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Abstract

A series of polymers capable of self-assembling into infinite networks via supramolecular interactions
have been designed, synthesised, and characterised for use in 3D printing applications. The
biocompatible polymers and their composites with silica nanoparticles were successfully utilised to
deposit both simple cubic structures as well as a more complex twisted pyramidal feature. The
polymers were found to be not toxic to a chondrogenic cell line, according to 1SO 10993-5 and
10993-12 standard tests and the cells attached to the supramolecular polymers as demonstrated by
confocal microscopy. Silica nanoparticles were then dispersed within the polymer matrix, yielding a
composite material which was optimised for inkjet printing. The hybrid material showed promise in

preliminary tests to facilitate the 3D deposition of a more complex structure.

Introduction

Additive Manufacturing (AM) and in particular 3D Printing®= is a rapidly developing manufacturing
technology that is able to generate 3D objects through deposition of multiple layers of material.®®
This process offers significant advantages over other ‘traditional” subtractive manufacture techniques
as a result of its ability to produce features with flexibility of design utilising a variety of different
materials which, as a consequence, adds greater value to the final product.® This value is often realised
in the form of greater geometrical freedom, low to no cost personalisation and net shape manufacture.
3D printing has previously been considered primarily for prototyping but recent advances in this field
mean that it is now emerging as a disruptive technology capable in large-scale production scenarios.
An aspect that will facilitate this transition is the development of advanced materials that are both

processable via 3D printing and possess the physical characteristics that are required in the final



product, i.e. new ‘inks’ must be developed. Areas which will benefit from such precise production
methods are biomedical devices and biocompatible structural components. To date, the personalised
nature of 3D printing has seen the use in areas such as prosthetics and bone replacement.1%3
However, the development of high resolution, multimaterial approaches, such as ink jet printing, are
opening up the applications for advanced manufacturing to the field of biodegradable or bioresorbable
medical devices. Tissue regeneration strategies employ scaffolds that can act as temporary templates
for tissue growth. They require complex and well-defined open pore structures to achieve enhanced
cell adhesion and growth#¢ which are difficult to achieve with currently established manufacturing
techniques such as foaming. In principle, 3D printing offers the capability to design, and then

manufacture, complicated structures such as bone replacements.

These advantages offered by 3D inkjet printing technologies promise significant benefit for
biomedical scaffolds that enable tissue regeneration and are highly desirable.)” Current ink
formulations typically used for coding®® are not suitable for tissue scaffolds. Adapting existing
biomaterials for inkjet deposition is not plausible as these materials do not inherently have the
appropriate rheology or gelation, nor do they possess the ideal degradation rates, mechanical or
bioactive properties.’® Inorganic/polymer hybrids have the potential to fulfil the criteria for an ideal
scaffold, because they can comprise of co-networks of biodegradable polymers and bioactive silica.
Jetting is the only potential method for the manufacture of complex 3D structures that are required for
optimal scaffold architectures. Such an approach places significant restrictions on the polymer
component of the ink as it must possess appropriate viscosity characteristics both in the jetting and
deposition phases of the deposition process. Supramolecular polymers are ideal candidates to this end
for use in hybrid jetting inks on account of their tuneable viscosities and reversible mechanical

properties.?

Supramolecular polymers have been the subject of extensive research in recent years.?®
Developments in the design and manipulation of molecular interactions and information through
recognition processes®®? has led to the generation of a wide variety of self-assembled supramolecular
arrays®®=3* in a controlled and spontaneous fashion. The stimuli-responsive properties of
supramolecular polymer networks are highly desirable in value-added applications such as
adhesives,*3¢ shape-memory materials,®” healable films®-5 and more recently in ink formulations for
inkjet printing.2’ Supramolecular polymer composites are also known,*#647 offering an improvement

to the mechanical properties when compared to the polymer alone.

In this paper we describe the development of a series of biocompatible supramolecular polymer
systems which can be deposited successfully in three dimensions via inkjet printing processes
(Scheme 1) to form simple self-supporting structures. Hydrogen bonding motifs were appended to a

biodegradable polymer, yielding supramolecular polymer networks. In a proof of concept study, these



materials were tested for biocompatibility and also deposited using a piezoelectric inkjet printer to
yield 3D structures. Upon the successful printing of simple features, the polymers were reformulating
with silica nanoparticles to form hybrid solutions which were then deposited to yield more complex

3D structures.

3D Hybrid Supramolecular
Polymer Network

Scheme 1. Concept of 3D printing supramolecular polymer hybrids, showing silica nanoparticles (blue) and
supramolecular polymers (red/black) which are deposited simultaneously to form a 3D network structure.
Inserts show molecular structure of silica nanoparticles (blue) and hydrogen bonding end-group (red)

Results and Discussion

We have previously reported®348 the generation of self-assembling polyurethanes whereby a
hydroxyl terminated polyol was capped with a diisocyanate before conversion to a hydrogen bonding
motif to facilitate assembly of the infinite supramolecular networks. By modifying this approach,
biocompatible polymers which are also able to self-assemble could be used in 3D printing
applications. To develop a biodegradable polymer architecture with desirable solubility
characteristics, poly(caprolactone) diol 1 (M, = 2000 Da) was selected to form the polymer mid-
blocks owing to its known degradation by acid or enzymatic hydrolysis.***® To gain a balance
between the tensile strength elasticity and solubility of the polymer, 2,4-toluene diisocyanate (2,4-
TDI) 2 was selected to endcap the pre-polymer 3 (Scheme 2). A series of hydrogen bonding and/or 7t-
stacking end-groups (4a-d) were appended to the pre-polymer 3 to assess their solubility
characteristics and suitability as supramolecular polymers (5a-d) in 3D printing (see Supporting
Information, Figures S1-8). Amino-morpholine 4a derived end-groups are known to form self-

assembled polymer networks through weak hydrogen bonds,*® whilst a strongly hydrogen bonding
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residue, namely ureidopyrimidinone?*%:¢ (UPy) 4b was selected in an attempt form more
mechanically robust materials on account of the high dimerization constant of this assembly motif.
Benzylamine 5c terminated polymers were expected to form hydrogen bonded and n-stacked
networks. Finally, by altering the electronics of the aromatics, a motif 5d which was expected to
strong charge-transfer interactions was selected for installation at the polymer termini. The
supramolecular polymers (5a-d) were all synthesised successfully in good yields (>70 %). *H NMR
spectroscopy confirmed the formation of urethane linkages between poly(caprolactone) diol 1 and
2,4-TDI 2 through the appearance of a multiplet resonance at 4.2 ppm. Probe resonances from the
end-group, namely the methylene protons adjacent to the newly formed urea/urethane or methyl
groups within the moieties, were used to assess the formation of the desired polymer structure. End-
group analysis revealed that the pre-polymer 3 had been end-capped with minimal chain extension
(less than 10 %) of the pre-polymer. Infrared spectroscopy analysis also demonstrated the loss of the
isocyanate signals at ca. 2360 cm™ in all of the polymers, demonstrating complete consumption of the
isocyanate in the final polymer, and thus end-capping of the pre-polymer.
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Scheme 2. Synthesis of poly(caprolactone) derived supramolecular polymers (5a-d).

With the supramolecular polymers in hand, dynamic solution viscosities (Figure S9) were then
analysed via rheometry using a Peltier cylinder cartridge. In addition to chloroform, DMAc was
selected as a co-solvent as a result of its viscosity characteristics (0.95 cP), boiling point (165 °C) and
lower vapour pressure (0.30 kPa) to give a balance between solubilising capability, viscosity and
evaporation rate of the inkjet fluid. Polymers 5a-d (150 mM, ca. 400 mg mL) were dissolved in a
blend of DMAc/Chloroform (2:1, v/v), resulting in viscosities ranging between 10-25 cP over a range
of sheer rates. This parameter range was in keeping with the required viscosity of 10 cP or greater for
optimal printing on a piezoelectric drop-on-demand inkjet printer.>” The UPy terminated polymer 5b
which revealed sheer-thinning characteristics with increased sheer. This may be attributed to the
supramolecular network being more easily disrupted by higher shear forces as the viscosity of the

polymer appears to converge with other polymers within the series at higher shear rates.
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To assess the drop forming properties of the supramolecular polymers 5a-b, solutions (150 mM in
DMAc/chloroform, 2:1 (v/v)) were filtered (5 um microfiltration membrane) and the drop shape
analysed (Figure S10). All polymers were observed to have an average surface tensions of between 26
and 29 mN m'* when measured over a series of 10 drops, which fall close to the ideal value of 28 mN

m- and above.585

To develop the waveform which was used to deposit the polymer solution, a test printer rig
(Figure S11) was utilised to mimic the piezoelectric drop-on-demand inkjet printer. An inkjet
cartridge was filled with a solution of 5a and the waveform altered to explored jet-ability. The
waveform can be split into 5 distinct sections. In the initial stage the nozzle is at rest, then, by
applying a zero voltage in stage two, the ink is drawn into the nozzle. In the third and fourth stage, the
ink is dispelled from the nozzle by applying the maximum voltage and subsequently decreasing the
voltage. In the final stage, the nozzle was returned to rest and so the waveform cycle can begin again.
The drop break-up and ligament formation may be altered by the amount of voltage applied in the
fourth and fifth stage. From this, two candidate waveforms were developed (Figure S12) which were
observed to jet material onto a piece of white card and also visually as a stream of droplets. Both were
developed at ambient temperature using an operating voltage of 27 V, a frequency of 1 MHz, and a

meniscus vacuum of 0.0 Pa.

Drop formation was further analysed using the Dimatix drop watcher (Figure S13). All of the
polymers were analysed using waveform ‘a’ and ‘b’ as described in (Figure S12) at ambient
temperature using an operating voltage of 27 V, a frequency of 1 MHz, and a meniscus vacuum of
25.0 Pa. Both waveforms proved effective when printing on the piezoelectric drop-on-demand printer,
resulting in consistent drop break-up when deposited under analogue conditions as developed on the
test-rig printer. Stable drops of the amino morpholine terminated polyurethane 5a were able to be
deposited with a ligament attached initially. At a distance of ca. 100 um, the ligament was seen to
coalesce with the leading drop to form a single droplet. Drop break-up was observed to be diminished
when using waveform ‘b’. The drop forming characteristics of the UPy end-capped polymer 5b was
good when using waveform ‘a’, but was observed to diminish over time, possible as a result of nozzle
wetting. The benzylamine terminated polymer 5¢ was observed to form more stable drops when
compared to 5a, with only small ligaments forming when using waveform ‘a’, however, the polymer
was not printable using waveform ‘b’. Finally, the droplet formation of polymer 5d was improved
greatly when using waveform ‘b’, forming single drops without ligaments after travelling a distance
of 120 pm.

To assess the suitability of the supramolecular polymers (5a-d) in forming three-dimensional

structures, a 5 x 5 mm square of the individual polymers were deposited onto a glass slide and each



sample built up to 300 layers with drying time between layers added to aid the process (taking a total
of 4 hours for each feature). To facilitate drying, a 10 second pause was inserted between printing
each layer (Figure S14). All materials were deposited, producing features which were less than 1 mm
in height in the z-axis. The aminomorpholine terminated polymer 5a showed signs of unstable drop
break-up as demonstrated by poor image resolution and blurring of the feature. Deposition of the UPy
end-capped polymer 5b resulted in a colourless printed image which had moderately good resolution,
but appeared to not be as thick as the other deposited samples. Deposition of the benzyl terminated
polymer 5c afforded the best resolution and definition of the series of polymer whilst the
nitro/methoxy dibenzylamine terminated polymer 5d demonstrated improved jet stability and resulted
in a well-defined feature, although not as sharp as 5c. From these preliminary results, the benzyl
terminated polymer 5¢ was selected for further investigations. A feature which was 700 layers in
thickness was deposited resulting in a height of ca. 1.5 mm. Figure 1 shows polymer 5c after 700
layers, which demonstrated an enhancement in the height of the feature, although a small amount of
resolution is observed to be lost owing to the material beginning to ‘dome’ as increasing layers of
solvated material is deposited.

Figure 1. Images of 2 features printed from polymer 5c¢. Each feature represents 700 layers and was allowed to
dry in ambient conditions over night before the material fully solidified.

Films cast of polymers 5a, 5¢ and 5d were also assessed for cytotoxicity. MTT assays confirmed that
all polymer compositions analysed did not induce cytotoxic effects (Figure 2), performed in
accordance to ISO 10993-5 and 10993-12. It is noted in ISO 10993, for a material to be deemed
biocompatible, the viability of cells cultured in its 100% liquid extracts should not fall below 70% in
comparison to blank and negative (non-toxic) control.
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Figure 2. Cytotoxicity testing of the polymers 5a, ¢ and d by MTT assays of the dissolution products of the

polymers.

Cell attachment on the new materials was examined by immunohistochemistry and confocal
microscopy. As shown in Figure 3, the expression of the Vimentin and Actin cytoskeletal protein was
evident in ATDCS5 cells seeded on polymer membranes following 24 hours of culture. Upon
examination of cytoskeletal proteins and cellular morphology, ATDC5 cell attachment on the
polymers 5a, 5¢c and 5d was not affected by the addition of weak hydrogen bonding/n-mt stacking

motifs to the biocompatible poly(caprolactone).

Figure 3. Confocal microscopy demonstrating cell attachment to the supramolecular polymers 5a, ¢ and d using

Vimentin and Actin staining.

From this proof of concept it can be concluded that inkjet deposition of supramolecular polymers to
form three-dimensional structures is possible. To further improve these mechanical characteristics of
these materials and for potential in the generation of biocompatible bone scaffolds, hybrids were
developed containing silica particles (7 nm) which were incorporated into the inkjet printing
formulations. The particles (Bindzil® CC 301) were supplied as a colloidal dispersion in water. To
deploy these spherical silica particles in the polymer ink formulations, a solvent exchange with DMAc
was undertaken. The silica dispersion (39 % silica w/v) was mixed with an equal volume of DMAc
and heated under reflux using a Dean-Stark apparatus for 5 hours to remove the water content. The
solvent exchange resulted in a solution as opposed to dispersion, indicating the particles were

completely solubilised by DMAc. Mixing this solution with chloroform resulted in instantaneous



precipitation of the silica particles. For this reason, the polymer hybrids were deposited from DMAc
alone. The benzylamine terminated polymer 5¢ was selected to conduct polymer hybrid printing
studies. Blending solutions of 5¢ (150 mM) in DMAc with the silica particles (5%, 7.5%, or 10%,
w/v) in DMAC resulted in turbid liquids. The dispersion was filtered through a 5 um microfiltration
membrane, which also resulted in a turbid solution which was suitable for printing. To assess the
presence of any agglomerates, microscopy of the solutions was undertaken (Figure S15). Particle
loadings of 5% and 7.5% demonstrated good dispersion in solution as well as particle sizes of
agglomerates less than 5 um. From this data it was clear that it should be possible to deposit the
polymer hybrid as the nozzle width in the printer cartridge is 30 pm.

The viscosity of the hybrid solutions of 5¢ was analysed (Figure 4). A viscosity increase was observed
for all hybrid solutions when compared to the polymer solution alone, with some shear thinning
observed at low sheer rates. Loadings of 5% silica (15.1 cP) demonstrated an increase in viscosity of
50% when compared to the viscosity of 5¢ alone, whilst a 7.5% loading of silica exhibited a viscosity
increase of 60% (16.2 cP). The dispersion containing 10% silica particles (w/v) initially revealed

dramatic sheer thinning, before yielding a viscosity of ca. 22 cP over a range of shear rates.
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Figure 4. Viscosities of the benzyl terminated supramolecular polymer (5c¢) hybrids at different concentrations
of silica particles.

The hybrid solutions were then transferred into cartridges for analysis for the drop formation. The
break-up of the drops of hybrid inks were observed to be less stable than that of the pure polymer
formulations (Figure S16). Whilst jet stability was seen to be good, occasionally drops were ejected in
a non-linear fashion, diverging from the vertical plane. Increasing the loading of hybrid material
exacerbated this effect, with the 10% silica formulation proving to be very unstable. For this reason,

the 5% and 7.5% hybrids were used in the printing studies. Hybrid materials were deposited onto



clean glass slides. Again, a 5 x 5 mm square was printed (Figure 5) of the individual polymers and
each sample built up to 300 layers, allowing time between layers to aid the polymer drying. The
height of the features was noted to be greater (ca. 1.5 mm) than that of the polymer alone.
Furthermore, the features produced were observed to have columns build up within the overall
structure, owing to the resolution of the printer which deposits the drops in rosters. By creating these
columns, it should be noted that hybrid materials are able to form defined structures which are
self-supporting, a desirable property for creating more intricate structures for regenerative medicine
and more widely, biomedical applications.

Figure 5. Image of the printed samples of 5¢ containing 5% and 7.5% silica deposited onto clean glass slides.

Each feature is 300 layers in thickness.

Finally, the dispersion of silica in the printed samples was analysed by environmental scanning
electron microscopy (ESEM) and also energy-dispersive X-ray spectroscopy (EDX). SEM images of
the printed hybrids and also the pure polymer formulation (Figure S17a) revealed the morphology of
the features formed. The surface of the deposited materials appears to be homogeneous, with
individual drops evident. It is also evident that cracks are formed during the drying process but it must
be emphasised that these ink formulations are rudimentary in nature. The edges of the features formed
are not well-defined, instead presenting a rounded shape. The definition is, however, significantly
improved, with more precise square edges observed as increased silica loadings were utilised. The
columns formed during the printing of these hybrids were also clearly evident in the micrographs,
perhaps more clearly in the 5% silica loading formulation. Further magnification (Figure S17b)
revealed small volumes of polymer deposited, possibly by individual drops, which shows a tight
packing in all materials deposited. Feature sizes are in the order of 10-20 pm.



SEM/EDX spectroscopy analysis (Figure 6) of the printed features of the benzyl terminated polymer
5¢ gave insight to the distribution of silica particles in the hybrid materials. Increasing loadings of
silica were observed in the printed hybrid features when compared to the pure polymer formulation,

although no clear difference is noted between the 5% and 7.5% loadings.

Figure 6. EDX spectroscopy analysis of the printed features of a: the benzyl terminated polymer 5c, b: a hybrid
between 5¢ and 5% silica, and c: the hybrid between 5¢ and 7.5% silica.

To further examine the use of hybrid materials in inkjet deposited 3D structures, a more intricate
feature was printed. A twisted pyramid design (Figure 7a) was envisaged which would be self-
supporting whilst demonstrating structural complexity. The CAD design was split into 20 cross-
sections and each layer deposited 100 times to build up the twisting pyramid. The pyramid design (6 x
6 mm base) was successfully printed with a feature height of 3 mm once complete (Figure 7b and 7c)
before allowing to fully dry at room temperature, yielding a solid structure. Examination of the feature
revealed a small amount of splattering from the inkjet, whilst a twist could be observed as per the
CAD model.
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Figure 7. a: CAD design of the twisted pyramid, b: photograph of the pyramid showing the twisted design and
c: profile view of the printed material.

Conclusions

Novel biocompatible supramolecular polymers have been designed, synthesised and tested for
application in a 3D inkjet printer to generate features which represent the first steps towards
supramolecular polymer based hybrid scaffolds for regenerative medicine. A biodegradable
poly(caprolactone) diol [M, = 2000 Da] was appended with a series of hydrogen bonding moieties
yielding supramolecular polymer with desirable solubility characteristics. Initial studies developed
two waveforms and printing parameters which facilitated the deposition of all polymers. A benzyl
terminated polymer (5¢) was observed to produce the best printed features with respect to image
resolution and was thus selected to take forward in hybrid material studies. Silica particles were
loaded into the polymer formulation at a number of different weight to volume ratios and formulations
of 5¢ with 5% silica (w/v) or 7.5%% (w/v) were successfully deposited as simple patterns. Analysis of
these printed features allowed further understanding of the properties generated by the inclusion of
hybrid particles in the printed features. A self-supporting twisted pyramid was also printed to
demonstrate that more detailed constructs could be deposited via the reported method. The
biocompatibility of the polymers was also tested; cytotoxicity studies revealed that the polymers were
non-toxic in accordance with ISO 10993-5 and 10993-12. Cell attachment was also examined,
revealing cell attachment was not affected by the addition of hydrogen bonding motifs to the
biocompatible poly(caprolactone), as confirmed by confocal microscopy. This proof of concept study
has demonstrated promising results towards the use of polymer hybrid materials which may be 3D
printed to form biomedical scaffolds for regenerative medicine and there is excellent scope for

supramolecular materials and their composites in 3D printing of complex structures.

Experimental
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Reagents and solvents were purchased from Sigma Aldrich and were used without further
purification, with the exception of dichloromethane which was dried by distillation from calcium
hydride under argon. Cell culture reagents were purchased from Invitrogen UK or Sigma-Aldrich UK
unless specified otherwise. Proton NMR (400 MHz) and *C NMR (100 MHz) spectra were obtained
on a Bruker Nanobay 400 spectrometer using CDCls or CDCls/trifluoroacetic acid (9:1 v/v) as
solvent, with TMS as internal standard. Infrared (IR) spectroscopic analysis was carried out using a
Perkin Elmer 100 FT-IR instrument with diamond-ATR sampling accessory and samples either as
solids or oils. Gel Permeation chromatography (GPC) data were collected using an Agilent
Technologies 1260 Infinity Series chromatograph. Samples were dissolved in THF which was also
used as the eluent, with poly(styrene) standards for calibration. Differential scanning calorimetry
(DSC) was carried out using a TA Instruments Q2000 calorimeter. Samples for DSC were heated to
110 °C to remove residual solvent, cooled to -90 °C, and then re-scanned from -90 to 250 °C.
Environmental Scanning Electron Microscope (ESEM) images of polymer films were recorded with a
FEI Quanta FEG 600 ESEM equipped with a hot stage for polymer films. Initial printing was carried
out on a custom designed printer (Mr Craig Sturgess, University of Nottingham) whilst 3D printing
was undertaken using a Fujifilm Dimatix Materials Printer DMP-2800 series using 11600 series
Dimatix materials cartridges, the same printer was also used to collect data using the drop watcher
feature. Viscosities of the printed samples were collected using A Malvern Kinexus Pro+, using a
Peltier cylinder cartridge. Drop shape analysis was undertaken using a Kruss DSA 100.
Environmental Scanning Electron Microscope (ESEM) images printed images were collected using a
Hitachi Analytical Benchtop SEM TM3030 plus with EDX system. In vitro cell culture studied were
conducted using a chondrogenic cell line ATDC5 (ATCC, UK) which was culture expanded in
monolayer cultures in basal DMEM supplemented with 5% (v/v) FCS (foetal calf serum), 100 unit/ml
penicillin, 100 pg/ml streptomycin and 1x ITS liquid supplement (10 pg/ml insulin, 5.5 pg/ml
transferrin and 5 ng/ml selenite premix). Cultures were maintained in humidified atmosphere at 37°C,
5% CO; and 21% O;. Cells were passaged upon confluence using 500 pg/ml trypsin-EDTA (ethylene
diamine tetra-acetic acid). Potential in vitro cytotoxicity effects of the supramolecular polymers was
analysed on ATDCS5 cells which were assessed in accordance to ISO 10993-5 and 1SO 10993-12.
Liquid extracts of the samples (3 cm?ml in DMEM at 37°C) over a 72 hour period were prepared.
Medical grade polyethylene (PE) was used as negative control (hon-cytotoxic) and polyurethane (PU)
containing 0.1% (w/w) zinc diethyldithiocarbamate (ZDEC) was used as positive control (provide
reproducible cytotoxic response). The liquid extracts were filter sterilised and, dilution series (25%,
50%, 75% and 100%) were prepared prior to use in cell viability assays. Cell viability was assessed
by a calorimetric cell metabolic activity assay based on the conversion of
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) into formazan. ATDCS5 cells
were seeded on 96-well plates at 1x10* cells per well and left to grow in basal DMEM for 24 hours

until a sub-confluent monolayer was formed. The culture media was removed and, cells were then
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incubated with fresh basal DMEM, the liquid extracts of polymer films or controls (100 ul/well) for
further 24 hours. The culture media was removed and MTT solution (1 mg/ml in serum-free DMEM)
was added (50 pl/well). Following an incubation period of 2 hours, the MTT solution was removed
and each well was filled with 100 pl isopropanol and shaken briefly to dissolve the formazan
derivatives. The optical density was measured spectrophotometrically at 570 nm using a microplate
reader (SpectraMax M5). Cell attachment studies were carried out on polymer films (approximately
5x5x1 mm?®) which were prepared and sterilised with 70% ethanol for 1 minute. Following washing
with PBS, each sample was placed in serum-free a-MEM for 30 minutes prior to cell seeding.
Monolayer expanded ATDCS5 cells were harvested and suspended in basal a-MEM at a concentration
1x106 cells/ml. 10 pl of cell suspension was seeded onto each polymer membrane and, incubated in
humidified atmosphere at 37°C, 5% CO; and 21% O, for 2 hours. Each cell-seeded membrane was
then submerged in fresh basal DMEM and cultured for further 24 hours. Cell-seeded membranes were
fixed with 4% paraformaldehyde (PFA) and used for immunohistochemical analysis of cell
attachment. Following permeabilisation with buffered 0.5% Triton X-100 in PBS (300 mM sucrose,
50 mM NacCl, 3 mM MgCl;, 20 mM Hepes and pH 7.2) and blocking with 10 mg/ml BSA in PBS,
samples were incubated with anti-Vimentin antisera (1:500 dilution in 10 mg/ml BSA in PBS, rabbit
polyclonal, 1gG, Abcam, Cambridge, UK) at 4°C for 1 hour. This was followed by hour-long
incubation with Alexa Fluor® 488-conjugated secondary antibody. Negative controls (omission of the
primary antisera) were performed in all immunochistochemistry procedures. No staining was observed
in the samples used as negative controls. F-actin was labelled using CytoPainter F-actin staining kit
(Abcam, Cambridge, UK) following the manufacture’s instruction. Briefly, Alexa Fluor® 568-
conjugated phalloidin (1:1000 dilution in labelling buffer) was added simultaneously with the
secondary antibody during the incubation period. All samples were counter-stained with DAPI
(0.1pg/ml in PBS). The samples were imaged under confocal microscopy (Leica SP5 MP laser

scanning confocal microscope and software, Leica Microsystems, Wetzlar, Germany).
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