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Abstract:  

We propose a simple, parameter-free method that, for the first time, makes it possible to completely observe 

Tversky and Kahneman’s (1992) prospect theory. While methods existed to measure event weighting and the 

utility for gains and losses separately, there was no method to measure loss aversion under ambiguity. Our 

method allows this and thereby it can measure prospect theory’s entire utility function. Consequently, we can 

properly identify properties of utility and perform new tests of prospect theory. We implemented our method 

in an experiment and obtained support for prospect theory. Utility was concave for gains and convex for losses 

and there was substantial loss aversion. Both utility and loss aversion were the same for risk and ambiguity, as 

assumed by prospect theory, and sign-comonotonic trade-off consistency, the central condition of prospect 

theory, held.  
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1. Introduction 
 

Loss aversion, the assumption that people are more sensitive to losses than to commensurate gains, 

is a central element of prospect theory (Kahneman and Tversky 1979, Tversky and Kahneman 1992) 

and key to explaining deviations from expected utility (Rabin 2000, pp. 1288-1289). There is 

abundant qualitative evidence for loss aversion, from both the lab and the field (Barberis 2013, Fox 

and Poldrack 2014, Wakker 2010). However, measuring loss aversion is difficult. It requires the 

simultaneous measurement of utility for gains and utility for losses, which is complicated by prospect 

theory’s assumption that decision weighting for gains and losses may differ. As a result, existing 

measurements of loss aversion impose simplifying assumptions, typically linear utility for gains and 

losses and no probability weighting.  

 

Abdellaoui et al. (2007) was the first to propose a method for measuring loss aversion that did not 

have to impose simplifying assumptions about utility or probability weighting. Their method is design

ed for decision under risk, where objective probabilities are known. In most real-world decisions (e.

g., the success of new medicines, the dangers of climate change, returns on investments in R&D), 

objective probabilities do not exist or are unknown and such decisions under ambiguity are now 

widely studied in both the empirical and the theoretical literature. It is difficult to extend the method 

of Abdellaoui et al. (2007) to decisions under ambiguity.1 

 

This paper introduces a method to measure loss aversion under ambiguity without making 

simplifying assumptions about prospect theory’s parameters. It makes it possible, for the first time, 

to completely observe Tversky and Kahneman’s (1992) prospect theory.2 Parameter-free methods to 

measure prospect theory’s other parameters had been introduced before. Wakker and Deneffe 

(1996) showed how utility for gains and losses can be measured separately. Abdellaoui (2000) and 

Bleichrodt and Pinto (2000) showed how probability weights can be measured in decision under risk. 

Abdellaoui et al. (2005) showed how event weights can be measured in decision under ambiguity. 

Abdellaoui et al. (2007) showed how loss aversion can be measured in decision under risk. There did 

not yet exist a method to measure loss aversion under ambiguity and this is what our paper achieves. 

Hence, this paper completes a program to make prospect theory observable.  

 

                                                           
1
 This extension requires finding events with decision weight ½, which can be complex. 

2
 Throughout this paper we use the term prospect theory for the 1992 version of the theory and the term 

original prospect theory (OPT) for the 1979 version. Because we only consider two-outcome prospects, OPT is 
the special case of prospect theory for decision under risk in which probability weighting for gains and losses 
are the same. 
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Our method is simple and uses only one response mode, which reduces the cognitive burden on 

subjects. It can quantify loss aversion through three preference elicitations and it does not require 

the complete measurement of utility. Our method is based on the trade-off method of Wakker and D

eneffe (1996). In its original form the trade-off method can only measure the utility for gains and the 

utility for losses separately and, consequently, it cannot measure loss aversion. We extend the trade-

off method so that it can measure the utility for gains and losses simultaneously, and thus loss aversi

on. This extension is not only useful from an empirical perspective, but also has theoretical merits. T

here is a close connection between measurements using the trade-off method and axiomatizations o

f decision theories (Köbberling and Wakker 2003). Our method may help to simplify existing preferen

ce characterization and to develop new ones.  

 

Because our method can completely measure prospect theory’s utility function, it also permits new t

ests of prospect theory. We implemented our method in an experiment and show that our measure

ments can easily be used to test the central condition of prospect theory, sign-comonotonic trade-off 

consistency. We also test whether both utility and loss aversion are the same under risk and ambiguit

y, as assumed by prospect theory. Our data is consistent with prospect theory. We could neither 

reject sign-comonotonic trade-off consistency nor in most cases the null hypotheses that utility and 

loss aversion were the same under risk and ambiguity. Utility had prospect theory’s hypothesized 

shape, concave for gains and convex for losses, and there was substantial loss aversion. 

 

2. Background 

2.1. Binary prospect theory 

Consider a decision maker who has to make a choice in the face of ambiguity. Ambiguity is modeled 

through a state space 𝑆. Exactly one of the states will obtain, but the decision maker does not know 

which one. Subsets 𝐸 of 𝑆 are events and 𝐸𝑐 denotes the complement of 𝐸.  

Prospects map states to outcomes. Outcomes are money amounts and more money is preferred to 

less. In our measurements, we will only use two-outcome prospects 𝑥𝐸𝑦, signifying that the decision 

maker obtains €𝑥 if event 𝐸 occurs and €𝑦 otherwise. If probabilities are known, we will write 𝑥𝑝𝑦 

for the prospect that pays €𝑥 with probability 𝑝 and €𝑦 with probability 1 − 𝑝. We will refer to 𝑥𝐸𝑦 

as an ambiguous prospect (meaning that probabilities are unknown) and to 𝑥𝑝𝑦 as a risky prospect 

(meaning that probabilities are known).  

The decision maker has preferences over prospects and we use the conventional notation ≻, ≽, and 
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∽ to denote strict preference, weak preference, and indifference. Preferences are defined relative to 

a reference point 𝑥0. Gains are payoffs higher than 𝑥0 and losses are payoffs lower than 𝑥0. A 

prospect is mixed if it involves both a gain and a loss. For mixed prospects, the notation 𝑥𝐸𝑦 signifies 

that 𝑥 is a gain and 𝑦 is a loss. A gain prospect involves no losses (i.e., both 𝑥 and 𝑦 are at least as 

great as 𝑥0) and a loss prospect involves no gains. For gain and loss prospects the notation 𝑥𝐸𝑦 

signifies that the absolute value of 𝑥 exceeds the absolute value of 𝑦 (i.e., for gains 𝑥 ≥ 𝑦 and for 

losses 𝑥 ≤ 𝑦).  

Under binary prospect theory (PT) the decision maker’s preferences over mixed prospects 𝑥𝐸𝑦 are 

evaluated by: 

𝑊+(𝐸)𝑈(𝑥) + 𝑊−(𝐸𝑐)𝑈(𝑦),       (1a) 

and preferences over gain or loss prospects by: 

𝑊𝑖(𝐸)𝑈(𝑥) + (1 − 𝑊𝑖(𝐸)) 𝑈(𝑦),      (1b) 

where 𝑖 = + for gains and 𝑖 = − for losses. 𝑈 is a strictly increasing, real-valued utility function that 

satisfies 𝑈(𝑥0) = 0. The utility function is a ratio scale and we are free to choose the utility of one 

outcome other than the reference point. 𝑈 is an overall utility function that includes loss aversion. In 

empirical applications 𝑈 is often decomposed in a basic utility function, which captures the decision 

maker’s attitudes towards final outcomes and which can be interpreted as the rational part of utility, 

and a loss aversion coefficient 𝜆 capturing attitudes towards gains and losses (Köbberling and 

Wakker 2005, Köszegi and Rabin 2006, Sugden 2003). Our method does not require this 

decomposition. However, it does allow to decompose 𝑈 into 𝑢, the basic utility function, and loss 

aversion 𝜆 if this is considered desirable.  

The event weighting functions 𝑊𝑖, 𝑖 = +, −, assign a number 𝑊𝑖(𝐸) to each event 𝐸 such that 

(i) 𝑊𝑖(∅) = 0 

(ii) 𝑊𝑖(𝑆) = 1 

(iii) 𝑊𝑖 is monotonic: 𝐸 ⊇ 𝐹 implies 𝑊𝑖(𝐸) ≥  𝑊𝑖(𝐹). 

The event weighting functions 𝑊𝑖 depend on the sign of the outcomes and may be different for 

gains and losses. They need not be additive. For gains, binary PT contains most ambiguity models as 

special cases,3 as was pointed out by Luce (1991) and Ghirardato and Marinacci (2001). These 

                                                           
3
 For example, Choquet expected utility (Schmeidler 1989), maxmin expected utility (Gilboa and Schmeidler 
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ambiguity models only differ when the number of outcomes is at least three. Equations (1a) and (1b) 

represent the extension of these models to include sign-dependence. 

Binary PT evaluates mixed risky prospects 𝑥𝑝𝑦 by  

𝑤+(𝑝)𝑈(𝑥) + 𝑤−(1 − 𝑝)𝑈(𝑦)       (2a) 

and gain and loss risky prospects 𝑥𝑝𝑦 as 

𝑤𝑖(𝑝)𝑈(𝑥) + (1 − 𝑤𝑖(𝑝)) 𝑈(𝑦), 𝑖 = +, −.     (2b) 

𝑤𝑖 is a strictly increasing probability weighting function that satisfies 𝑤𝑖(0) = 0 and 𝑤𝑖(1) = 1 and 

that, again, may differ between gains and losses. Hence, in the evaluation of risky prospects the 

event weighting functions 𝑊𝑖 are replaced by probability weighting functions 𝑤𝑖. Equations (2a-b) 

include most theories of decision under risk as special cases.4
 

 

2.2. Previous evidence 

Because we concentrate on utility and loss aversion in this paper, we will only discuss the empirical 

literature on these two elements of prospect theory. For an extensive review of the literature on 

probability weighting and event weighting see Wakker (2010) and Fox and Poldrack (2014). 

 Tversky and Kahneman (1992) assume that utility differs between gains and losses and is S-shaped: 

concave for gains and convex for losses. In addition, they assume that utility is steeper for losses 

than for gains, reflecting loss aversion. Nearly all the empirical evidence on utility comes from 

decision under risk. There is much evidence that utility for gains is indeed concave (Wakker 2010), 

but for losses the evidence is somewhat mixed. Although most studies found convex utility, some 

studies also found linear or concave utility (for example, Bruhin et al. 2010). For losses, utility usually 

was closer to linearity than for gains. 

Empirical evidence on utility under ambiguity is scarce. Abdellaoui et al. (2005) confirmed that utility 

under ambiguity was concave for gains and slightly convex for losses. Their parametric estimates 

were close to those previously obtained under risk, but they did not directly measure utility under 

risk. Abdellaoui et al. (2011) and Vieider et al. (2013) measured utility under risk and under 

                                                                                                                                                                                     

1989), -maxmin expected utility (Ghirardato et al. 2004), and contraction expected utility (Gajdos et al. 2008).
4
 For example, original prospect theory (Kahneman and Tversky 1979), rank-dependent expected utility 

(Quiggin 1981, Quiggin 1982), prospective reference theory (Viscusi 1989), and disappointment aversion 
theory (Gul 1991). 
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ambiguity for small stakes and under parametric assumptions about utility. Abdellaoui et al. (2011) 

found that utility was moderately concave for both risk and ambiguity, while Vieider et al. (2013) 

found linear utility.  

Nearly all empirical measurements of loss aversion made simplifying assumptions, typically assuming 

linear utility and either ignoring probability weighting (Baltussen et al. forthcoming, Booij and van de 

Kuilen 2009, Pennings and Smidts 2003)5 or assuming equal weighting for gains and losses (Gaechter 

et al. 2007). Of these studies, only Baltussen et al. (forthcoming) estimated loss aversion under both 

risk and ambiguity. They reported more loss aversion under ambiguity than under risk when subjects 

made their decision in public, but not when they did so in private. Abdellaoui et al. (2007) measured 

loss aversion under risk without imposing simplifying assumptions on either utility or probability 

weighting. To the best of our knowledge, such “clean” estimates of loss aversion do not exist for 

decision under ambiguity. 

Most studies found loss aversion coefficients around 2, meaning that losses weight approximately 

twice as much as absolutely commensurate gains (Booij et al. 2010, Fox and Poldrack 2014). A 

difficulty in comparing the results of these studies is that they not only made different parametric 

assumptions, but also used different definitions of loss aversion.  

 Finally, even though binary PT is consistent with much of the empirical data on decision under risk 

and ambiguity and includes many models as special cases, there is some evidence challenging it. For 

example, Birnbaum and Bahra (2007) and Wu and Markle (2008) obtained violations of binary PT for 

mixed prospects. Because of this negative evidence, we included a test of sign-comonotonic trade-

off consistency, the main condition underlying binary PT, in our experiment. This test is explained 

below. 

 

3. Measurement method 

Our method for measuring utility and loss aversion consists of three stages and is summarized in 

Table 1. In the first stage, a gain and a loss are elicited that connect utility for gains (measured in the 

second stage) with utility for losses (measured in the third stage). The measurements in the second 

and in the third stage employ the trade-off method of Wakker and Deneffe (1996). Within each 

domain, we determine a standard sequence of outcomes such that the utility difference between 

successive elements of the sequence is constant. The trade-off method is commonly used in decision 

                                                           
5Booij and van de Kuilen (2009) investigated the robustness of their findings by using probability weights 
estimated in other studies. 
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theory (Wakker 2010), but thus far it could only be used to measure utility for gains and utility for 

losses separately. It could not be used to measure loss aversion, which requires that the utility for 

gains and the utility for losses can be compared. Our method measures utility for gains and utility for 

losses jointly by eliciting a standard sequence of outcomes that goes through the reference point, 

and, consequently, it can measure loss aversion. In all the derivations presented below we impose 

no parametric assumptions on utility and the weighting functions 𝑊𝑖 and 𝑤𝑖, 𝑖 = +, −. Hence, our 

method is parameter-free. Our method only asks subjects to respond in terms of money and uses no 

other response scale. This reduces the cognitive demands on subjects. 

 
 

Table 1: Three-stage procedure to measure utility 

The third column shows the quantity that is assessed in each of the three stages of the procedure. The fourth column show
s the indifference that is elicited. The fifth column shows the stimuli used in our experiment. ℓ𝑎𝑙𝑡 and 𝑘𝐿𝑎𝑙𝑡

 were used to tes

t binary PT (see Section 4 for explanation). 
 

  Assessed quantity Indifference Choice variables 

Stage 1  

𝐿 𝐺𝐸𝐿~𝑥0 𝐺 =  €2000 
𝐸 = color of a ball drawn 
from an unknown Ellsberg 
urn (for the case of risk we 

replace 𝐸 by 𝑝 = ½) 
𝑥0 = 0 

𝑥1
+ 𝑥1

+~𝐺𝐸𝑥0 

𝑥1
− 𝑥1

−~𝐿𝐸𝑐𝑥0 

Stage 2 Step 1 ℒ 𝑥1
+

𝐸
ℒ~ℓ𝐸𝑐𝑥0 ℓ = −€300 ; 𝑘𝐺 = 6 

ℓ𝑎𝑙𝑡 = €0; 𝑘𝐺𝑎𝑙𝑡
= 3  Step 2 to 𝑘𝐺 𝑥𝑗

+ 𝑥𝑗
+

𝐸
ℒ~𝑥𝑗−1

+

𝐸
ℓ 

Stage 3 Step 1 𝒢 𝒢𝐸𝑥1
−~ℊ𝐸𝑥0 

ℊ = €300; 𝑘𝐿 = 6 
 Step 2 to 𝑘𝐿 𝑥𝑗

− 𝒢𝐸𝑥𝑗
−~ℊ𝐸𝑥𝑗−1

−  

 
 
3.1 First stage: connecting utility for gains and utility for losses 

We start by selecting an event 𝐸 that will be kept constant throughout the first stage and a gain 𝐺. 

Then we elicit the loss 𝐿 for which 𝐺𝐸𝐿~𝑥0. It follows from equation (1a) that: 

𝑊+(𝐸)𝑈(𝐺) + 𝑊−(𝐸𝑐)𝑈(𝐿) = 𝑈(𝑥0) = 0.     (3) 

We next elicit certainty equivalents 𝑥1
+ and 𝑥1

− such that 𝑥1
+~𝐺𝐸𝑥0 and 𝑥1

−~𝐿𝐸𝑐𝑥0. The indifference 

𝑥1
+~𝐺𝐸𝑥0 implies that 

𝑈(𝑥1
+) = 𝑊+(𝐸)𝑈(𝐺).        (4) 

The indifference 𝑥1
−~𝐿𝐸𝑐𝑥0 implies that 

𝑈(𝑥1
−) = 𝑊−(𝐸𝑐)𝑈(𝐿).       (5) 
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Combining Eqs. (3) (5) gives 

𝑈(𝑥1
+) = −𝑈(𝑥1

−).        (6) 

Equation (6) defines the first elements 𝑥1
+ and 𝑥1

− of the standard sequences of gains and losses that 

we will elicit in the second and third stages. 

For choice under risk, the elicitation of 𝑥1
+ and 𝑥1

− is similar except that the event 𝐸 is replaced by a 

known probability 𝑝, and that the weights 𝑊+(𝐸) and 𝑊−(𝐸𝑐) are replaced by 𝑤+(𝑝) and 

𝑤−(1 − 𝑝), respectively. 

3.2 Second stage: measurement of utility for gains  

In the second stage, we elicit a standard sequence of gains. Let ℓ be a prespecified loss. We first 

elicit the loss ℒ < ℓ such that the decision maker is indifferent between the prospects 𝑥1
+

𝐸
ℒ and 

ℓ𝐸𝑐𝑥0, where 𝑥1
+ is the gain that was elicited in the first stage. We may select an event 𝐸′ different 

from the event 𝐸 used in the first stage, but, for notational convenience, we will continue using the 

symbol 𝐸 for the selected event. In our experiment, we used the same event in all stages to simplify 

the tasks for the subjects. The indifference 𝑥1
+

𝐸
ℒ~ℓ𝐸𝑐𝑥0 implies that 

𝑊+(𝐸)𝑈(𝑥1
+) + 𝑊−(𝐸𝑐)𝑈(ℒ) = 𝑊−(𝐸𝑐)𝑈(ℓ) .    (7) 

Rearranging Eq. (7) and using 𝑈(𝑥0) = 0 gives, 

𝑈(𝑥1
+) − 𝑈(𝑥0) =

𝑊−(𝐸𝑐)

𝑊+(𝐸)
(𝑈(ℓ) − 𝑈(ℒ)).     (8) 

Next, we elicit the gain 𝑥2
+ such that 𝑥2

+
𝐸

ℒ~𝑥1
+

𝐸
ℓ. From this indifference we obtain after rearranging 

𝑈(𝑥2
+) − 𝑈(𝑥1

+) =
𝑊−(𝐸𝑐)

𝑊+(𝐸)
(𝑈(ℓ) − 𝑈(ℒ)).     (9) 

Combining Eqs. (8) and (9) gives : 

𝑈(𝑥2
+) − 𝑈(𝑥1

+) = 𝑈(𝑥1
+) − 𝑈(𝑥0).       (10) 

We proceed by eliciting a series of indifferences 𝑥𝑗
+

𝐸
ℒ~𝑥𝑗−1

+

𝐸
ℓ, 𝑗 = 2, … , 𝑘𝐺, to obtain the sequence 

{𝑥0, 𝑥1
+, 𝑥2

+, … , 𝑥𝑘𝐺

+ }. It is easy to see that for all 𝑗, 𝑈(𝑥𝑗
+) − 𝑈(𝑥𝑗−1

+ ) = 𝑈(𝑥1
+) − 𝑈(𝑥0). For decision 

under risk, we apply the above procedure with the event 𝐸 replaced by a probability 𝑝 (which can be 

different from the probability used in the first stage). 
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3.3 Third stage: measurement of utility for losses 

The standard sequence of losses is constructed similarly. We select a gain ℊ and an event 𝐸 and 

elicit the gain 𝒢 such that 𝒢𝐸𝑥1
−~ℊ𝐸𝑥0.6 We then proceed to elicit a standard sequence 

{𝑥0, 𝑥1
−, 𝑥2

−, … , 𝑥𝑘𝐿

− } by eliciting a series of indifferences 𝒢𝐸𝑥𝑗
−~ℊ𝐸𝑥𝑗−1

− , 𝑗 = 2, … , 𝑘𝐿 . For risk, we 

replace the event 𝐸 by a probability 𝑝 (which can be different from the probabilities used in the 

other two stages). 

By combining the second and the third stages we have elicited a sequence 

{𝑥𝑘𝐿

− , … , 𝑥1
−, 𝑥0, 𝑥1

+, … , 𝑥𝑘𝐺

+ } that runs from the domain of losses through the reference point to the d

omain of gains and for which the utility difference between successive elements is constant. We can 

scale utility by selecting the utility of an arbitrary element. In the analyses reported below, we set 

𝑈(𝑥𝑘𝐺

+ ) = 1 from which it follows that 𝑈(𝑥𝑗
+) = 𝑗 𝑘𝐺⁄  for 𝑗 = 1, … , 𝑘𝐺, and 𝑈(𝑥𝑗

−) = − 𝑗 𝑘𝐺⁄ , for 

𝑗 = 1, … , 𝑘𝐿. 

 
 

 

4. Experiment 

We will next implement our method in an experiment. By exploring whether utility and loss aversion 

are the same for risk and ambiguity we test prospect theory. The experiment also contains a test of 

sign-comonotonic trade-off consistency, the central condition of prospect theory. 

 

4.1 Experimental set-up 

Subjects were 75 economics students of the Erasmus School of Economics, Rotterdam (29 female). 

Each subject was paid a flat fee of €10 for participation in the experiment. Before conducting the 

actual experiment, the experimental protocol was tested in several pilot sessions. 

The experiment was run on computers. Subjects answered the questions individually in sessions of 

at most two subjects. They first received instructions about the tasks and then completed five 

training questions. Subjects were told that there were no right or wrong answers and that they 

should go through the experiment at their own pace. They could approach the experimenter if they 

had any questions regarding the experiment. A session lasted 40 minutes on average. 

The order in which utility under risk and ambiguity were measured was randomized between 

                                                           
6
 Again, we may select an event 𝐸" different from the events employed in the other two stages. 
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sessions. When a subject had completed the first part of the experiment, the experimenter would 

approach her to explain the next part. Within the risk and ambiguity elicitations, the order in which 

the gain sequence and the loss sequence were elicited was also randomized. The first stage, the 

elicitation of the amounts 𝑥1
+ and 𝑥1

−, always came first because it served as an input for the other 

stages. 

We did not immediately ask subjects for their indifference values, but, instead, first used three 

binary choice questions to zoom in at them and only then asked subjects for their indifference value. 

Examples of this zooming-in procedure can be found in the Appendix. We applied a choice-based 

elicitation procedure as previous research suggests that it leads to more reliable results than directly 

asking for indifference values (Bostic et al. 1990). 

 

4.2 Details 

The method described in Section 3 requires the prior specification of some stimuli. The final column 

of Table 1 shows the stimuli we selected for the experiment. We made the common assumption that 

the reference point 𝑥0 was equal to 0. In the risk condition, the outcome of a prospect was 

determined by drawing a ball from an urn containing five red balls and five black balls. Subjects 

could state which color they preferred to bet on with the chance of winning always equal to 50 

percent. In the ambiguity condition, the outcome of a prospect was determined by drawing a ball 

from an urn containing ten red and black balls in unknown proportions. Again, subjects could select 

the color they preferred to bet on to avoid suspicion (Pulford 2009, Viscusi and Magat 1992).  

For both gains and losses, we elicited six points of the utility function under risk and six points of the 

utility function under ambiguity. Next to these elicitations, we performed a second smaller sequence 

in the domain of gains where we used a different gauge amount ℓ. In the main elicitation we set 

ℓ = −€300. In the second elicitation, where we only elicited 𝑥2
+ and 𝑥3

+, we set ℓ𝑎𝑙𝑡 = € 0. Under 

binary PT the elicitations of 𝑥2
+ and 𝑥3

+ should not depend on the selected value of ℓ. This second 

elicitation tested sign-comonotonic trade-off consistency (Köbberling and Wakker 2003).7 

 

 

                                                           
7 Kö bberling and Wakker (2003) define sign-cömönötönic trade-öff cönsistency förmally. In a nutshell, the 
cönditiön hölds because changing ℓ fröm −€300 intö €0 döes nöt change the rank-ördering and the sign 
(nö löss is turned intö a gain ör vice versa) öf each pröspect’s payöffs. Then utility differences shöuld nöt 
be affected accörding tö pröspect theöry.  
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Figure 1: Choice screen under ambiguity 

 

Figures 1-3 show the displays used under ambiguity. The screens under risk were similar, except that 

the two branches would simply say 50% rather than “Red” or “Black”. Figure 1 displays the typical 

decision that subjects had to make. Subjects faced a choice between two prospects denoted as 

alternatives A and B. They could not state indifference. By choosing between the two prospects, the 

subject narrowed down the interval in which her indifference value should fall.  

 

 

Figure 2: Scrollbar screen under ambiguity 
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After narrowing down the interval thrice, we presented subjects with a scrollbar (Figure 2). The 

scrollbar allowed subjects to specify their indifference value up to €1 precision. The range of the 

scrollbar was wider than the interval, so that subjects could correct any mistakes they might have 

made. The way in which subjects used the scrollbar also gives an indication of the quality of the data. 

If many subjects would provide answers that did not align with their previous choices, possibly even 

violating stochastic dominance, this signals poor understanding of the task. After specifying a value 

with the scrollbar, subjects were asked to confirm their choice (Figure 3). If they cancelled their 

choice, the process started over. If subjects confirmed their choice, they moved on to the next 

elicitation. 

 

 
 
Figure 3: Confirmation screen under ambiguity 
 
 
 
4.3 Analyses 
 
4.3.1 Utility curvature 

Two different methods were used to investigate utility curvature. In the first, nonparametric, 

method, we calculated the area under the utility function. Both for gains and for losses, the domain 

of 𝑈 was normalized to [0,1] by transforming every gain 𝑥𝑗
+ to the value 𝑥𝑗

+ 𝑥6
+⁄  and every loss 𝑥𝑗

− to 

𝑥𝑗
− 𝑥6

−⁄ .8 If utility is linear, the area under this normalized curve equals ½. For gains, we define utility 

                                                           
8
 Three subjects (two for risk and one for ambiguity) violated monotonicity so that 𝑥6

− was not the largest loss. 
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to be convex [concave] if the area under the curve is smaller [larger] than ½. For losses, utility is 

defined to be convex [concave] if the area under the curve is larger [smaller] than ½.  

We also analyzed the utility function by parametric estimation. We employed the power/constant 

relative risk aversion (CRRA) family, 𝑥𝛼, the most commonly used parametric family. For gains 

[losses] 𝛼 > 1 corresponds to convex [concave] utility, 𝛼 = 1 corresponds to linear utility, and 

𝛼 < 1 corresponds to concave [convex] utility. Estimation was by nonlinear least squares. We also 

performed a mixed-effects estimation in which each individual parameter was estimated as the sum 

of a fixed effect, common to all subjects, and an individual-specific random effect. The mixed-effects 

estimation led to the same conclusions and will therefore not be reported.  

A potential problem in estimating a model like binary PT is collinearity between utility and the event 

weights. The trade-off method avoids this problem. By keeping event weighting fixed during the 

elicitation of utility, the event weights drop from the equations and utility can be measured 

independent of event weighting. Hence, collinearity is completely excluded. This is an additional 

advantage of our method.  

 

4.3.2 Loss aversion 

There exist several definitions of loss aversion. Abdellaoui et al. 2007) concluded that the definitions 

of Kahneman and Tversky (1979) and Köbberling and Wakker (2005) were empirically most useful 

and we will use these. Other definitions (Wakker and Tversky 1993, Bowman et al. 1999, Neilson 

2002) turned out to be too strict for empirical purposes, leaving many subjects unclassified. 

Kahneman and Tversky (1979) defined loss aversion as – 𝑈(−𝑥) > 𝑈(𝑥) for all 𝑥 > 0. To measure 

loss aversion coefficients, we computed – 𝑈(−𝑥𝑗
+) 𝑈(𝑥𝑗

+)⁄  and – 𝑈(𝑥𝑗
−) 𝑈(−𝑥𝑗

−)⁄  for 𝑗 = 1, … ,6, 

whenever possible.9 Usually 𝑈(−𝑥𝑗
+) and 𝑈(−𝑥𝑗

−) could not be observed directly and had to be 

determined through linear interpolation. Some subjects occasionally violated stochastic dominance. 

In that case, it is impossible to estimate utility and we treated utility as missing for the amounts for 

which this happened. A subject was classified as loss averse if – 𝑈(−𝑥) 𝑈(𝑥)⁄ > 1 for all 

observations, as loss neutral if – 𝑈(−𝑥) 𝑈(𝑥)⁄ = 1 for all observations, and as gain seeking if 

– 𝑈(−𝑥) 𝑈(𝑥)⁄ < 1 for all observations. To account for response error, we also used a more lenient 

rule, classifying subjects as loss averse, loss neutral, or gain seeking if the above inequalities held for 

                                                                                                                                                                                     

For this subject we transformed losses 𝑥𝑗
− to 𝑥𝑗

− { min
𝑖=1,…,6

𝑥𝑖
−}⁄ . 

9
 These computations required that −𝑥𝑗

+ was contained in [𝑥6
−, 0) and −𝑥𝑗

− in (0, 𝑥6
+]. 
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more than half of the observations. 

Köbberling and Wakker (2005) defined loss aversion as the kink of utility at the reference point. 

Formally, they defined loss aversion as 𝑈↑
′(0) 𝑈↓

′(0)⁄ , where 𝑈↑
′(0) represents the left derivative and 

𝑈↓
′(0) the right derivative of 𝑈 at the reference point. To operationalize this definition, we 

computed each subject’s coefficient of loss aversion as the ratio of 𝑈(𝑥1
−) 𝑥1

−⁄  over 𝑈(𝑥1
+) 𝑥1

+⁄ , 

because 𝑥1
− and 𝑥1

+ are the loss and gain closest to the reference point. Given that 𝑈(𝑥1
−) =

 −𝑈(𝑥1
+), this ratio is equal to 𝑥1

+ −𝑥1
−⁄ . Hence, the first stage of our method immediately gives an 

estimate of Köbberling and Wakker’s (2005) loss aversion coefficient without the need to further 

measure utility. A subject was classified as loss averse if 𝑥1
+ −𝑥1

−⁄  > 1, as loss neutral if 𝑥1
+ −𝑥1

−⁄  = 1 

1, and as gain seeking if 𝑥1
+ −𝑥1

−⁄  < 1. 

 

5. Results 

For one subject the program crashed and we lost his data. Three subjects violated stochastic 

dominance in critical, early steps of the measurement procedure. Violations of stochastic dominance 

at these early measurements undermine subsequent answers and subjects committing them were 

removed from the analyses. For the remaining 71 subjects, we could determine the entire utility 

function, for both gains and losses and under both risk and ambiguity.  

 
5.1 Consistency checks 

We included a number of repetitions to test for consistency. First, in each of the six standard 

sequences (the short and the long gain sequences and the loss sequence for both risk and 

ambiguity), we repeated the final iteration in the elicitation of 𝑥2
𝑖 , 𝑖 =  +, −. Subjects made the same 

choice in 63.6% of the repeated choices. Reversal rates around ⅓ are common in the literature 

(Stott 2006). Moreover, our consistency test was strict as we repeated the final choice of the 

iteration process and subjects were close to indifference in this choice. There were no differences in 

consistency between risk and ambiguity.  

Furthermore, at the end of eliciting the long gain sequence, we elicited 𝑥4
+ again, both for risk and 

for ambiguity. The correlation between the original measurement and the repeated measurement of 

𝑥4
+ was almost perfect.10 For risk, Kendall’s  was 0.92, for ambiguity it was 0.94. 

As a final indication of consistency, we compared whether the final answer provided by using the 

                                                           
10

 We use the (standard) nomenclature of Landis and Koch (1977) to describe the strength of associations. 
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scrollbar fell within the interval as set up by the bisection procedure. Subjects provided answers that 

aligned with their original choices. Furthermore, when a subject’s final answer was outside the 

bisection interval, it typically only violated the final choice, probably indicating that they were close 

to indifference at this point. 

 

5.2 Sign-comonotonic trade-off consistency 

As explained in Section 4, we elicited two sequences of gains, a longer one based on ℓ = −€300, 

which we use in the main analysis, and a shorter one based on ℓ𝑎𝑙𝑡 = €0. If our subjects behaved 

according to binary PT and satisfied sign-comonotonic trade-off consistency, then the values of 𝑥2
+ 

and 𝑥3
+ in the short sequence should be equal to those obtained in the long sequence.  

We could not reject binary PT, for both risk and ambiguity. The correlation between the obtained 

values was substantial. For risk, Kendall’s  was 0.57 for 𝑥2
+ and 0.51 for 𝑥3

+. For ambiguity, these 

values were 0.70 for 𝑥2
+ and 0.64 for 𝑥3

+. All correlation coefficients differed from 0 (𝑝 < 0.001). 

Moreover, for ambiguity, we could not reject the null hypotheses that the values of 𝑥2
+ and 

𝑥3
+ obtained in the short sequence were equal to those obtained in the long sequence (Wilcoxon 

test, both 𝑝 > 0.72). For risk, the values of 𝑥2
+ differed marginally (𝑝 = 0.08), but the values of 𝑥3

+ did 

not differ (𝑝 = 0.19). Hence, even though 𝑥3
+ was chained to 𝑥2

+, the marginal difference for 𝑥2
+ did 

not carry over to 𝑥3
+. 

 

5.3 The utility for gains and losses 

Figure 4 shows the utility for gains and losses under risk (Panel A) and ambiguity (Panel B) based on 

the median data. At first sight, the utility functions are close. They are consistent with the typical 

finding of convex utility for losses and concave utility for gains. Furthermore, the utility functions are 

steeper for losses than for gains, indicating loss aversion. 
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Figure 4: The utility for gains and losses based on the median data.  

 

To investigate these patterns more thoroughly, we move to the individual level analysis. Table 2 show

s that the classification of subjects according to the shape of their utility function was very similar for 

risk and ambiguity and we could not reject the null hypothesis that the overall distribution of classific

ations between the two conditions was the same (Fisher’s exact test, 𝑝 = 0.97). The common pattern 

was S-shaped utility: concave for gains and convex for losses. Less than 20% of the subjects behaved 

according to the traditional assumption in decision theory that utility is concave throughout. 

 

Table 2: Classification of subjects according to the shape of their utility function  

The table classifies the subjects according to the shape of their utility function based on the area under the normalized utili

ty function. Panel A displays the results under risk. Panel B displays the results under ambiguity. 

 

Panel A: Risk  

 Losses  

Gains Concave Convex Linear  Total 

Concave 13 30 1  44 
Convex 15 8 1  24 
Linear 2 0 1  3 

Total 30 38 3  71 

 
Panel B: Ambiguity 

 Losses  

Gains Concave Convex Linear  Total 

Concave 13 30 0  43 
Convex 18 9 0  27 
Linear 1 0 0  1 

Total 32 39 0  71 
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The parametric results confirmed the above conclusions. Table 3 shows the medians of the estimated 

individual CRRA functions. Utility was mostly concave for gains and convex for losses. Under both risk 

and ambiguity, 31 subjects (44%) had S-shaped utility.  

 

Table 3: Summary of individual parametric fittings of utility 

The table depicts the results of fitting CRRA functions on each subject’s choices individually. Shown are the median and inte

rquartile range (IQR) for the resulting estimates.  

 

 Risk  Ambiguity 

 Gains Losses  Gains Losses 

Median 0.87 0.93  0.94 0.91 
IQR [0.62-1.07]  [0.63-1.16]  [0.72-1.17] [0.68-1.36] 

 

For losses, we could not reject the null hypothesis that utility curvature was the same for risk and am

biguity, neither for the area measure (Wilcoxon test, 𝑝 = 0.31), nor for the CRRA coefficients  

(𝑝 = 0.94). However, utility for gains was more concave under risk for both measures (both 𝑝 = 0.04). 

The utilities under risk and under ambiguity were moderately correlated: Kendall’s  was 0.41 for gai

ns and 0.46 for losses for the area measure, and 0.41 for gains and 0.42 for losses for the CRRA coeffi

cients. 

 

5.4. Loss aversion 

Figure 2 displays the relations between the medians of 𝑥𝑗
+ and −𝑥𝑗

− under risk and under ambiguity. 

An advantage of our method is that it immediately reveals that there is loss aversion in the sense of 

Kahneman and Tversky (1979) when 𝑥𝑗
+ > −𝑥𝑗

−.11 As Figure 2 clearly shows, this held true for all j, 

under both risk and ambiguity. We obtain an aggregate measure of loss aversion by regressing the 

𝑥𝑗
+ on (−𝑥𝑗

−) . The 𝛽′𝑠 in Figure 2 display the coefficients from this regression. Both 𝛽′𝑠 (for risk and 

ambiguity) exceeded one (𝑡-test, 𝑝 < 0.01) and the values were close to those observed previously 

for risk (Fox and Poldrack 2014). We could not reject the hypothesis that the values of 𝛽 were the 

same for risk and ambiguity (𝑧-test, 𝑝 = 0.32). 

                                                           
11

 For a given j, 𝑥𝑗
+ and 𝑥𝑗

− have the same absolute value of utility by construction, 𝑈(𝑥𝑗
+) = −𝑈(𝑥𝑗

−), and, thu

s, 𝑥𝑗
+ > −𝑥𝑗

− implies that 𝑈(𝑥𝑗
+) < −𝑈(−𝑥𝑗

+), consistent with Kahneman and Tversky’s definition of loss aversi

on (𝑈(𝑥)  <  −𝑈(−𝑥) for all x > 0). 
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Figure 5: The relation between median gains and median losses with the same absolute utility. Panel A displays the 

relation between median gains and losses under risk. Panel B displays this relation under ambiguity. The dashed line 

corresponds to the case where gains and losses of the same absolute utility would be equal. The straight line with slope  

corresponds to the best fitting linear equation. 

 

Moving to the individual level, we found that 𝑥𝑗
+ > −𝑥𝑗

− for all j (Wilcoxon test, all 𝑝 < 0.01), which is 

consistent with the existence of loss aversion à la Kahneman and Tversky (1979). Furthermore, 

𝑥𝑗
+ −𝑥𝑗

−⁄  did not differ between risk and ambiguity for any j (Wilcoxon test, all 𝑝 > 0.25), which is 

consistent with the hypothesis of prospect theory that loss aversion is the same under risk and under 

ambiguity.  

Table 4: Results under the two definitions of loss aversion 
The table depicts the results under the two definitions of loss aversion for both risk and ambiguity. The table displays how 
the coefficients are defined, their medians and interquartile ranges, and the number of loss averse, gain seeking, and loss 
neutral subjects. The numbers in parentheses for Kahneman and Tversky’s definition correspond to the case where 
response errors are not taken into account.  
 

Definition Coefficient Condition Median [IQR] Loss averse Gain seeking Loss neutral 

Kahneman and Tversky (1979) 

−𝑈(−𝑥)

𝑈(𝑥)
 Risk 

2.21  
[1.06, 5.52] 

58(46) 10(6) 1(1) 

Ambiguity 
2.30  

[1.12, 7.29] 
53(49) 16(10) 0(0) 

Köbberling and Wakker (2005) 
𝑥1

+

−𝑥1
− 

Risk 
1.88  

[1.06, 4.50] 
56 12 3 

Ambiguity 
2.00  

[1.21, 6.50] 
56 14 1 

 

Table 4 shows the results of the individual analyses of loss aversion based on Kahneman and 

Tversky’s (1979) and Köbberling and Wakker’s (2005) definitions. The table clearly shows evidence of 
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loss aversion, irrespective of the definition used and regardless of whether we took response errors 

into account. According to both definitions, the median loss aversion coefficients for risk and 

ambiguity did not differ (Wilcoxon test, both 𝑝 > 0.26) and they were moderately correlated (both 

Kendall’s  > 0.37, 𝑝 < 0.001). 

The two measures of loss aversion were substantially correlated. Kendall’s  was 0.78 for risk and 

0.82 for ambiguity (all  𝑝 <  0.001 ). It is comforting to observe that these two distinct measures, 

one of a local nature and relying on a single kink in the slope of the utility function, and the other 

global and relying on different absolute utilities associated with the same absolute money amounts 

in the positive and negative domain, showed a high degree of consistency in classifying subjects. 

 

6. Discussion 

Our data is consistent with prospect theory. Both utility and loss aversion were close for risk and 

ambiguity, as assumed by prospect theory. The results also supported sign-comonotonic trade-off 

consistency, the central condition of prospect theory. Finally, utility was S-shaped, concave for gains 

and convex for losses and there was substantial loss aversion.  

An easy response strategy in measurements using the trade-off method is to let the outcomes of the 

standard sequence increase by the difference between the gauge outcomes (ℒ and ℓ in the 

sequence of gains 𝒢 and ℊ in the sequence of losses). This would bias the results in the direction of 

linear utility. We checked for this heuristic by counting the number of subjects for whom the 

outcomes of the standard sequence (approximately) increased by the difference between the gauge 

outcomes but found little evidence to support it.  

We used large payoffs because we were interested in studying both utility curvature and loss 

aversion. Utility curvature is typically modest over small intervals (Luce 2000, Wakker and Deneffe 

1996) and we were concerned that it would be hard to detect differences between utility under risk 

and ambiguity for small stakes. Because we used large losses, all choices were hypothetical. It is 

impossible to find subjects willing to participate in an experiment where they can lose substantial 

amounts of money. Because all but one of the questions involved losses, we could not play out one 

of the gain questions for real either, as subjects would know immediately which question would be 

played out for real. The literature on the importance of real incentives is mixed. Most studies found 

that for small to modest stakes there is little or no effect of using real instead of hypothetical choices 

for the kind of tasks that we asked our subjects to perform, except that hypothetical responses tend 
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to be noisier (Bardsley et al. 2010). 

Our method is chained (adaptive) in the sense that previous responses are used in the elicitation of 

subsequent choices. Chaining may lead to error propagation, where errors made in one particular 

choice affect later choices. We checked for the impact of error propagation using the simulation 

methods developed by Bleichrodt and Pinto (2000) and Abdellaoui et al. (2005). In both simulations, 

we confirmed the conclusions from those studies that the impact of error propagation on 

measurements using the trade-off method was negligible.12 We also repeated the parametric 

analysis of utility accounting for serial correlation in the error terms.13 The estimates were similar to 

the ones reported in Section 5. Hence, we conclude that the chained nature of our measurements 

did not affect the results. 

 

7. Conclusion 

In many real-world problems probabilities are unknown. To apply prospect theory to such decision 

situations requires methods to measure its parameters. This paper shows how utility and loss 

aversion can be measured in decision under ambiguity. Our method, for the first time, makes 

prospect theory completely observable. By combining our measurements with the method of 

Abdellaoui et al. (2005) all prospect theory’s parameters can be measured without imposing 

simplifying assumptions. Our paper completes a program to make prospect theory empirically 

observable. Our method allows new tests of prospect theory’s assumptions and an experimental 

implementation showed support for two of these assumptions: that sign-comonotonic trade-off 

consistency holds and that both utility and loss aversion are the same for risk and ambiguity. We 

hope that by providing a simple way to measure prospect theory our method will foster its 

applications. 

  

 
  

                                                           
12

 Bleichrodt et al. (2010) also concluded that error propagation was negligible in their measurements using the 
trade-off method. 
13

 We assumed that the error terms followed an AR(1) process 𝜖𝑡 + 𝜌𝜖𝑡−1 = 𝑢𝑡  with 𝑢𝑡 normally distributed wi
th expectation 0 and variance 𝜎2 and estimated this using generalized least squares.  
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Appendix: Three illustrations of the bisection method under risk. 
 

 Offered choices in  
elicitation 𝐿 

Offered choices in  
elicitation 𝑥1

+ 
Offered choices in  
elicitation 𝑥2

− 

1 0 vs. (2000, 0.5; -2000) (2000,0.5;0) vs. 1000 (300,0.5;-200) vs. (800,0.5;-700) 
2 0 vs. (2000, 0.5; -1000) (2000,0.5;0) vs.   500 (300,0.5;-200) vs. (800,0.5;-450) 
3 0 vs. (2000, 0.5; -1500) (2000,0.5;0) vs.   750 (300,0.5;-200) vs. (800,0.5;-325) 

Slider Start value: -1250 
Interval: [-2000,-500] 

Start value: 625 
Interval: [250,1000] 

Start value: -388 
Interval: [-576,-200] 
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