture modeling of pan-cytokeratin 
(pan-CK) expression and capture of cells by a pixel mask trained 
on all keratins (pan-CK, CK5 and CK8-18) using machine learning. 
A pathologist then compared the results by manual inspection and 
selected the best-performing approach for each image (Fig. 2a).

Having distinguished cells as epithelial or non-epithelial, we 
defined cell phenotypes based on the multidimensional protein 
expression data (Fig. 2b and Extended Data Fig. 1b,c), again com-
bining automated methods with manual curation. Automated 
single-cell clustering was applied separately within epithelial and 
non-epithelial compartments. Proteins with exclusive expres-
sion in one or the other compartment were selected for clustering  
(Fig. 2a,b and Extended Data Fig. 2). Cluster expression profiles 
and cell morphology evaluated by manual inspection were used to 
assign descriptive labels to clusters, and similar clusters were merged  
(Fig. 2c). This resulted in 32 cell phenotypes, 16 epithelial and 16 
TME. Several epithelial phenotypes were defined by their cyto-
keratin and hormone receptor profiles, as well as expression of 
CD15 (ref. 23), CD57 (ref. 24) and CXCL12; the latter is an ER tar-
get25. Three phenotypes were distinguished by high expression of 
antigen-presentation proteins (MHC-I and/or MHC-II).

Major TME cell types (lymphoid, myeloid and stromal) were 
also subclassified. Lymphoid subclassifications were helper 
T cells (CD4+), cytotoxic T cells (CD8+), Treg cells (FOXP3+), T cells 
expressing checkpoint proteins (including PD-1), B cells and CD38+ 
lymphocytes. Myeloid cells included macrophages, granulocytes 
and other CD11c+ antigen-presenting cells (APCs) such as den-
dritic cells. Consistent with past work26, there was notable stromal 
cell heterogeneity based on the expression of SMA (distinguishing  

myofibroblasts), FSP1 and PDPN (distinguishing fibroblast sub-
sets). We further characterized T cells, CD38+ cells and Ki-67+ cells 
by clustering each into five subclusters (Extended Data Fig. 3a).  
Subclustering revealed that T cells were characterized by heter-
ogenous checkpoint expression profiles and that Treg cells were 
relatively scarce. Proliferating Ki-67+ TME cells were a combina-
tion of lymphoid and myeloid subsets. CD38+ cells coexpressed 
CD31-vWF (detected by a mix of two antibodies, one targeting 
CD31 and another Von Willebrand factor (vWF)), and subcluster-
ing confirmed that a small subset showed high levels of expression 
of both CD38 and CD31-vWF (Fig. 2c). To determine whether this 
pattern of coexpression was due to CD38+ cells overlapping with 
endothelial cells (which are CD31-vWF+), we inspected images 
in which they were abundant. In addition to endothelial cells, we 
found CD31-vWF expression among infiltrating leukocytes, which 
were also positive for CD38+ (Extended Data Fig. 3b). Coexpression 
on leukocytes is consistent with previous characterization of reac-
tive plasma cells27. These analyses show that coexpression of CD38 
and CD31-vWF was not due to overlap with endothelial cells.

Our data allowed us to explore spatial intratumor heterogene-
ity. Although most tumors were represented by a single TMA spot, 
52 of the 693 tumors were represented by at least two spots (two 
tumors were represented by three; Extended Data Fig. 4). Tumor 
composition was generally well conserved between spots, but there 
were exceptions where an abundant cell phenotype was absent from 
one region (e.g., tumors 28 and 52). TME composition was bet-
ter conserved across regions than were epithelial cell phenotypes. 
Sampling error, however, is a limitation of our study.

Taking population diversity as an indicator of functional com-
plexity, we investigated how cellular phenotypic diversity differed 
between tumor subtypes. We used the Shannon diversity index28 as 
a global cell diversity metric and compared diversities of epithelial 
and TME cells separately using linear models. First, we analyzed 
tumor and adjacent normal tissue and found that epithelial diver-
sity was lower in normal regions than in tumors but that there was 
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Fig. 1 | High-dimensional imaging of the breast TME. a,Left to right: Antibody panel used for analyses of 693 METABRIC tumors, multitiered image 
analyses and correlation with genomic and clinical features. b, Representative examples of image data (cropped to fit) for proteins of interest (red), 
pan-cytokeratin (green) and DNA (blue). Scale bars, 50 µm. c, Distribution of clinical variables and molecular subtypes among tumors analyzed. IntClust, 
integrative cluster.
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no significant difference when comparing TME cells in tumor ver-
sus normal breast tissue (Fig. 2d). This finding indicates a greater 
deviation from normal for epithelial cells as compared to TME cells. 
This may be explained by a substantial role for tissue resident cells 
in populating the TME, where the expansion or contraction of sub-
populations occurs in sync to maintain overall cell diversity.

Molecular subtypes of breast cancer reflect the intertumoral het-
erogeneity of the disease and are also known to be characterized 
by distinct tumor ecosystems11. Therefore, we investigated whether 
ecosystem diversity of breast cancer subtypes differed in terms of 
the contribution of epithelial or TME cells both in subtypes based on 
tumor transcriptomes that closely map to clinical subtypes defined 
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by ER and HER229 and in integrative clusters defined by driver 
copy-number alterations21. After adjustment for multiple testing, 
there was little difference in epithelial cell diversity among breast 
cancer subtypes (Fig. 2d). By contrast, TME cell diversity differed 
markedly; there was higher diversity among ER-negative subtypes 
(basal; IntClusts 4, 5 and 10) and lesser diversity among indolent 
estrogen receptor (ER)-positive subtypes (luminal A; IntClusts 
3 and 8). These findings show that breast tumors are character-
ized by TMEs that differ in the compositional complexity of their  
cell populations.

Tissue interfaces mark spatial phenotypic transitions. Solid 
tumors organize into compartments (tumor, stroma and vascula-
ture). Cells at interfaces between compartments may participate 
in reciprocal signaling, and this may alter their phenotypes. Cells 
may also migrate to an interface because of a secreted factor. Both 
mechanisms affect TME structure. To investigate how composi-
tional complexity was manifested in space, we categorized cells as 
either in contact with an interface or not and compared cell com-
positions of the resulting two categories using generalized linear 
models. All TME cell phenotypes were significantly enriched or 
depleted at the tumor–stroma interface (Fig. 3a,b), but this var-
ied dramatically in degree. To determine whether any enriched 
phenotype was driven by altered expression due to poor cell seg-
mentation encompassing portions of adjacent epithelial cells, we 
compared cell phenotype expression profiles by whether cells were 
located at the interface or not (Extended Data Fig. 5). No system-
atic differences supported this possibility. Myofibroblasts, includ-
ing those that expressed PDPN, were significantly enriched at the 
interface, whereas fibroblasts and endothelial cells were depleted  
(Fig. 3b). Some lymphoid cell phenotypes (CD4+ T cells, CD8+ 
T cells, CD38+ lymphocytes and B cells) were also depleted at the 
interface, with B cells showing the greatest interface depletion of all 
phenotypes (Fig. 3b). This picture of peritumoral stromal activa-
tion and lymphocytic depletion supports a model of lymphocytic 
exclusion mediated by myofibroblasts30, consistent with reports of 
contractile matrix-producing fibroblasts31.

We also investigated whether perivascular cells differ from other 
cells in the TME. Circulating leukocytes infiltrate the TME by tra-
versing the perivascular space. Soluble factors in the peripheral 
blood and draining lymph fluid may also influence the perivascular 
cell population. We identified perivascular cells as those in direct 
contact with a vessel (defined by a pixel mask) and compared their 
composition to other TME cells (Fig. 3c). As expected, perivascular 
cells were massively enriched for endothelial cells (Fig. 3d). Because 
the quantification of endothelial cells and vessels was conducted 
using independent methods (single-cell phenotyping for endothelial 
cells and pixel classification for vessels), this finding corroborated 
our cell phenotyping schema. Other than endothelial cells, the most 
enriched perivascular cell phenotype was CD38+ lymphocytes. This 
finding may be related to the role CD38 plays in mediating the adhe-
sion of lymphocytes to endothelial cells. The cognate ligand of CD38 
is CD31 (ref. 32), which is expressed by endothelium. Although it is 
possible that CD38+ lymphocytes were caught during their migration 
into tissue parenchyma from the peripheral blood (diapedesis) when 
tissues were fixed, our finding that some non-endothelial CD38+ 
cells can also express CD31-vWF (Extended Data Fig. 3b) suggests 
this finding is best interpreted cautiously, as some CD31-vWF+ pix-
els belonging to leukocytes may have been mislabeled as vascular 
by our classifier. There was slight enrichment of myofibroblasts in 
the perivascular space. As at the tumor–stroma interface, CD4+ and 
CD8+ T cells showed perivascular depletion, as did macrophages. 
Among stromal cells, there was depletion of PDPN+ myofibroblasts, 
FSP1+ fibroblasts, and fibroblasts (Fig. 3d). Based on these findings, 
phenotypic transitions associated with the perivascular space may be 
explained by a combination of the ingress of circulating leukocytes  

into the tissue and adjacent stromal activation. Therefore, both 
tumor–stroma and vascular interfaces impact TME structure. 
Patterns of cell enrichment and depletion indicate that mechanisms 
operative at these sites explain these differences and indicate that 
distinct functions are spatially segregated within the TME.

Systematic discovery of multicellular TME structures. The TME 
is a dynamic ecosystem where diverse cells self-organize in response 
to short and long-range signals to perform specific functions. To 
identify TME structures while accounting for higher-order cell 
interactions (spatial relationships) and functional properties (cell 
phenotype), we represented all cell–cell contacts as a network 
with cells as vertices and cell–cell contacts as edges12,33. Using 
community-detection methods, we identified highly connected 
subgraphs that represented the spatial relationships of discretized 
TME structures. To account for phenotypic differences, the num-
ber of cell–cell contacts (connectivity) of each cell phenotype was 
computed for each subgraph. The resulting profiles of connectivity 
were then used to classify subgraphs in a subset of 458 tumors from 
one of the two contributing centers using hierarchical clustering  
(Fig. 4a). We used a consensus clustering approach to establish a 
statistically robust number of clusters34 and found that ten groups 
reasonably represented variability in connectivity profiles (Fig. 4b,c 
and Extended Data Fig. 6). Phenotypic features that distinguished 
these structures were related to the nature of the stroma and leuko-
cyte composition.

Several structures were characterized by a scarcity of leukocytes 
but variable stromal activation and vascularization: ‘FSP1+ enriched’, 
‘active stroma’, ‘PDPN+ active stroma’, and ‘vascular stroma’. There 
were several variants of structures indicative of an active IR, defined 
here as the presence of both cytotoxic and T helper cells. These 
structures differed by depletion or enrichment of specific cells and 
included ‘active IR’, ‘CD8+ and macrophages’, ‘granulocyte enriched’, 
and ‘APC enriched’, or had complex heterocellular connectivity 
profiles reminiscent of TLSs (‘TLS-like’). Another structure with a 
complex heterocellular profile showed enrichment for Treg cells, cells 
that expressed immune checkpoint proteins such as PD-1, and pro-
liferating cells and is referred to as the ‘suppressed expansion’ struc-
ture. This structure may represent a niche for dysfunctional T cells, 
which are characterized by expression of immune checkpoints and 
capacity for replication35.

To validate these structures in independent data, we used a 
random forest classifier (trained on discovery data) to label TME 
subgraphs from 181 tumors from the second contributing center  
(Fig. 4b). All ten structures were identified in comparable propor-
tions with similar connectivity profiles. Comparisons of the distri-
butions of cell number and population diversities between TME 
structures (Fig. 4c) showed that suppressed expansion and TLS-like 
structures were notably larger on average than other structures, 
with some exceeding 200 cells. Similarly, their cell population diver-
sity was the highest among all structures (Fig. 4d).

We investigated whether TME structures differed in terms of 
the spatial arrangement of different cell phenotypes. We asked, for 
example, whether certain cell phenotypes were typically periph-
eral or central. To investigate differences in spatial arrangements 
while accounting for the complex asymmetries of TME struc-
tures, we categorized cells according to their numbers of contacts 
(vertex degree) and compared the phenotypic compositions of 
each category (Fig. 4d). Two patterns of intercellular organization 
emerged: one where cell composition remained relatively constant 
and another where one cell phenotype showed dramatic expansion 
(Fig. 4f). Most notably, B cells occupied a greater share of overall cell 
composition as the number of contacting cells increased. This effect 
was apparent, to varying degree, across five TME structures: ‘FSP1+ 
enriched’, ‘PDPN+ active stroma’, active IR, suppressed expansion 
and TLS-like. In contrast, T cells occupied a relatively stable share 
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of cell composition across substructures. We repeated this analysis 
from a cell-centric rather than TME-centric perspective and con-
firmed both trends (Extended Data Fig. 7). These findings indicate 
that B cells aggregate in tumor tissues, whereas T cells are distrib-
uted more diffusely, and that the size of this effect differs between 
TME structures (Fig. 4f–h).

Genomic features are associated with TME structures. Genomic 
alterations within tumor cells may induce changes in the TME, or, 
conversely, features of the TME may select for alterations by chang-
ing the landscape of cancer cell fitness. To investigate this reciprocal 
relationship, we determined whether molecular breast cancer sub-
types and somatic genomic alterations (mutations and copy-number 
alterations) were associated with TME structure. We used two com-
plementary approaches: we identified those genomic features most 
enriched among TME structures, and we investigated the ability of 
both epithelial and TME features to predict genomic alterations.

We first asked whether TME structures differ between breast 
cancer subtypes (Extended Data Fig. 8). Patterns of enrichment 
were highly distinctive between subtypes, with ER status exerting 

greatest influence on TME structure. Because most dysfunctional 
T cells and Treg cells resided in suppressed expansion structures, 
we characterized their enrichment among tumor subtypes. Among 
intrinsic breast cancer subtypes based on transcriptomic groups29, 
mapping closely to clinical subtypes defined by ER and HER2, 
suppressed expansion structures showed variable enrichment in 
all groups except luminal A tumors, among which they were sig-
nificantly depleted. Analysis of IntClust subtypes defined by driver 
copy-number aberrations21 revealed that enrichment for suppressed 
expansion structures was most marked in ER-negative tumors 
irrespective of HER2 status (IntClust 4− and 5−) and in IntClust 
2 tumors (an aggressive ER-positive subgroup driven by 11q13/14 
amplification21).

We reasoned that comparing the performance of different cat-
egories of predictors would enable comparison of the relative con-
tribution of TME features to subtype designation. For samples with 
available molecular subtyping data, we used regularized logistic 
regression to fit separate models for each IntClust subtype, using the 
data from one of the two METABRIC centers for training (n = 390 
patients), data from the other for testing (n = 147 patients) and  
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computed area-under-the-curve (AUC) receiver-operating char-
acteristic statistics using the test data to compare performance. 
Categories of predictors, which were cell phenotypes, TME struc-
tures and network properties (summary statistics describing spatial 
features of the subgraphs within a tumor), were computed separately 
for tumor and TME cells (Fig. 5a). Differential predictive accuracy 
was most marked for IntClust 4− (ER-negative tumors with few 
copy-number aberrations), which were better predicted by TME 
cell phenotype than by tumor cell phenotype (AUC < 0.6 v > 0.8) but 
were best predicted by the network properties of TME subgraphs 
(AUC 0.91), highlighting the importance of TME spatial features in 
defining the biology of this subtype.

We also tested for associations with driver somatic alterations. 
Although driver alterations are associated with tumor subtype36, 
their co-occurrence is not exact. Hence, we analyzed these features 
independent of tumor subtype. Among somatic alterations most 
enriched for the suppressed expansion structure were BRCA1 and 
CASP8 mutations (Extended Data Fig. 9). These may represent 
both sides of the cancer cell–TME dynamic. Mutations of BRCA1 
impair homologous recombination-mediated double-strand break 
repair and are associated with distinctive genomic profiles involving 
specific mutational signatures, large deletions and indels37. Some of 
these features may lead to a more vigorous adaptive IR38,39. In con-
trast, mutations of CASP8 protect against apoptosis induced by 
engagement of Fas receptor by its cognate ligand expressed on cyto-
toxic T cells, effectively representing an immune escape lesion15. 
BRCA2 mutations were also associated with four other TME 
structures: active IR, ‘CD8+ and macrophages’, ‘vascular stroma’ 
and ‘PDPN+ active stroma’. This further supports a link between 
compromised DNA damage repair and TME modulation. Gains of 
CD274 (encoding PD-L1) were among the top ten hits for granulo-
cyte enriched, and TLS-like was associated with loss of B2M (encod-
ing β2-microglobulin, a component of MHC-I), corroborating past 
work11,15,19 and indicating that these alterations aid immune escape. 
Notably, mutations of CDH1 were associated with distinct stromal 
features: ‘PDPN+ active stroma’ and ‘vascular stroma’. Mutations of 
CDH1 (encoding E-cadherin) are characteristic of lobular breast 
cancer that shows single-file cancer cell growth. This observation 
suggests that the TME structure of lobular breast cancer is distinc-
tive due to variable stroma and heterocellular leukocytic infiltrates 
with distinct spatial organization.

To further investigate the genotype–tissue phenotype relation-
ship, we asked whether various tissue features were impacted dis-
proportionately by particular somatic alterations. Our hypothesis 
was that some alterations influence cell phenotype, whereas others 
influence patterns of growth and spatial relationships, and this may 
differ between epithelial cells and those of the TME. To evaluate 
the relationship with somatic alterations, we used a series of regu-
larized regression models to predict alterations based on different 
categories of tissue features (cell phenotype, structure, network 
properties) separately for tumor cells and TME cells (Fig. 5b). As 
expected, we observed high prediction accuracy for ERBB2 gains 
but only when tumor cell phenotypes were used as predictors (AUC 
0.76). Mutations of TP53 were better predicted by TME network 
properties (mainly spatial characteristics; AUC 0.72) than tumor 
cell phenotype (AUC 0.65), indicating that there are TME spatial 
features that are highly characteristic of TP53-mutant tumors. Gains 
of CCNE1 were also predicted with comparable accuracy by TME 
network properties (AUC 0.74), linking this alteration to distinct 
TME spatial orientation. Together, our findings reveal that there are 
complex relationships between somatic alterations and the TME 
suggestive of an ongoing dynamic due to differential cancer cell fit-
ness in the context of specific TME structures.

TME structure is predictive of clinical outcome. Finally, we 
investigated whether TME structures are indicative of clinical 
outcome. We estimated hazard ratios for disease-specific survival 
(adjusted for HER2 status) associated with each TME structure 
(Fig. 6a,b). Past work has shown that the prognostic impact of 
infiltrating leukocytes significantly differs in ER-positive versus 
ER-negative breast cancer40; hence, we conducted separate analy-
ses by ER status. Four TME structures were significantly associated 
with outcome in ER-positive disease. In contrast, no structures 
were significantly associated with outcome in ER-negative disease. 
The lack of detected associations in ER-negative disease, however, 
is probably due to lesser statistical power (124 versus 49 events). Of 
the four structures associated with outcome in ER-positive tumors, 
three were associated with poor prognosis (granulocyte enriched, 
APC enriched and suppressed expansion), and one was associated 
with favorable outcome (‘vascular stroma’). The prognostic factor 
associated with the worst prognosis was suppressed expansion; this 
is the TME structure in which most Treg cells and dysfunctional  
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T cells were located. The suppressive function of Treg cells may 
explain this association, as their abundance has been linked to poor 
outcome41. It is also possible that the presence of large aggregates of 
dysfunctional T cells are indicative of tumor cells that can endure 
ongoing immune attack and cause chronic stimulation of cytotoxic 
T cells. Likewise, the poor prognostic impact of the APC-enriched 
structure could be related to the abundance of macrophages, 
which are known to orchestrate immunosuppressive effects42 and 
have previously been linked to poor outcome in breast cancer41. 
Past work also suggests that there may be a nonlinear association 
between TME features and outcome in ER-positive breast cancer41. 
Although our study is among the largest highly multiplexed imag-
ing studies of cancer tissues, it should be noted that our analyses 
are insufficiently powered to investigate such effects. Our study 
does show that the TME is a key determinant of clinical outcome 
and that distinct facets of TME structure provide complementary 
prognostic value. Analyses of multiparametric representations of 
TME structure are likely to increase predictive accuracy in the 
clinical setting.

Discussion
High-dimensional tissue imaging of breast tumor tissue revealed 
that specialized cells of the TME organize to form varied structures 
that recur across tumors. Tissue interfaces and cancer cell-intrinsic 
factors impact formation of these structures, and the structures in 
turn exert selective pressure on cancer cells. Given the intimate link 
between structure and function, it follows that these multicellular 
structures offer a window on the functional state of the TME, and 
their associations with outcome suggest their characterization could 
be useful for patient stratification.

Dysfunctional T cells are characterized by high expression of 
immune checkpoint factors, a gradation of transitional states and 
proliferative capacity35,43. This population may be spatially segre-
gated alongside other diverse leukocytes, including APCs, in sup-
pressed expansion structures. Spatial segregation also occurs within 
the renal cell carcinoma TME, where progenitor-like T cells prefer-
entially exist and replicate in niches populated by APCs44. Together 
with our finding in breast cancer, this suggests that groups of dys-
functional T cells congregate in space and that diverse leukocytes 
contribute to a local microenvironment that regulates function and 
replication state of these T cells. Recent findings also raise the possi-
bility that cells within this population are more likely than other cells 
of the TME to harbor T cell receptors specific to tumor cell-related 
epitopes45. Suppressed expansion structures may therefore contain 
T cells that could be targeted by immunotherapy.

The repertoire of TME structures differed between IntClust 
tumor subtypes, corroborating our past findings11,46. IntClust sub-
types are based on driver copy-number aberrations21. Divergent 
TME structures are therefore indicative of crosstalk between tumor 
cells and cells of the microenvironment, and this crosstalk impacts 
intercellular organization. We also uncovered associations with 
somatic alterations that suggest a reciprocal dynamic sculpts the 
TME and tumor cells in tandem. Mutations of BRCA1 and CASP8 
were among the top ten most enriched in tumors with suppressed 
expansion structures. Cancer cells with compromised DNA damage 
response due to a BRCA1 mutation show distinctive genomic altera-
tions37 that may result in the display of neoantigens leading to tar-
geting by adaptive immune cells. This could favor cancer cells with 
defective CASP8, as CASP8-mutant cells are resistant to extrinsic 
apoptosis induced by cytotoxic T cells47. Past pan-cancer analyses 
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also show that cells with CASP8 mutations escape immune surveil-
lance15. Co-occurrence of mutations that increase immunogenicity 
(e.g., BRCA1) with those enabling immune escape (e.g., CASP8) 
suggests a model of cancer progression where immune-mediated 
selection is a later event, in the setting of an otherwise immunogenic 
population. Future analyses of high-resolution sequencing data with 
temporal inference of mutations48 together with high-dimensional 
imaging of the TME should enable deeper interrogation of this 
dynamic and may reveal the extent to which the selection of driver 
alterations is sensitive to TME context.

The association between TLSs and immunotherapy response3–5 
suggests that a clinical assay to detect them in situ is needed. TLSs 
contain a B cell-rich center, but our findings indicate that B cell 
aggregation is a general feature of the TME rather than a specific 
feature of TLSs, at least in breast cancer. B cell aggregates were 
observed in five TME structures (FSP1+ enriched, PDPN+ active 
stroma, active IR, suppressed expansion and TLS-like). These struc-
tures had opposing patterns of enrichment among tumor subtypes. 
For example, TLS-like structures were characteristic of basal-like 
tumors, whereas active IR structures were characteristic of lumi-
nal A tumors, which implies that disparate underlying mechanisms 
lead to B cell aggregation in these structures and corroborates the 
finding that B cell function is dependent on spatial context49. For 
these reasons, assays for TLSs using in situ B cell counts as a sur-
rogate will lack specificity unless adjusted for wider TME context. 
This highlights the challenge of designing pragmatic and quantita-
tive assays for complex multicellular structures; standardization of 
both experimental and computational workflows will be necessary.

To identify new therapeutic targets, it will be critical to under-
stand the dynamic functional states of the TME. In our study, 
high-dimensional imaging revealed how the specialized cells of the 
breast TME organize in space, how this organization varies across 
tumors and how various structures impact clinical outcomes. Our 
approach enables a deeper understanding of structural immunity in 
tumors50 and may help identify patients likely to respond to thera-
pies that function by perturbing spatial organization of the TME.
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from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.
© The Author(s) 2022
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Methods
Study design, TMA production and metadata. Formalin-fixed paraffin-embedded 
treatment-naive primary breast tumor tissue from patients recruited to the 
METABRIC study21 was used for this work. All samples were obtained with 
written, informed patient consent, and the study protocol was approved by the 
NRES Cambridgeshire 2 Research Ethics Committee (REC ref. 07/H0308/161). The 
study was an observational case series, and tumor samples were all excised before 
systemic therapy. Sample size was determined by whether suitable formalin-fixed 
paraffin-embedded tissue was available for research; women with breast cancer 
(mean age, 62 years; range, 22–96 years) were included and were not compensated 
for participation; there were no exclusion criteria. To facilitate throughput and 
minimize experimental batch effects, tumor tissues were represented in TMAs. 
Briefly, suitable areas of invasive cancer were selected by a pathologist (E.P.) 
using whole hematoxylin and eosin-stained slides. These areas were punched 
using a manual microarrayer and inserted into a receiver TMA block. Most tissue 
spots (93%) were 0.6 mm in diameter, but one TMA block contained spots that 
were 1 mm in diameter (7%). A total of 794 tissue spots from 718 patients were 
analyzed. Targeted sampling and manual inspection of images by a pathologist 
(H.R.A.) showed that, of these, 31 spots only contained histologically normal 
breast tissue and 14 only contained in situ carcinoma. This left a total of 749 images 
corresponding to 693 patients (635 tumors were represented by one tissue spot, 55 
by two and 3 by three), of which 639 contained epithelial cells. Patients were treated 
at two participating UK centers (contributing 500 and 193 patients, respectively). A 
subset of samples were associated with previously generated genomic data available 
in the public domain, including gene expression microarrays (Illumina bead 
arrays; 587 patients), high-resolution array comparative genomic hybridization 
(587 patients) and targeted sequencing of breast cancer genes (568 patients) data. 
Detailed protocols for these genomic assays are available in their corresponding 
publications21,36. Recently updated clinical data, also in the public domain, were 
linked to analyzed samples22.

Antibody panel design and metal conjugation. Antibody panel design (including 
the description of antibodies, concentration, clone information and metal isotype 
tag used) are provided in Supplementary Table 1. All antibody–metal conjugations 
were conducted with the Maxpar labeling kit (Fluidigm). Antibody concentration 
was titrated (100–500 µg ml−1) using a Nanodrop (Thermo Scientific), and 
conjugated antibodies were stored in a Candor antibody stabilizer (Candor 
Bioscience) at 4 °C (ref. 11). Antibody staining patterns and concentration were 
evaluated by inspection of IMC images from a variety of tissues, including tonsil, 
normal breast and breast cancer.

Tissue labeling and IMC. The procedures for tissue staining and analysis of 
antibody-labeled sections by imaging mass cytometry were as follows: 4 µm tissue 
sections were dewaxed and rehydrated through an alcohol series and subjected 
to epitope retrieval using Tris-EDTA buffer (pH 9) at 95 °C using a decloaking 
chamber for 30 min, tissues were then labeled with metal-tagged antibodies 
by overnight incubation at 4 °C (except for anti-ER, which was detected by a 
metal-tagged secondary antibody to boost signal) and iridium DNA intercalator 
(Fluidigm, 201192B) was used for detection of DNA. Finally, air-dried tissues were 
ablated using an imaging mass cytometer (Fluidigm).

Image processing. Ion counts (corresponding to bound antibody abundance) were 
recorded in TXT files and converted to TIFF image stacks using an established 
workflow51. Taking advantage of the multidimensional nature of the data, we first 
classified images at the level of pixels. Pixels were manually labeled according to 
the structure of interest (single cells, tumor regions or vasculature), and unlabeled 
pixels were classified based on random forest models implemented in Ilastik52. For 
single-cell segmentation, we labeled pixels into three classes: nuclear, cytoplasm 
and membrane, and background (acellular regions). A tumor region classifier 
was generated using all measured cytokeratins (pan-CK, CK8-18 and CK5), and a 
vessel classifier was generated using CD31, SMA and Caveolin-1. In addition, small 
aggregates of hot pixels corresponding to Ho165 (ER) were identified by a further 
pixel classifier (Supplementary Table 2). These classifiers were used to generate 
probability maps as RGB tiff files for export to CellProfiler53. For tumor and vessel 
regions, probability maps were segmented using a manual global thresholding 
strategy (threshold set at 0.5) and clumped objects separated based on signal 
intensity. Single-cell segmentation was conducted by first detecting nuclei (primary 
objects; manual global threshold at 0.5) and then detecting whole cells (secondary 
objects) by propagation-based expansion of nuclear regions (to encompass the 
membranocytoplasmic signal and stopping at the cell edge according to signal 
intensity gradients). Single-cell expression values were defined as the mean ion 
count encompassed by a whole-cell mask. Expression values for two markers (ER 
and SMA) were defined by region masks (nucleus and cytoplasm, respectively) 
rather than whole-cell values to account for non-specific background signal. 
Cell-to-cell relationships were defined as adjacent cells falling within a distance 
of 8 µm. Objects (nuclei, whole cells, tumor and vessel regions and hot pixel 
aggregates) were defined as ‘related’ if any overlapping pixels were identified. Cells 
affected by hot pixel aggregates according to this definition were removed from 
further analyses.

Spillover compensation. Modest channel crosstalk is known to occur in mass 
cytometry experiments owing to small isotopic impurities in metal stocks. 
To adjust for this effect, we spotted all metal-conjugated antibodies onto an 
agarose-coated glass slide and measured isotopic composition by IMC. We used the 
Bioconductor CATALYST package to generate a ‘spillover matrix’ from these data, 
which allowed for adjustment of cross-channel spillover in single-cell expression 
data by a non-negative least-squares regression model using CATALYST54.

Manual curation and single-cell phenotyping. To classify cells into distinct 
phenotypes, we adopted an automated approach assisted by manual curation. 
On the basis that the starkest phenotypic separation in breast cancer tissue is 
whether cells are epithelial or not, we first meticulously segregated cells according 
to this criterion. To reliably identify epithelial cells across tumors, we used two 
complementary classification methods. Firstly, we fit a two-component Gaussian 
mixture model to log-transformed pan-cytokeratin counts per image to distinguish 
positive from negative cells. Secondly, we identified all cells related to a tumor 
mask as defined using the approach described above. A pathologist then inspected 
pairs of annotated images (where epithelial cell outlines were highlighted as 
classified by one method or the other) and identified which method best classified 
cells as epithelial using cell morphology and expression of cytokeratins as a 
guide. During this process and assisted by complete image stack data, tissue spots 
that only contained histologically normal tissue or in situ carcinoma were also 
flagged. Having distinguished cells as epithelial or non-epithelial, automated 
cell clustering was conducted using distinct repertoires of proteins for epithelial 
and non-epithelial cells (epithelial: Histone H3, CK5, HLA-DR, CK8-18, CD15, 
HER2 (3B5), Podoplanin, HER2 (D8F12), B2M, ER, CD57, Ki-67, CXCL12, 
HLA-ABC, pan-CK and c-Caspase3; non-epithelial: Histone H3, SMA, CD38, 
HLA-DR, CD15, FSP1, CD163, ICOS, OX40, CD68, CD3, Podoplanin, CD11c, 
PD-1, GITR, CD16, CD45RA, B2M, CD45RO, FOXP3, CD20, CD8, CD57, Ki-67, 
PDGFRB, Caveolin-1, CD4, CD31-vWF, HLA-ABC and c-Caspase3). Expression 
values were arc-hyperbolic-sine transformed using 0.8 as a cofactor and clipped 
at the 99th centile before clustering. We deployed a clustering strategy similar to 
that previously described11. Briefly, self-organizing maps55 were used to segregate 
cells into 1,225 groups. Median expression values of these self-organizing map 
groups were then used as input to Phenograph56 to identify cell phenotypes, 
which were finally mapped back to single cells. Inspection of heatmaps depicting 
the Z-transformed median expression values for cell lineage markers and IMC 
images annotated with cell phenotype outlines were used for manual merging of 
cell clusters. Groups with functionally and morphologically similar characteristics 
were merged to define cell phenotypes (16 epithelial and 16 TME). Diversity by 
cell phenotype was computed using the Shannon diversity metric separately for 
epithelial and non-epithelial cells.

Comparison of cell phenotype composition at tissue interfaces. To investigate 
spatial differences in the composition of cells present at tissue interfaces (tumor–
stroma and perivascular), cells were first classified as belonging to a given interface 
or not. We elected to take this approach because it was deemed more robust than 
a comparison of distances, as measures of distance were severely confounded by 
limited tissue area. Any non-epithelial cell contacting at least one epithelial (tumor) 
cell was defined as present at the tumor–stroma interface, whereas perivascular 
cells were defined as those contacting vessel masks (trained as described above). 
Generalized linear models were used to compare proportions at tissue interfaces 
(under a binomal distribution with a logit link function) and weighted by the total 
cell count to account for the variably precise estimates of cell proportions. Cell 
proportions were taken as the response variable and whether cells were present 
at the interface or not as the predictor. P values were adjusted for multiple testing 
using the Benjamini–Hochberg method.

Identification, classification and characterization of tissue structures. 
We adopted a systematic approach to identification of multicellular tissue 
structures. Spatial graphs (networks) were generated separately for epithelial and 
non-epithelial cells per image. Perivascular cells (those associated with vessel 
masks) were excluded. Each cell was taken as a vertex (node) and relationships 
with neighboring cells (identified as described above) taken as edges (links) 
to encompass all cell relationships within each image. Next, TME graphs (all 
non-epithelial-to-non-epithelial relationships) were segregated into highly 
connected communities using a community-detection algorithm based on random 
walks. To identify similar recurrent structures while accounting for both spatial 
and phenotypic characteristics, we computed connectivity profiles for each 
subgraph. A connectivity profile was defined as the number of connections each 
of the 16 TME cell phenotypes contained in each subgraph. Cell connectivity 
was chosen over proportion to both account for the arrangement of cells in a 
structure (the same cell proportion may show high or low connectivity) and 
avoid normalizing structures by their size. Discovery data (from one center) were 
grouped using hierarchical clustering by Ward’s method to identify subgraphs with 
similar profiles. We used consensus clustering34 to determine a statistically robust 
number of TME structures and settled on ten based on the change in cumulative 
density function across clustering solutions. Descriptive labels were attached 
to the resulting groups informed by their connectivity profiles. To evaluate the 
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reproducibility of these groups, we trained a random forest classifier on their 
connectivity profiles and used this to classify subgraphs in the validation dataset 
(the second center) into the ten groups. To compare spatial features of TME 
structures, several network property statistics were computed per subgraph, these 
included: the number of vertices, number of edges, diameter, density, transitivity 
and assortativity. To compare cell diversity, Shannon diversity by cell phenotype for 
every subgraph was computed. Intercellular organization within TME structures 
was investigated by comparison of cell phenotypic composition according to 
different categories of vertex degree (number of cell–cell contacts), which relied on 
connectivity to distinguish the contribution of different cells to a subgraph.

Associations between TME structures and genomic features. To investigate 
differences in TME structure between breast cancer subtypes, we asked whether 
different subtype designations could predict the proportion of all TME connections 
(cell–cell contacts) occupied by each TME structure. To achieve this, we fit 
generalized linear models for each tumor subtype (under a binomial distribution 
with a logit link function), where the response variable was the proportion of 
TME connections and the predictor was tumor subtype (samples were classed as 
belonging to a subtype of interest or not). Because the total number of cell–cell 
contacts differed between tumors, the proportions calculated for each TME 
structure varied in their precision. To account for this variability, models were 
weighted by the total number of connections per tumor. We also compared 
the extent to which different derived tissue features (cell phenotype, structure, 
network properties and a combination of these) could predict IntClust subtypes 
by training a series of regularized logistic regression models for each IntClust 
subtype using the data from one of the two contributing METABRIC centers. 
The performance of these models was assessed by computing receiver-operating 
AUC statistics for predictions using test data from the other METABRIC center. 
Similar principles were followed for evaluating associations with somatic driver 
alterations (mutations, gains and losses). Using existing targeted sequencing data, 
we selected driver mutations fulfilling previously defined criteria (a ratiometric 
mutational distribution score of greater than 20)36. Only alterations present in 
at least five sample were included. We identified driver copy-number alterations 
based on a previously described integrative score57 and one oncogene not present 
in the list (ZNF703)58. In addition, we included alterations previously implicated 
as mechanisms of immune escape (gains of CD274, loss of B2M)15 and recurrent 
deletions (loss of CDKN2AIP, PPP2R2A, MTAP, PTEN and MAP2K4). A total of 
103 alterations were evaluated per TME structure. All alterations were modeled as 
categorical (present or absent).

Survival analyses. Associations between tissue structures and disease-specific 
survival were conducted using Cox proportional-hazards regression models 
separately by ER status, because ER is known to violate the proportional-hazards 
assumption, but compliance of other variables was not formally tested. The 
proportion of connectivity per structure was discretized into four categories; tumors 
with at least one occurrence of a given structure were separated into tertiles based 
on the proportion of compartment-specific connections occupied by a structure, 
whereas tumors lacking a given structure were grouped into a separate baseline 
category. Models were adjusted for HER2 status (derived from gene expression 
using a two-component Gaussian mixture model) by including it as a covariate. 
Log-rank tests were used to assess differences between strata in survival plots where 
two groups were defined based on whether a given structure was present or not.

Statistics and reproducibility. Differential abundance of cell phenotype or 
connectivity proportion by tumor subtype or genomic alteration was tested 
using generalized linear models (under a binomial distribution with a logit link 
function), weighted by the total number of observations (either total cells or total 
cell–cell interactions) per tumor59. Survival analyses were conducted using Cox 
proportional-hazards models, and differences between groups in survival plots 
were tested using log-rank tests. Where appropriate, adjustment for multiple testing 
was conducted using the Benjamini–Hochberg method. All statistical analyses 
were conducted using R version 3.5.1. Representative images of IMC (numeric 
matrices of isotopic counts) from a single experiment were derived by processing 
data to TIFF image files, rescaling values between zero and one per image for three 
markers of interest and representing rescaled values in RGB color space.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Imaging mass cytometry data, derived images and processed single-cell data 
have been placed in the Zenodo data repository (https://doi.org/10.5281/
zenodo.5850952). Genomic and clinical data for METABRIC are available at 
cBioPortal (https://www.cbioportal.org/) or from the respective publications21,22,36. 
METABRIC genomic data are available from the European Genome-phenome 
Archive under accession numbers EGAS00000000083 and EGAS00001001753.

Code availability
Image processing and analysis was conducted using software available at  
https://github.com/BodenmillerGroup/ImcSegmentationPipeline, https://github.
com/CellProfiler and https://github.com/ilastik. Cell clustering and spatial network 
analyses were conducted using the following R packages: FlowSOM (https://github.
com/saeyslab/FlowSOM), Phenograph (https://github.com/JinmiaoChenLab/
Rphenograph) and igraph (https://github.com/igraph/rigraph). Analysis code is 
available at Zenodo (https://doi.org/10.5281/zenodo.6036188).
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Extended Data Fig. 1 | Examples of raw and processed IMC data. a, Example of raw IMC data for all channels represented as RGB images. b, Processed 
data for images shown in panel a, depicted as segmented cells colored by mean expression value (data normalized across entire study). c, Segmented cell 
mask for the sample shown in panels a and b colored according to cell phenotype. Scale bars represent 100 µm.
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Extended Data Fig. 2 | Cell phenotype counts and proportions. Stacked bar plots illustrating the number and proportion of cells by cell phenotype per 
tissue image. Bars ordered by hierarchical clustering.
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Extended Data Fig. 3 | Subclustering of ambiguous cell phenotypes. a, Heatmaps of median expression values for five subclusters within each cell 
phenotype (z-score scaled within each cell phenotype; clipped at -2 and 2). b, Example of CD38+ cells that also express CD31-vWF (yellow pixels; white 
arrows). Most of these cells are not adjacent to blood vessels (outlined in red) indicating that coexpression of CD38 and CD31-vWF is not explained by 
proximity to endothelial cells. Epithelial (tumor) mask outlined in white. Scale bars represent 100 µm.
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Extended Data Fig. 4 | Comparison of cell phenotypic composition among 52 tumors represented by more than one sample. a, Stacked bar plots of cell 
phenotypic composition (separately for epithelial and TME cells). Columns are paired by tumor for comparison. Tumor order (x axis) is arbitrary. b, Box 
plots of proportion differences (as positive values) computed separately for epithelial and TME cells (n = 52 tumors). c, Box plots of proportion difference 
rescaled to between zero and one within each cell phenotype (n = 52 tumors). For box plots, boxes are 25th, 50th, and 75th centiles; whiskers are 75th 
centile plus 1.5x interquartile range and 25th centile less 1.5x interquartile range. Data points beyond whiskers are outliers.
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Extended Data Fig. 5 | Comparison of expression profiles by cell presence or absence from tissue interfaces. Heatmaps of cell phenotype expression 
profiles separately for cells present at a tissue interface and those absent from an interface (columns are z-score scaled and clipped at -2 and 2).
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Extended Data Fig. 6 | Consensus clustering and examples of tumor microenvironment structures. a, Scatter plot of the change in cumulative density 
function (CDF) between clustering solutions (‘k’ on the x axis). A decrease in CDF indicates an increase in clustering consensus. b, TME structures 
depicted as colored spatial graphs on schematic maps of two METABRIC tumors. Scale bars represent 100 µm.
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Extended Data Fig. 7 | Cell-centric trends of phenotypic composition by number of cell interactions (vertex degree). Stacked area plots for each TME 
cell phenotype depicting trends of phenotypic composition by the number of cells contacting the cell phenotype of interest.
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Extended Data Fig. 8 | Associations between TME structures and molecular breast cancer subtypes. a, Bar charts of distributions of TME connectivity by 
TME structure for breast cancer intrinsic subtypes (n = 545 tumors). Bubble plots represent coefficients from linear models. Size is inversely proportional 
to the precision of the estimate; colored circles are significantly enriched TME structures; black outlines denote an adjusted p-value of < 0.05 for that 
term; p-values are for two-sided tests and were adjusted for multiple testing using the Benjamini–Hochberg method; horizontal lines are 95% confidence 
intervals. b, Bar charts of distributions of TME connectivity by TME structure by IntClust subtypes (n = 545 tumors). Bubble plots represent coefficients 
from linear models. Size is inversely proportional to the precision of the estimate; colored circles are significantly enriched TME structures; black outlines 
denote an adjusted p-value of < 0.05 for that term; p-values are for two-sided tests and were adjusted for multiple testing using the Benjamini–Hochberg 
method; horizontal lines are 95% confidence intervals. For reference, the stacked bar to the right of each plot illustrates the composition of tumors within 
that IntClust subtype by PAM50 subtypes.
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Extended Data Fig. 9 | Associations between TME structures and driver somatic alterations. Top ten most enriched somatic alterations per TME 
structure (n = 545 tumors for copy-number aberrations and n = 530 tumors for mutations). Bubble plots where circles depict generalized linear model 
coefficients. Size is inversely proportional to the precision of the estimate. Black outlines denote an adjusted p-value of < 0.05; p-values are for two-sided 
tests and were adjusted for multiple testing using the Benjamini–Hochberg method. Horizontal lines (where visible) indicate 95% confidence intervals. Bar 
charts illustrate the proportion of analyzed samples that harbor the alteration.
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