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ABSTRACT
Polymonads were recently introduced by Hicks et al. as a uni-
fied approach to programming with different notions of monads.
Their work was mainly focused on foundational aspects of the ap-
proach. In this article, we show how to incorporate the notion of
polymonads into Haskell, which is the first time this has been done
in a full-scale language. In particular, we show how polymonads
can be represented in Haskell, give a justification of the representa-
tion through proofs in Agda, and provide a plugin for the Glasgow
Haskell Compiler (GHC) that enables their use in practice. Finally,
we demonstrate the utility of our system by means of examples
concerned with session types and the parameterized effect monad.
This work provides a common representation of a number of exist-
ing approaches to generalized monads in Haskell.
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•Software and its engineering → Functional languages; Con-
trol structures; Constraints; Syntax; Semantics;

Keywords
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support; type checker plugin

1. INTRODUCTION
Several different notions have been developed for expressing ef-

fectful computations in a pure functional setting, in particular in the
context of Haskell. Examples include monads [25, 26, 45], arrows
[15], and applicative functors [24]. Indeed, the notions of monads
and arrows have proven useful enough to merit special syntactic
support in Haskell [32, 1].

Over the last few years, generalizations such as constrained [37]
and parameterized monads [3] have been investigated, in a quest
for more flexibility and enhanced static checks partly enabled by
improved support for type-level programming [20, 47]. Parameter-
ized monads have proven to be especially popular: they have been
used to model session-types [34], effect systems [30, 23], informa-
tion flow control [9] and composable continuations [46].
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Unfortunately, in the setting of Haskell at least, such generaliza-
tions are incompatible with the standard notions. For example, the
above generalizations require new type classes, because the stan-
dard type for bind is too specific. This incompatibility leads to
problems such as:

• Hampered code reuse. For example, there are several li-
braries on hackage that offer different definitions of parame-
terized or constrained monads [33, 29, 21, 38].

• Undermined syntactic support. In particular, using more than
one monad in a module requires explicit manual disambigua-
tion through annotations for each monadic computation.

• Instance incompatibility. Although mathematically a classi-
cal monad is also a parameterized monad, we cannot give pa-
rameterized monad instances for standard monads in Haskell
because their kinds differ.

Similar problems arise when generalizing other notions of compu-
tations such as arrows [18, 27].

It is therefore of interest to look for unifying notions to reduce the
proliferation of approaches to effectful programming. As a start,
this paper considers the case of parameterized monads by turning
to polymonads introduced by Hicks et al. [13] to see if they can
provide a practical as well as appealing solution in the context of
Haskell. We do this both through a theoretical investigation and
through an implementation that works with GHC through a type
checker plugin.

Before delving into details, we would like to emphasize that
the research question with which we ultimately are concerned is
weather it is possible to design and implement a practical, unify-
ing framework that allows various generalizations of monads to
be used as seamlessly and easily as basic monads. Our current
implementation is thus only a means to an end, not an end unto
itself. In particular, while we believe that our implementation is
useful and hope that others will find it compelling, we are not say-
ing that our implementation at this point necessarily is the “best”
way to program with parameterized monads. However, if our quest
is successful, then that would pave the way for integrating such a
unifying notion into a future version of Haskell (and its ecosystem
of tools and libraries). At that point the approach proposed here
would offer distinct advantages over handling generalized monads
on a case-by-case basis, which at present is the only option.

Polymonads provide a notion that captures standard as well as
parameterized monads in a way that makes them compatible with
each other. A polymonad consists of a pair (M ,Σ) together with
associated laws. M is a set of unary type constructors that always
includes the constructor Id, where Id τ = τ , and Σ is a set of bind
operations. Some of the type constructors in M are typically par-
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tially applied type constructors of arity two or higher, thus accom-
modating parameterized monads. The bind operations in Σ have
the following type schema

∀ α β .M α → (α → N β )→ P β ,

where M,N,P ∈M . This type schema is a more general version
of the one for the standard bind operation. Polymonads thus gener-
alize the notion of a monad in a way that allows the involved type
constructors and their indices to vary over a computation as long
as the prerequisite laws are satisfied. Based on this we can provide
a type class in Haskell that captures the notion of a bind operation
for standard as well as parameterized monads.

The main problem with using polymonads in Haskell is that the
standard Haskell constraint solver cannot handle the resulting class
constraints due to their potential ambiguity. While Hicks et al. [13]
do show that the constraints are decidable in many cases, they only
do this for a small toy language [4]. Further, their technique as-
sumes that the polymonad under consideration is known. This is a
problem in Haskell, because many polymonad instances may be in
scope simultaneously making it unclear which operations belong to
the current polymonad and which do not.

A limitation of the foundational work of Hicks et al. [13] is that
polymonads are required to be principal (see Section 3). This en-
sures that constraint solving works properly. Unfortunately, prin-
cipality has so far only been established for parameterized monads
with phantom indices. It might be possible to lift this limitation,
but we leave that as future work and concern ourselves exclusively
with polymonad with phantom indices in the following.

The present paper makes the following contributions:

• Formalization of polymonads (Section 3):

– Full formalization of polymonads in the proof assistant
Agda [28], paving the way for formally establishing
properties central for a correct implementation.

– A proof that two bind operations with the same type
are extensionally equal, justifying using type classes for
implementing polymonads.

– A formal study of the union of polymonads and its prin-
cipality.

Our work revealed an imprecision in the definition of princi-
pality in Hicks et al. [13].

• The first implementation of polymonads for a full-scale lan-
guage, Haskell in our case:

– A representation of polymonads in Haskell, including a
type class, common library functions and adapted pre-
lude. (Section 4).

– A demonstration of the utility of our system through
examples concerned with session types and the effect
monad (Section 4.3 and Section 4.4).

– A plugin for the GHC type checker to solve polymonad
constraints (Section 5).

Note that the work presented here is orthogonal to the recent changes
in GHC’s Monad type class hierarchy and therefore not impacted by
it.

Additionally, we present a novel algorithm for detecting the cor-
rect set of bind operations for the current polymonad (Section 6).
Since principality is preserved by the union of polymonads, the
algorithm is not essential, but we include it regardless as it can im-
prove efficiency and might aid future generalizations.

The paper concludes with discussions on related work (Section 7)
and how limitations of the current approach might be addressed and
how other monad-like notions, such as constrained monads, might
be covered (Section 8).

2. MOTIVATING EXAMPLE
To give an example of the notational advantages of integrating

polymonads into Haskell, we present a small application written
using the session type implementation provided by Pucella and
Tov [34]. It is available through the simple-sessions package
[44] and uses the parameterized monad implementation from the
indexed package [33]. Our example application will be a server
and a client that exchange “Ping” and “Pong” messages for a set
amount of three times. Session types capture the protocol stati-
cally, ensuring that the participating processes will work together
correctly.

The nub of the protocol specification is captured by the types
Ping and Pong:

type Ping = Eps :+: (String :!: String :?: Var Z)
type Pong = Eps :&: (String :?: String :!: Var Z)

The type Ping says that a process with this type can make an active
choice (:+:) between, on the one hand, terminating (Eps), and, on
the other, sending a string (:!:), then receiving a string (:?:), and
then following whatever protocol that is bound to the variable with
de Bruijn index zero (Var Z). Such variables are typically, as here,
used to allow protocols to be recursive, the recursive knot being
tied in a suitable context. The type Pong says that a process with
this type can make a choice as required between, on the one hand,
terminating and, on the other, receiving a string, sending a string,
and then following a protocol bound to the variable. Note that Ping
and Pong are complementary and thus fit together.

The code for the “Ping” server is as follows. The type Cap rep-
resents the capability to run a protocol, providing an environment
that binds all free variables, while the type Session s s’ a is
the actual indexed monad, representing a computation that evolves
from state s to state s’ producing a result of type a.

ping :: Int -> Session (Cap (Ping, ()) Ping) () ()
ping 0 = do

sel1; close
where

ma >> mb = ma >>>= \_ -> mb
ping n = do

sel2; send "Ping"
rsp <- recv
io $ putStrLn rsp
zero; ping (n - 1)
where

(>>=) = (>>>=)
ma >> mb = ma >>>= \_ -> mb

When the counter n reaches zero, the server closes the connec-
tion after first having indicated that it has opted for the first choice
(according to the protocol) through the session action sel1. If
the counter is greater than zero, the repeating path is chosen. In
this case the server again indicates its choice (the second choice,
sel2), and then sends a “Ping” message and waits for the “Pong”
reply. The call to zero restores the zeroth protocol from the envi-
ronment, matching the de Bruijn index of the session variable Var
Z, paving the way for the next repetition of ping.

As the session monad is indexed, it cannot be made an instance
of the standard monad class. Instead, a dedicated bind operation
>>>= is provided. A custom pre-processor then uses this bind op-
eration for translating the do-notation. However, a custom pre-



processor is a somewhat heavy-handed solution, and does not work
well with other monads.

An alternative is to use GHC’s support for rebindable syntax [43,
Section 7.3.16]. For translation of the do-notation, this means that
whatever version of bind (>>=) and sequence (>>) that are in scope
are used in place of the standard operations. However, unless we
are in a situation where we only ever work with a single monad, in
which case that one can be brought into scope once and for all while
hiding the standard definitions, the implication is that we need to
ensure that the right version of these operations are in scope for
each do-block; e.g., through where-clauses as here. Clearly, this
will quickly becomes tedious, and having nested computations in-
volving other monads would make the situation even worse. Using
rebindable syntax is expedient for many purposes, but it is not a
replacement for proper overloading.

The “Pong”-client is similar to the “Ping”-server. It offers the
server to either close the connection or receive its “Ping” message
and respond with a “Pong”:

pong :: Session (Cap (Pong, ()) Pong) () ()
pong = offer close $ do

rsp <- recv
io $ putStrLn rsp
send "Pong"
zero; pong
where

(>>=) = (>>>=)
ma >> mb = ma >>>= \_ -> mb

Again, note the where-clause.
Finally, we can run our server and client by setting up a ren-

dezvous between them. The server is forked into a new thread while
the client runs in the current thread:

main :: IO ()
main = do

rv <- newRendezvous
_ <- forkIO $ accept rv

$ enter >> ping 3
request rv $ enter >> pong

Here, we are using the standard monad, and, as the standard bind
and sequence operations are the only ones in scope, we don’t need
to be explicit about which ones to use in any where-clause. Had
the parameterized monad implementation re-used the names of the
standard monadic operations, as is the case with several other li-
braries [38, 29, 21], we would have had to be explicit about which
operators to use in this case as well.

A single, general monad notion, such as polymonads, covering
indexed as well as standard monads, obviates the need for explicitly
choosing the right monad by allowing the choice to be handled by
overloading resolution in the standard way. Another advantage is
that common library functions, such as filterM, when or foldM,
can be provided centrally, instead of having to be reimplemented
for each new monadic type. Our Haskell library [6] containing
the polymonad plugin indeed provides these library function for
polymonads.

3. FORMALIZATION OF POLYMONADS
We have formalized polymonads and their principality in Agda,

allowing us to establish properties central for a correct implemen-
tation in Haskell. The formalization also revealed a slight im-
precision in the notion of principality given in Hicks et al. [13].
The Agda sources of the formalization and proofs are available on
GitHub [7].

In the interest of brevity we are going to use the following nota-

tion when referring to the type schema of a bind operation:

(M,N)�P
def
= ∀ α β .M α → (α → N β )→ P β ,

To make the notions with which we are working clear, we start
by recapitulating the definitions of polymonads (Definition 1) and
principal polymonads (Definition 3) from Hicks et al. [13].

Definition 1. A polymonad (M ,Σ) consists of a collection M of
unary type constructors, with a distinguished element Id∈M , such
that Id τ = τ , and a collection Σ of bind operations such that the
laws below hold. For all M,N, . . . ,U ∈M :

Functor
∃ b : (M, Id)�M. b ∈ Σ and
∀ b : (M, Id)�M. [b ∈ Σ =⇒ b m (λ y. y) = m]

Paired morphisms
[∃ b1 : (M, Id)�N. b1 ∈ Σ]⇐⇒ [∃ b2 : (Id,M)�N. b2 ∈ Σ]
and
∀ b1 : (M, Id)�N,b2 : (Id,M)�N.
[{b1,b2} ⊆ Σ =⇒ b1 ( f v) (λ y. y) = b2 v f ]

Diamond
[∃ P ∈M .∃ b1 : (M,N)�P,b2 : (P,R)�T. {b1,b2} ⊆ Σ]
⇐⇒
[∃ S ∈M .∃ b3 : (N,R)�S,b4 : (M,S)�T. {b3,b4} ⊆ Σ]

Associativity
∀ b1 : (M,N)�P,b2 : (P,R)�T,
b3 : (N,R)�S,b4 : (M,S)�T.
[{b1,b2,b3,b4} ⊆ Σ =⇒ b2 (b1 m f ) g = b4 m (λ x. b3 ( f x) g)]

Closure
∃ b1 : (M,N)�P,b2 : (S, Id)�M,
b3 : (T, Id)�N,b4 : (P, Id)�U.
[{b1,b2,b3,b4} ⊆ Σ =⇒ ∃ b : (S,T)�U. b ∈ Σ] 4

The functor law ensures, that for each type constructor there is a
bind operation resembling the mapping function of a functor; it also
assures that this mapping function only operates on the computed
value and does not produce side-effects, as to be expected from a
functor. Thereby, it resembles the functor prerequisite of standard
monads. The functor law we present here slightly deviates from the
one presented by Hicks et al. [13]. Our version includes a separate
quantification for the equation. In the original version the quantifi-
cation of the equation is missing and it therefore seems as if the
equation only needs to hold for the one existing bind operation.
Both versions of Definition 1, the original and ours, are equivalent
as we prove in our formalization.

The paired morphisms law ensures that, if there is a morphism
from one type constructor to another, then the alternative way of
expressing that morphism also exists with unchanged semantics.

The diamond and associativity laws are tied together. They ex-
press that a sequence of three monadic operations can be associated
either way, and that the choice of intermediate monadic type (P or
S) that may arise due to the generality of the polymonadic bind
operators is irrelevant.

The closure law, finally, expresses, that if a sensible composition
of bind operations yields another possible bind operation, then that
bind operation also exists.

The unary type constructors of a polymonad are often partial ap-
plications of type constructors of higher arity. As we sometimes
need to refer to this (finite) set of “generating” constructors, we
define:



Definition 2. The basis of a polymonad is the smallest set of type
constructors form which all unary type constructors of a polymonad
can be obtained by partial application. 4

We now turn to principality of polymonads. The following defi-
nition is a refinement of the original version, addressing the afore-
mentioned imprecision:

Definition 3. A polymonad (M ,Σ) is a principal polymonad if and
only if for any set F ⊆M 2 with F 6= /0, and any {M1,M2} ⊆M
such that

• ∀ (M,M′) ∈ F. ∃ b : (M,M′)�M1. b ∈ Σ and

• ∀ (M,M′) ∈ F. ∃ b : (M,M′)�M2. b ∈ Σ,

then there exists M̂ ∈M such that

• ∃ b1 : (M̂, Id)�M1,b2 : (M̂, Id)�M2. {b1,b2} ⊆ Σ and

• ∀ (M,M′) ∈ F. ∃ b : (M,M′)� M̂. b ∈ Σ.

We call M̂ the principal join of F and write it as
⊔

F . 4

The notion of principality is important, because the principal join
is used by the polymonad solving algorithm to pick a type construc-
tor for ambiguous variables it encounters. In essence, if a poly-
monad is principal, this means that whenever there is a choice of
type constructor, the overall effect is invariant under this choice,
and it is furthermore always possible to make a canonical choice.

As an example, assume we have two bind operations with types
(M,N)� t and (t, Id)�P, where M,N,P ∈M and t is an am-
biguous variable that could be resolved to one of a number of type
constructors. The closure law tells us that there has to exist a bind
operation of type (M,N)�P. Since we know that our polymonad
is principal this implies that there has to exist a type constructor that
is suitable for t and that is

⊔
F . That this choice yields a correct

and sound solution was shown by Hicks et al. [13].
The definition of principality presented here deviates from the

original definition in that it insists that F be non-empty. This re-
striction is important, because if F = /0 the preconditions are always
fulfilled and that means there has to exist an M̂ for any M1 and M2
that we choose. Personal communication with the authors of the
polymonad programming paper [13] confirmed that this behavior
is not intended.

We have verified that standard monads and certain parameter-
ized monads give rise to polymonads using our formalization. We
also verified that standard monads and parameterized monads with
phantom indices are principal. These results were mentioned in an
unpublished paper by Guts et al. [12] and the polymonad program-
ming paper [13].

The formalization of polymonads in Agda was straightforward.
The preconditions of the lemmata presented in the following sec-
tions mostly arose in the process of trying to prove them without

the respective precondition. We assume Id τ
def
= τ from this point

on.

3.1 Uniqueness of bind operations
Although polymonads do not restrict the number of bind opera-

tions with the same type, we have shown that bind operations with
the same type have the same behavior; i.e., they are extensionally
equal:

Lemma 1 (Uniqueness of bind operations). Let (M ,Σ) be a poly-
monad. Then, for all M,N,P ∈M :

∀ b1,b2 : (M,N)�P. [{b1,b2} ⊆ Σ =⇒ b1 = b2] .

Our result justifies using type classes for overloading the bind
operation: there can only be one instance of a type class per com-
bination of arguments to the type class head, but, as two bind oper-
ations with the same type are equal, that suffices.

The same argument also works in the opposite direction. If there
is a constraint without type variables and several overlapping type
class instances that match it, then we can pick an arbitrary matching
instance without jeopardizing the runtime behavior.

3.2 Union of polymonads
In the introduction we mentioned that the polymonad instances

are all collected centrally in Haskell. It is therefore important to
know whether a union of polymonads constitutes a polymonad in
its own right, and whether polymonad union preserves principality.
We start by considering the first question.

Lemma 2 (Identity polymonad). Define the function bindId as

bindId : (Id, Id)� Id

bindId x f def
= f x

Then MId
def
= {Id} and ΣId

def
= {bindId} form the identity poly-

monad (MId,ΣId) with Id as the distinguished identity type con-
structor.

We assume that Id is the distinguished type constructor in all
of our polymonads, as will be the case in Haskell. Based on this
assumption we prove that the union of polymonads, if they share
the bindId bind operation, is a polymonad itself.

Lemma 3 (Union of polymonads). Let (M1,Σ1) and (M2,Σ2) be
polymonads with the same distinguished type constructor Id such
that

(1) MId = M1 ∩M2 and ΣId = Σ1 ∩ Σ2

(2) ∀ b : (M,N)� Id. [b ∈ Σ1 =⇒ M= Id∧N= Id]

(3) ∀ b : (M,N)� Id. [b ∈ Σ2 =⇒ M= Id∧N= Id]

Then (M1 ∪M2,Σ1 ∪ Σ2) with the distinguished type constructor
Id also forms a polymonad and:

∀ b : (M,N)� Id. [b ∈ (Σ1∪Σ2) =⇒ M= Id∧N= Id]

If (M1 ∪M2,Σ1 ∪ Σ2) forms a polymonad we call (M1,Σ1) and
(M2,Σ2) unionable.

Thus, we know that, under mild restrictions, the union of poly-
monads remains a polymonad. We consider the restrictions of Lemma 3
mild because, at least in the context of Haskell, each of the ex-
cluded bind operations with type (M,N)� Id resembles a function
to run the computations of the polymonad without giving the ad-
ditional arguments that are usually required to execute the side-
effects modeled by it. As far as we are aware, the only polymonads
that could provide such bind operations are the polymonads de-
rived from the identity-monad (or monads isomorphic to it) and
Haskell’s ST-monad. The bind operation of the identity polymonad
is allowed by the precondition and therefore the identity polymonad
remains unionable. ST can still be made a unionable polymonad as
long as it does not introduce bind operations of the form (M,N)�
Id. Although the ST monad is generalized by the IO monad the
same problem does not arise there, because there is no safe way to
compute a pure value from an IO computation. Even if we consider
the use of unsafe functions, such as unsafePerformIO, both, ST
and IO, remain unionable polymonad as long as they do not intro-
duce bind operations of the form (M,N)� Id.



Both precondition 2 and 3 are important because, without them,
the polymonad laws would require bind operations that involve type
constructors from M1 and M2 as well as the existence of bind op-
erations with type (M,N)� Id. Many popular monads and gener-
alized monads fail to meet that requirement.

3.3 Preservation of principality
We now turn to the question of whether polymonad union pre-

serves principality. It turns out that it does, and we have formally
proved this (postulating some basic results from classic set theory):

Lemma 4 (Polymonad union preserves principality). Let (M1,Σ1)
and (M2,Σ2) be polymonads with the same distinguished type con-
structor Id that are unionable and principal. Then their union (M1 ∪
M2,Σ1 ∪ Σ2) is a principal polymonad as well.

All proofs are straightforward. The interested reader is referred
to our formalization for details [7].

4. POLYMONADS IN HASKELL

4.1 Representation
In Haskell we use the Identity type from the library base as

our distinguished Id type constructor, because Identity is iso-
morphic to Id.

A key advantage of supporting polymonads in Haskell is that
this allows the do-notation to be used without having to be explicit
about which monad to use: cf. Section 2. An implementation of
polymonads thus needs to provide a replacement for the core func-
tions, >>=, >>, return and fail, used to translate the do-notation.

The >>= and >>-operator are represented through the Polymonad
type class:

class Polymonad m n p where
(>>=) :: m a -> (a -> n b) -> p b
(>>) :: m a -> n b -> p b
ma >> mb = ma >>= \_ -> mb

The functions return and fail are regular polymorphic func-
tions:

return :: (Polymonad Identity Identity m)
=> a -> m a

return x = Identity x >>= Identity

fail :: String -> m a
fail = error

When implementing a polymonad the programmer needs to pro-
vide instances for all bind operations required by the polymonad
laws (Definition 1). An example of this can be seen in Section 4.2.
In particular, an instance Polymonad Identity Identity m, serv-
ing as the return operation of the monad, has to be provided, en-
abling the use of return as a convenient shorthand. As mentioned
earlier, using type classes to represent the bind operations is valid
because there can be at most one semantic version for each type
of bind operation. Overlapping instances are not a problem for the
same reason.

To use our polymonad implementation in a module, the program-
mer has to do three things:

• Enable the GHC language extension RebindableSyntax

[43, Section 7.3.16]. This enables the >>=-operator currently
in scope to be used in do-blocks instead of the standard one.

• Import Control.Polymonad.Prelude. This module pro-
vides all the functionality of the standard Prelude, which is

not imported by default when rebindable syntax is enabled,
except that the standard monad functions are replaced with
those for polymonads.

• Activate our polymonad type checker plugin by inserting the
following line at the top of the module:

{-# OPTIONS_GHC -fplugin
Control.Polymonad.Plugin #-}

An example of a module that performs these steps can be seen in
Figure 1. The source code for the examples in this section and those
in Section 5 are available on GitHub [6].

4.2 Example: Standard monad
Every standard monad is a polymonad. An unpublished paper

by Guts et al. [12] shows how to define a polymonad version of a
given monad.

Lemma 5. If M is a monad with return and >>= as its return and
bind operations, then M forms the polymonad (MM,ΣM), where:

MM
def
= {Id,M}

ΣM
def
= {(λm f.f m) : (Id, Id)� Id,

(>>=) : (M,M)�M,

(λm f.return (f m)) : (Id, Id)�M,

(λm f.m >>= (λx.return (f x))) : (M, Id)�M,

(λm f.f m) : (Id,M)�M}

We start with the >>=-operator and the return-function, both
of which we require to compose computations and lift pure values
into a monadic computation. Therefore, they supply the binds of
type (M,M)�M and (Id, Id)�M. The functor law then requires
the existence of the (M, Id)�M and (Id, Id)� Id bind operation and
the paired morphism law requires the (Id,M)�M bind operation.
Once we have all five bind operations all of the other laws work out
as well.

Given this lemma we can create polymonad instances that work
for all monads:

instance P.Monad m => Polymonad m Identity m where
m >>= f = m P.>>= (P.return . runIdentity . f)

instance P.Monad m => Polymonad Identity m m where
(Identity a) >>= f = f a

instance P.Monad m => Polymonad m m m where
m >>= f = m P.>>= f

instance P.Monad m
=> Polymonad Identity Identity m where

(Identity a) >>= f = P.return
$ runIdentity $ f a

The qualifier P refers to the standard prelude. Note that if M is a
monad, the Polymonad m m m instance provides two of the nec-
essary bind operations of type (Id, Id)� Id and (M,M)�M respec-
tively.

These instances allow programmers to easily port existing monadic
code to polymonads by just updating the header of their modules
as described in Section 4.1. The example also illustrates how the
identity polymonad is part of every polymonad and why it needs to
be handled specially within the union of polymonads (Lemma 3).



{-# LANGUAGE RebindableSyntax #-}
{-# OPTIONS_GHC -fplugin Control.Polymonad.Plugin #-}

module ExamplePolymonadModule where

import Control.Polymonad.Prelude

Figure 1: Example of a module header that enables the use of polymonads.

4.3 Example: Hoare monad
To give an example of how a parameterized monad can become

a polymonad, we will look at the kind of parameterized monad [46,
3] that was used in our motivating example. The bind and return
operation of this kind of parameterized monad closely resemble
Hoare logic [14], where bind is the rule of composition and return
is the empty statement axiom.

class HoareMonad m where
hoareBind :: m i j a -> (a -> m j k b)

-> m i k b
hoareRet :: a -> m i i a

The polymonad instances for HoareMonad are given in Figure 2.
The necessity of each instance is given by a lemma that is analogue
to Lemma 5. Note that the type class Polymonad now describes
Hoare monads and standard monads alike. There is no need to
introduce different type classes for different monadic notions. (The
introduction of the HoareMonad class is only a convenience: we
could just as well have given the instances for the Session type
constructor directly.) This promotes code reuse, because we can
now provide library functions and utilities for polymonads once
and for all, rather than separately for each monadic notion.

Any Hoare-like polymonad can now be used by simply provid-
ing the appropriate bind and return operations through an instance
of the class HoareMonad. In the case of the simple-sessions

package [44] the instance is simply:

instance HoareMonad Session where
hoareBind = (>>>=)
hoareRet = ireturn

where >>>= and ireturn are supplied by the indexed package
[33] that was used to implement simple-sessions. By follow-
ing our guide at the end of Section 4.1, the programmer can now
implement the server and client of the motivating example as fol-
lows:

type Ping = Eps :+: (String :!: String :?: Var Z)
type Pong = Eps :&: (String :?: String :!: Var Z)

main :: IO ()
main = do
rv <- newRendezvous
_ <- forkIO $ accept rv

$ enter >> ping 3
request rv $ enter >> pong

ping :: Int -> Session (Cap (Ping, ()) Ping) () ()
ping 0 = do

sel1; close
ping n = do
sel2; send "Ping"
rsp <- recv
io $ putStrLn rsp
zero; ping (n - 1)

pong :: Session (Cap (Pong, ()) Pong) () ()
pong = offer close $ do

rsp <- recv
io $ putStrLn rsp
send "Pong"
zero
pong

The where-clauses have been removed as it is no longer necessary
to specify which bind and return operation to use where, resulting
in code that is significantly less cluttered and thus easier to both
write and maintain. In particular, the do-notation is used just like
for standard monads: proper syntactic support for monadic pro-
gramming has been regained.

4.4 Example: Effect monad
As a second example, we look at the effect monad [19] and how

its Haskell realization [30] can be used as a polymonad. The effect
monad provides a composable way of modeling effects. It has one
index describing the (possible) effects of a computation. This index
has a monoidal structure, where the neutral element indicates that
there are no effects, and the monoidal operation combines the ef-
fects of two computations. The effect-monad [29] package pro-
vides the following type class capturing these ideas:

class Effect m where
type Unit m :: k
type Plus m f g :: k
type Inv m f g :: Constraint

return :: a -> m (Unit m) a
(>>=) :: Inv m f g

=> m f a -> (a -> m g b)
-> m (Plus m f g) b

(>>) :: Inv m f g
=> m f a -> m g b -> m (Plus m f g) b

Unit, Plus and Inv are associated type synonyms that describe
the index monoid. Unit is the neutral element, used in the type
signature of return to show that return has no side effects. Plus is
the monoidal operation. The signatures of bind and sequence show
how the effects of the two constituent computations are combined
in the type of the overall computation. Finally, the Inv-synonym
gives constraints that are necessary to ensure the correct monoidal
behavior of the indices and Plus.

Figure 3 demonstrates how to implement the Polymonad in-
stances for effect monads. Note that the implementation is essen-
tially the same as for Hoare monads. The major difference are the
additional constraints describing the monoidal structure of the in-
dices. Most of these constraints are a direct consequence of the
types involved in the implementation. We want to highlight the
validity of a particular constraint that may cause confusion:

f ~ Plus m f (Unit m)

Because it is recursive, it may seem unsolvable. However, t is solv-
able as long as the Effect instance ensures that its instantiations of
Unit and Plus follow the monoid laws. As the constraint encodes



instance HoareMonad m => Polymonad (m i j) (m j k) (m i k) where
(>>=) = hoareBind

instance HoareMonad m => Polymonad Identity Identity (m i i) where
(>>=) ma f = (hoareRet . runIdentity . f . runIdentity) ma

instance HoareMonad m => Polymonad (m i j) Identity (m i j) where
(>>=) ma f = hoareBind ma (hoareRet . runIdentity . f)

instance HoareMonad m => Polymonad Identity (m i j) (m i j) where
(>>=) ma f = f (runIdentity ma)

Figure 2: Polymonad instances for Hoare monads.

instance (Effect m, h ~ Plus m f g, Inv m f g)
=> Polymonad (m (f :: k)) (m (g :: k)) (m (h :: k)) where

(>>=) = (E.>>=)

instance (Effect m, h ~ Unit m) => Polymonad Identity Identity (m (h :: k)) where
a >>= f = (E.return . runIdentity . f . runIdentity) a

instance (Effect m, E.Inv m f (Unit m), f ~ Plus m f (Unit m))
=> Polymonad (m (f :: k)) Identity (m (f :: k)) where

ma >>= f = ma E.>>= (E.return . runIdentity . f)

instance (Effect m) => Polymonad Identity (m (g :: k)) (m (g :: k)) where
a >>= f = f (runIdentity a)

Figure 3: Polymonad instances for certain effect monads.

the right identity of a monoid, Plus m f (Unit m) will always
evaluate to f in a law abiding instance and the constraint becomes
trivial.

The kind annotations are necessary: without them GHC would
infer kind * that would not match the lifted data kind indices that
are usually used with effect monads. We have to use type equality
constraints to specify the shape of the indices, because type syn-
onym applications are not allowed to appear on the right side of
the instance head. To implement the instances we need to activate
the following language extensions: TypeFamilies, DataKinds,
PolyKinds, FlexibleInstances, UndecidableInstances and
MultiParamTypeClasses. The qualifier E refers to the module
Control.Effect from the effect-monad package.

We will now illustrate this using a specific effect monad Counter,
first directly, without using polymonads, and then using our poly-
monad extension. Counter is an instance of Effect where the
index is a type-level natural number and the monoidal operation is
addition. The index can be used to count how often certain opera-
tions have been invoked and thereby limit the use of those opera-
tions. The tick function sets the counter to 1. Consequently, the
type of a combined computation will reflect how many ticks it
contains. Operationally, tick is just the identity function:

tick :: a -> Counter 1 a

For our example we define a function specialOp, which adds two
numbers. We want to limit the use of our special operation and
therefore it increments the type-level counter.

specialOp :: Int -> Int -> Counter 1 Int
specialOp n m = tick (n + m)

We then define a function, limitedOp where we, through its type
signature, promise that our special operation is called exactly three
times. In the body of the function we then call our special operation
three times to meet the promise:

limitedOp :: Int -> Int -> Int -> Int
-> Counter 3 Int

limitedOp a b c d = do
ab <- specialOp a b
abc <- specialOp ab c
specialOp abc d
where (>>=) :: Counter n a -> (a -> Counter m b)

-> Counter (n + m) b
(>>=) = (E.>>=)
fail = E.fail
return :: a -> Counter 0 a
return = E.return

Each call increments the type-level counter as per the type of bind.
As in our motivating example, without our polymonad extension,
we need to give a where-clause for the do-block to specify which
monadic operations to use. There are two important things to note
here. First, the type signature for the bind operation in the where-
clause is required. This requirement arises because the correct kind
for the indices cannot be inferred. Second, we have to provide a
definition for return, despite it not being used here. This is a pe-
culiarity of the implementation of rebindable syntax: the appropri-
ate return needs to be in scope even if it is not used in a particular
do-block. It might be possible to relax this requirement through a
refined implementation of rebindable syntax, but at present it can
lead to some confusing errors.

To call our limitedOp we write the following main-function:

main :: IO ()
main = do
print $ forget (limitedOp 1 2 3 4)
where return :: (Monad m) => a -> m a

return = P.return

The function forget runs the Counter effect monad. Again we
are required to define return, which this time is the standard one
as we are in the IO monad.

Note that type signatures are required for return in both cases.



The reason for this is the monomorphism restriction [1, Section
4.5.5]. If we activate the extension NoMonomorphismRestriction,
the type signature would no longer be required. Without a type sig-
nature and the monomorphism restriction in place, GHC tries to
pick an appropriate instance for m. This fails with an ambiguity
error as return is not used.

We did not have these issues in our motivating example because
the simple-sessions package avoided a name clash by calling its
return operation ireturn. Therefore, the rebindable syntax trans-
lation picked the standard return from the Prelude, which is in
scope globally in our case, despite the monadic computation of the
do-block being of a different type. This behavior can lead to inter-
esting errors if a return is introduced into the code at some later
point.

If we instead make use of our polymonad extension, all where-
clauses can be removed as appropriate bind operations are chosen
automatically:

main :: IO ()
main = do
print $ forget (limitedOp 1 2 3 4)

specialOp :: Int -> Int -> Counter 1 Int
specialOp n m = tick (n + m)

limitedOp :: Int -> Int -> Int -> Int
-> Counter 3 Int

limitedOp a b c d = do
ab <- specialOp a b
abc <- specialOp ab c
specialOp abc d

The resulting code is again less cluttered and easier to write and
maintain. It is no longer necessary to specify which bind and return
operations to use. The do-notation can be used the same way as
with standard monads: syntactic support has been regained.

While the above example is neat, it should be pointed out that
there are many instances of effect monads where the index is not
phantom; i.e., where the index affects the runtime behavior. Such
effect monads are not supported by the current polymonad theory
(Section 1) nor by the solving algorithm. Consequently, our plu-
gin may pick the wrong instances and produce programs yielding
unintentional results. We hope to lift this restriction in future work
(Section 8).

5. IMPLEMENTATION OF THE GHC PLU-
GIN

Programming with polymonads quickly leads to ambiguity er-
rors because the inferred constraints contain type variables that do
not appear in the overall type of expressions. The following exam-
ple illustrates the problem:

test :: Identity Bool
test = Identity True >>= return

During type checking, GHC infers the constraints Polymonad Identity

m Identity and Polymonad Identity Identity m for >>=

and return respectively, and then the following overall type for
test:

test :: ( Polymonad Identity m Identity
, Polymonad Identity Identity m)

=> Identity Bool

Note the ambiguous type variable m: as it does not appear in the
type, there will be no way to decide what type to instantiate it with
in order to pick the right Polymonad instance. This is why pro-
gramming with polymonads requires special support.

Another issue that may arise are overlapping instances. An ex-
ample for this can be seen in the standard monad instances pre-
sented in Section 4.2. In case of the Identity type constructor
several of these instances can match, meaning we need to choose
one. The uniqueness of bind operations (Lemma 1) ensures that we
can choose arbitrarily: the choice is inconsequential.

The issues described above can be addressed during the con-
straint solving step of GHC’s type checker. Since version 7.10,
GHC supports a plugin interface for extending the constraint solver
[43, Section 9.3.4]. The plugins are provided as Haskell modules
that GHC loads during compilation. Our polymonad plugin is im-
plemented using this interface and solves polymonad constraints.

A number of type-system extensions have already been realized
using the plugin interface; for example, type level natural numbers
[10] and units of measure [11]. We refer the reader to this ear-
lier work for a more in-depth description of the plugin mechanism
itself, contenting ourselves with only a brief explanation here.

For each program fragment, GHC collects the set of given con-
straints; e.g., as provided by the type signature of a function. It also
collects a set of derived constraints; e.g., derived by other plugins
or language extensions. Type checking the fragment results in a set
of wanted constraints that need to be solved. The constraint solver
iteratively tries to solve these. If the constraint solver is unable to
make progress, it asks the available type checker plugins for help.
A plugin processes the given, derived and wanted constraints of the
fragment and, if it can make progress, delivers any new derived
constraints and evidence for any wanted constraints that it was able
to solve.

Our plugin goes through the following steps when asked for as-
sistance:

• Identify the Polymonad class and Identity type construc-
tor as it cannot proceed without them.

• If there are Polymonad constraints that do not contain any
ambiguous type variables, choose an instance for them and
provide their evidence.

• Look at the Polymonad instances and constraints to invoke
the detection algorithm and figure out which polymonads we
are currently working with. There can be several polymon-
ads involved in the constraints because local do-blocks for
different polymonads can be used within a do-block. The
following steps are then applied to each polymonad and its
associated constraints:

• Try to simplify the constraints using the simplification rules
presented in Hicks et al. [13]. This reduces the number of
constraints to solve and also makes error messages more read-
able. If simplification made any progress, control is given
back to GHC. It can then try to solve the constraints using the
newly available information. Should GHC get stuck again, it
will ask the plugin for further assistance.

• If the simplification did not make any progress, we invoke
the solving algorithm that is based on the coherence proof of
Hicks et al. [13].

The polymonad plugin is fully implemented, but there are still some
examples for which issues arise. We will return to this in Section 8.

6. DETECTION OF BIND-OPERATIONS
The simplification and solving algorithm presented by Hicks et

al. [13] is based on the knowledge of the current polymonad. Since
we know that principal polymonads preserve principality under union,



a detection algorithm to determine the correct set of bind operations
for a polymonad is not necessary. However, such an algorithm can
still be useful. Firstly, it can improve the overall efficiency of the
plugin. Secondly, and more importantly, detecting the correct set
of bind operations may also be necessary in the setting of further
generalizations (Section 8).

Assumptions.
The detection algorithm assumes that the basis (Definition 2) of a

polymonad has no elements in common with any other polymonad
basis except for Id. Further, it is also assumed that all type con-
structors in the basis of the polymonad in question are used in a
do-block.

The latter may seem to be overly restrictive. However, typically,
and in particular for all polymonads we have come across, the ba-
sis contains just a single element beside Id. Of course, the basis
of the union of two polymonads would contain more than one el-
ement beside Id (under the assumption of no sharing), but that is
not a problem: the detection algorithm simply returns one of the
constituent polymonads rather than their union. If necessary, the
programmer can always translate a polymonad with a basis with
more than one type constructor (beside Id) into a polymonad with
a single one by careful indexing.

Algorithm.
At the beginning of the detection process we have three sets to

work with: the set of all Polymonad instances ΣHaskell in Haskell,
the set of given constraints CGiven that were assumed in type signa-
tures, and the set of wanted constraints CWanted that GHC inferred
and is not able to solve. CGiven also contains the derived constraints,
which were derived during GHC’s constraint solving. Therefore,
the derived constraints are treated as if they were given for the pur-
poses of this algorithm.

To separate the wanted constraints for each polymonad from

each other we construct the following directed graph G def
= (V,E):

V def
= {K | K ∈ {M,N,P | (M,N)�P ∈CWanted},K 6= Id}

E def
= {(K,L) | (K,L) ∈ {(M,P),(N,P) | (M,N)�P ∈CWanted},

K 6= Id,L 6= Id})

The nodes in each weakly connected component Gi = (Vi,Ei) of G
represent the set of unary type constructors that belong to the same
polymonad with the exception of Id. Id is excluded from the graph
as it is part of every polymonad and thereby would cause all of the
components in G to be interconnected.

The process works because constraints belonging to different
polymonads do not share type constructors, while constraints be-
longing to the same polymonad do: the monadic computation is
composed through the bind operation and therefore the result of
one bind operation is the input of another bind operation. The con-
straints are thus linked by common type constructors. The wanted
constraints that belong to each determined polymonad are those
that formed the edges in the weakly connected component.

In the next parts of the algorithm we use the function baseCons
that takes a set of unary type constructors as argument and returns
their basis. This function is required, because the unary type con-
structors in Vi are not limited to the indices they are applied to in
the wanted constraints.

Now that we determined the type constructors baseCons(Vi)
and the wanted constraints Ci

Wanted of the involved polymonads, we
have to determine which given constraints and instances belong to
these polymonads. To do so, we go through all of the available

instances σ ∈ ΣHaskell and check if there is a substitution of the
type constructors in baseCons(Vi)∪{Id} for the arguments of the
head of σ such that the instance head and context is instantiated. If
that is the case we keep the instance for the current polymonad.
The same process can be applied to the given constraints in CGiven.

At the end of this process the detection algorithm delivers a col-
lection of polymonads (baseCons(Vi)∪ {Id},Ci

Given ∪ Σi
Haskell)

and their wanted constraints Ci
Wanted. The wanted constraints can

then be simplified and solved using this information.

Correctness.
Formally proving the correctness of this algorithm is compli-

cated and remains future work. We content ourselves by stating
the key points for the correctness in the remainder of this section.

Due to our assumption that every do-block uses all type con-
structors in the basis of the polymonad it is applying, we know that
our algorithm cannot collect more or fewer type constructors than
belong to that polymonad. We can also be sure that all relevant
instances are found, because we assume that polymonads do not
share type constructors.

7. RELATED WORK
Swamy et al. [42] previously worked on automatically insert-

ing bind and return operations into programs as necessary. This
allows a programmer to mix pure and monadic computations with-
out having to explicitly lift values or mechanically insert bind op-
erations. The system also covers morphisms between monads. If
morphisms are provided, the system automatically picks the cor-
rect overall monad and lifts values and computations through the
provided morphisms as necessary. The polymonad programming
paper [13] builds on this work, generalizing the approach to poly-
monads.

Edward Kmett developed a package called monad-param [21].
His package introduces a generalization of monads that appears
very similar to polymonads:

class (Functor m, Functor n, Functor p)
=> Bind m n p | m n -> p where

(>>=) :: m a -> (a -> n b) -> (p b)

Kmetts class requires all involved type constructors to be functors
and also separates the return-function from his Bind-class. The
major differences to polymonads are the imposed functional depen-
dency and that the return-function always returns its results in the
Identity monad. As he describes in a blog post [22], the func-
tional dependency is necessary to make type inference in Haskell
feasible when programming with Kmetts generalization. The draw-
back of the functional dependencies is that they prohibit morphisms
into several different result type constructors. If we have three
monads M1, M2, M3, and we know how to transform instances
of M1 into and instance of M2 or M3, then we can give an in-
stance of Bind M1 Identity M2 or Bind M1 Identity M3,
but we can’t provide both instances. The return-function being
hard-wired to the Identity monad results in the requirement to
manually lift monadic computations in some cases. Kmett also
does not state which laws should hold and he does not give rules
for which instances are necessary for his approach to work prop-
erly. Although he does point out a pattern for instances involving
Identity that is very similar to the instances required by a poly-
monad.

Another generalization of monads is the notion of relative mon-
ads introduced by Altenkirch et al. [2]. Standard monads are essen-
tially endofunctors, with additional laws. Relative monads general-
ize the notion of a monad by looking at functors between different



categories instead of endofunctors.
Jones [16] suggests the integration of custom improvements for

constraints within Haskell. Custom improvements associate pat-
terns of constraints containing open type variables with equations
involving those type variables to aid constraint solving. Stuckey
and Sulzmann [40] developed a theory of constraint handling rules
for functional languages with constraint systems based on this idea.
Though the theory behind constraint handling rules shows that they
are Turing complete [39], it is unclear for us how to formulate the
solving algorithm for polymonads using this approach. Another
problem is that there is no working implementation of constraint
handling rules for GHC. Although there was an implementation in
form of the custom language Chameleon [41], this implementation
is not publicly available anymore. Thus, at present, GHC plugins
are to our knowledge the most practical way of making polymonads
work with a full-scale language.

Unpublished work by Rivas and Jaskelioff [35] presents a cate-
gorical generalization of applicative functors, monads and arrows
as monoids in monoidal categories. This work unifies these differ-
ent notions of computation into one categorical framework, thereby
exhibiting their deeper connections. How the different generaliza-
tions of monads that we are concerned with here translate into this
framework is, however, beyond the scope of their work. However,
their insights might be useful for generalizing arrows and applica-
tive functors into “polyarrows” and “applicative polyfunctors” in a
similar way to how polymonads generalize the notion of a monad.

8. FUTURE WORK
The polymonad paper [13] identifies a few limitations of the ap-

proach. In particular, it is assumed that the indices of a polymonad
are phantom arguments; i.e., that they do not influence the runtime
behavior of the polymonad. Lifting this restriction would be inter-
esting as that would allow for polymonads such as delimited con-
tinuations, or state monads where the type of the state can change
in the course of the computation. We think it may be possible to
lift this restriction, although we suspect that non-phantom indices
in many cases would break principality, which in turn would neces-
sitate generalizing the constraint solving. On the other hand, it may
be that our detection algorithm (or some variation of it) could turn
out to be useful in a setting where principality does not hold more
generally.

Another limitation of the theory of polymonads presented in Hicks
et al. [13] is that it only allows constraints on the indices of type
constructors, but not for the result type. Constrained monads [37]
thus do not fit into the present polymonad framework. We sus-
pect that the introduction of constrained polymonads is possible
by using techniques similar to those used when introducing con-
strained monads. For constrained monads a popular approach is to
use associated constraint synonyms [5, 8, 31]. A realization of this
approach may look as follows:

class Polymonad m n p where
type Constr m n p a b :: Constraint
(>>=) :: (Constr m n p a b)

=> m a -> (a -> n b) -> p b

The associated type synonym of constraint kind then allows in-
stances to supply constraints for the result types of the bind opera-
tion. It remains future work to ensure that such an approach does
not break the polymonad theory or the constraint solving process.

GHC supports many Haskell extensions. Of relevance here are
the extensions to the type system, such as type families [8, 36]. So
far, we have focused on supporting those type system extensions
that were needed for our examples, including type families, but

we have yet to carry out comprehensive testing. At present, we
are aware of one problem related to the production of evidence for
some polymonad instances, leading to warnings in the core linting
step of GHC. The discussion of the problem on the GHC mailing
list led to the conclusion that the evidence produced by our plugin
revealed a bug in the implementation of GHC. We have reported
the issue in the GHC bug tracker1.

However, we want to emphasize that all examples presented in
this paper work. When compiling modules using our polymonad
plugin, we currently recommend enabling the option -dcore-lint
to ensure that such errors do not get ignored silently. We have yet
to cover extensions that were not used in our examples, including
functional dependencies [17], leaving that as future work.

9. CONCLUSIONS
We provided a representation of polymonads in Haskell and a

plugin for GHC that enables their use as a possible unifying notion
for generalizations of monads and standard monads. This is the
first time support for polymonads has been added to a full-scale
language.

To provide a solid foundation for our work, we formalized poly-
monads in the theorem prover Agda to establish that the actions of
our plugin are sound. We proved that choosing between two bind
operations with the same type is sound, because they are exten-
sionally equal. We also studied the union of polymonads and how
it preserves principality.

Although principality is preserved under polymonad union, we
provide a detection algorithm to detect the polymonad used and
collect polymonad instances relevant for that polymonad. This may
be useful when we look at future generalizations.

All of this work enables the use of polymonads as a unifying
notion for standard monads and parameterized monads with phan-
tom indices. This obviates the need to give several different notions
of monad-like structures by unifying them into a single type class.
Code reuse is also promoted as utility functions can now be defined
once for all polymonads, rather than providing separate versions for
different monadic notions. Finally, polymonads re-establish proper
syntactic support for all supported monadic structures through the
do-notation. Without polymonads, it becomes tedious and error
prone to use more than one monad notion at a time as the right
monad notion needs to be brought into scope explicitly for each
do-block. With polymonads, the do-notation can be used without
any additional “annotations”, just like standard monads.

In conclusion, the work so far is a step towards a general unified
notion of monad-like structures and their support in Haskell. There
is still work to be done. In particular, the polymonad constraint
solving algorithm has to be generalized such that it also supports
parameterized monads with non-phantom indices and constrained
monads.
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