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Transferring molecular nanostructures from one surface to another in ultrahigh vacuum (UHV) by

mechanical contact might be a possible route to avoid the severe limitations of in situ molecular

synthesis on technologically relevant template surfaces. Here, transfer printing in UHV of

molecular structures between metal surfaces is investigated by a combination of scanning tunneling

microscopy and scanning electron microscopy/energy dispersive x-ray spectroscopy. The authors

present the complete procedure of the printing and characterization process. Microstructured

Au-coated MoS2 samples exhibiting a periodic pillar structure are used as stamp surfaces with

Au(111) single crystals as target surface. Polymers of 1,3,5-tris(4-bromophenyl)benzene molecules

and graphene nanoribbons with an armchair edge structure are grown on the pillars of the stamp

surface. After bringing the two surfaces in mechanical contact, the transferred material is found on

the target while decapping occurs on the stamp surface. Polymer structures are probably buried

under the transferred stamp material, and in rare cases, evidence for molecular structures is found

in their vicinity. VC 2015 American Vacuum Society. [http://dx.doi.org/10.1116/1.4936886]

I. INTRODUCTION

The deposition of large molecular nanostructures, and, in

particular, molecular wires onto—potentially prestruc-

tured—surfaces, under ultraclean conditions is an important

challenge for nanotechnology and in molecular electronics.1

This is due to the large molecular mass of the expected mo-

lecular nanocircuits and consequently to the low vapor pres-

sures that prohibit the use of conventional thermal

sublimation under vacuum conditions because they would

dissociate before a substantial sublimation rate is reached.2,3

On the other hand, large molecular nanostructures are only

soluble if equipped with long side groups that can perturb

their shape and functionality.4,5 For this reason, the covalent

linking of molecular building blocks to form large molecular

nanostructures in a bottom-up approach directly on a sur-

face—the so-called on-surface polymerization—has become

a popular field in the last years.6,7 This technique can be

used to build a priori insoluble nanostructures that might

have a strong impact in the field of nanomaterials and in mo-

lecular electronics.8,9 However, although many examples of

on-surface polymerization have been reported in the last

years on metallic surfaces,10–17 there are very few successful

examples on more technologically relevant nonmetallic sub-

strates, for instance, semiconductor or oxide surfaces,18,19

which are advantageous to electronically decouple the mole-

cules from the surface. A successful polymerization process

requires a full control of the balance between the dehaloge-

nation step and the diffusion of molecular species on the sur-

face, because these two properties determine the efficiency

of the chemical reaction and consequently the outcome of

the entire process. This is more challenging for semiconduc-

tor surfaces where the high surface reactivity typically sup-

presses molecular diffusion. The surface can also offer

additional (undesired) reaction channels for the molecules

with the surface itself or even induce moleculara)Electronic mail: Leonhard.grill@uni-graz.at
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defragmentation.20 On the other hand, the passivation of

semiconductor surfaces might cause problems for the poly-

merization process, due to the weak molecular adsorption

that could lead to desorption while attempting thermal acti-

vation of the on-surface polymerization. Heating treatments

might also be detrimental to the template itself by decompo-

sition effects.

Due to these problems of on-surface polymerization on

technologically relevant surfaces (and the deposition and

solubility problems with molecular wires), printing of mo-

lecular wires from one surface to another under ultrahigh

vacuum conditions represents a promising alternative route

that could help to bypass the above-mentioned issues and

allow efficient transfer. In this approach, molecular wires are

assembled on one sample and then transferred by mechanical

contact to a technologically more relevant one, where the po-

lymerization might not be efficient. So far, the transfer print-

ing of nanoscale objects from one surface to another surface

has been done only with metallic nanowires and metallic

nanoislands.21 The printing was done by gently pressing a

stamp toward different surfaces, allowing the transfer of 8%

of the nanoislands.

Another “transfer-material” strategy is based on preparing

the material to be transferred on a sacrificial substrate, i.e.,

removing it by etching after the procedure, for instance, a

thin (typically 100 nm) Ni film.22 Recently, the adhesive

properties of thin organic molecular layers, e.g., C60 multi-

layers, have been exploited to strip metal Au layers (support

template) by mechanical peeling23 from a Mica substrate.

Bidimensional molecular organic layers grown on Au/Mica

have been covered with 10–100 nm C60 layers and then poly-

dimethylsiloxylane (PDMS).23 The C60 layer acts as a pro-

tective and adhesive layer that allows to mechanically peel

the Au layer from the Mica substrate. This results in a mo-

lecular organic layer sandwiched between the Au layer on

one side and C60 (plus PDMS) on the other side. The Au

layer can be removed by a chemical process leaving the mo-

lecular nanostructures and fullerenes exposed. This surface

is then ready to be brought into mechanical contact to a tar-

get template, e.g., SiO2, for transferring either molecular

nanostructures or part of the fullerene layer in ambient envi-

ronment. In these cases, graphene22 and porphyrin mole-

cules23 have been investigated by Raman and fluorescence

spectroscopies before and after printing. The characteristic

bands and emission peaks are left unperturbed by the print-

ing process, suggesting that the structures are preserved after

transferring them to another surface. The same approach has

been used by Cai et al.8 that reported the growth and transfer

of graphene nanoribbons from Au(111) to a SiO2/Si sub-

strate surface by repeated gentle pressing of target and stamp

surfaces against each other. The graphene nanoribbon

(GNR) transfer has been studied by Raman spectroscopy.8

However, no microscopic methods have been used in these

cases to identify individual molecular structures and the mo-

lecular intactness after transfer by printing nor the atomic

scale cleanness of the remaining surface. Note that, on the

other hand, the transfer of much larger graphene flakes has

been intensely studied in the last years.24,25

On the other hand, Deng et al. achieved the transfer of tri-

angular Au nanoislands from a microstructured MoS2 stamp

surface to different flat target surfaces, i.e., H-passivated

Si(100), Mica, SiO2, and graphite via an UHV-printing

scheme.26 The efficiency of the transfer as a function of the

pillar area has been evaluated by analyzing stamp and target

surfaces by SEM before and after the transfer. The preserva-

tion of the shape and the structure of Au nanoislands has

been verified by analyzing and comparing transmission elec-

tron microscopy cross-sectional images of Au-nanoislands

on MoS2 and on Si(100)H, i.e., before and after the printing

process, respectively.27 However, a successful transfer of

molecular structures under UHV conditions with a micros-

copy study of the target surface afterwards is still missing.

All studies mentioned above are applications of different

printing schemes based on the use of flat or microstructured

stamp surfaces and achieved in different environments such

as ambient and UHV. Importantly, these methods reveal a

poor spatial control of the material transfer and not always a

clear assessment of the transfer efficiency. Here, we report

on printing attempts of covalently linked nanostructures

grown on a periodic pillar matrix by on-surface synthesis in

UHV environment. As an important novelty, we use pillars

on the source sample with a significantly reduced area

(1 lm2) as compared to previous attempts (25 lm2). This

should allow spatially confined (and well-defined) areas for

the molecular transfer.

So far, most studies characterized the transferred material

(before and after printing) only by spectroscopy techniques

(mainly, Raman and fluorescence spectroscopies) that aver-

age over large sample surface areas. Here, we are using mi-

croscopy techniques, mainly STM, to characterize the

molecular nanostructures before and after printing. STM is a

powerful technique that allows a complete characterization

of the structure and electronic properties of the nanostruc-

tures at the level of single atoms and molecules.28,29 Since

the search for printed nanostructures by STM can be very

time-consuming, due to printing contact only in limited areas

of the sample, and in order to perform the printing in the

most efficient way, the STM characterization has been com-

plemented by investigating the stamp and target surfaces by

SEM and energy dispersive x-ray spectroscopy (EDX), thus

at much larger length scales.

II. EXPERIMENTAL SETUP

The MoS2 substrates were obtained from (commercial)

large (2 cm in lateral size with a thickness of about 3 mm)

natural crystals, which were exfoliated with a scotch tape

before the microlithography procedure. The cleaved crystal

provides a very flat surface since the typical terrace size of

MoS2 is about 100 lm (see supplementary material30). MoS2

is a lamellar compound with weak van der Waals interac-

tions between the S-Mo-S layers that can be easily cleaved

in the [001] direction. Hence, microstamps with very small

lateral dimensions are unlikely stable. MoS2 sample surfaces

were microstructured over an area of several squared milli-

meter by lithographic technique26,27 to provide a periodic

011801-2 Nacci et al.: Toward printing molecular nanostructures 011801-2

J. Vac. Sci. Technol. B, Vol. 34, No. 1, Jan/Feb 2016

 Redistribution subject to AVS license or copyright; see http://scitation.aip.org/termsconditions. IP:  128.243.2.29 On: Mon, 03 Oct 2016 15:36:16



arrangement of squared pillars, each with a lateral size of

1 lm2. We fabricated microstructured samples with different

pillar heights, i.e., 150 or 270 nm. The pillar top-surfaces are

presumably the only areas involved in the stamp–target
surfaces contact and consequently the locations where the

molecular transfer will take place. The Au coating was per-

formed under the same conditions used for the Au nanois-

lands,26,27 except the thickness of the film deposited was

increased to 47 nm to allow a full coverage of gold. This pro-

cess should lead to the formation of a crystalline Au(111)

film on and off the pillars.

Owing to its lamellar structure, MoS2 can efficiently

absorb the pressure contact while printing without breaking

and therefore appears very suitable for such purpose.27 It

turned out that a periodic arrangement of microstamps fabri-

cated on such a template (MoS2) enhances the material trans-

fer rate per area compared to a flat stamp surface.27 This

strategy offers the possibility to confine the transfer to well-

defined surface locations of small size and moreover to iden-

tify the transferred material owing to the periodicity of the

pillar network, but it has never been tested with molecular

nanostructures so far.

STM measurements were conducted at room-temperature

in UHV environment by using a Pt/Ir tip. STM measure-

ments of both the stamp and target surfaces were combined

with ex situ SEM imaging characterization and EDX ele-

mental characterization. SEM analysis was performed using

a Hitachi 4800 SEM. The instrument is equipped with a cold

field emitter and a silicon drift detector from Bruker for

EDX analysis.

The UHV printer is based on an ANPz100 (Attocube) po-

sitioner piezoelement. The stamp surface is mounted on top

of the piezoelement and the target surface on a fixed recep-

tor. The printer tool is built to bring the stamp and target

surfaces into contact while providing a parallel surface-to-

surface orientation configuration. To ensure optimal condi-

tions for a parallel arrangement, the sample holders of the

stamp and the target crystals are both mounted on sensitive

springs when placed inside their respective receptors (the

one mobile mounted on top of the nanopositioner and the

other one fixed on the printer frame). Thus, after establishing

a contact between the stamp and target surfaces and further

pushing, the springs act to adjust the crystal positions to

compensate, at least to some extent, an eventual angular mis-

alignment between the target and stamp surface.

A saw-tooth signal (voltage amplitude: 30–50 V; signal

frequency: 30–50 Hz) allows actuation of the piezo and the

holder in a stick-slip motion and brings the two surfaces into

contact while optically monitoring the gap between stamp

and target surfaces. At the same time, the electric resistance

between the two surfaces is measured to identify when a

contact is established via the closing of the electric circuit.

In detail, the procedure is the following: The nanopositioner

moves constantly until the gap between the stamp and target

surfaces is small but a contact not established yet. Then, the

motion is activated by applying single voltage pulses until

the contact is achieved and a small finite resistance (<2 X)

between the two surfaces is measured. After establishing the

contact, the stamp was further pressed against the target sur-

face by moving the nanopositioner via several pulses (from

50 to 500 pulses with the above-mentioned amplitude and

frequency values). The stamp is then kept there for a few

minutes until it is gently retracted by single steps and the

electric contact is lost. This printing procedure is repeated

several times within one experimental run. Note that a simul-

taneous contact of all stamp pillars with the target surface is

unlikely, because target surface is not perfectly flat and the

pillars do not all have exactly the same height. Accordingly,

only a fraction of pillars of the stamp surface is expected to

be in contact with the target surface during printing.

III. RESULTS AND DISCUSSION

A. Microstructured Au/MoS2 surfaces (stamp surface)

The stamp surface is a MoS2 substrate having a micro-

structured region extending over an area of about 4� 3 mm2,

as verified by optical microlithography.27 A thin layer of Au

(47 nm) was thermally deposited on this microstructured sur-

face to enable in the subsequent step the growth of polymers

via on-surface polymerization as has been done previously

on Au surfaces.31–34 The microstructured region consists of

a periodic array of pillars with a lateral extension of 1 lm2

and a height of about 250 nm (or 150 nm) as visible from the

SEM micrographs in Fig. 1 (the distance between the two

adjacent pillars, the so-called pitch, is 2 lm). Gold crystalli-

tes are grown on top of the pillars and in their surrounding

FIG. 1. (a) Large view of a lattice of 51� 38 submicron stamps microfabri-

cated and Au metallized from a well cleaved and ultraflat MoS2 surface wa-

fer (120� 90 lm2 SEM image). (b) SEM image of an individual Au-coated

MoS2 pillar. Au crystallites are visible on the pillar top-surface and in the

surrounding as well. As-delivered microstructured samples. (c) SEM image

of the as-delivered microstructured sample shown in panel (a).
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(between the pillars), as shown in the SEM image of a single

pillar in Fig. 1(b). The samples have been prepared in-

vacuum at IMRE (Singapore) and afterwards shipped to

FHI-Berlin, thus being in air for at least one week. The Au/

MoS2 periodic microstructure remains unperturbed during

shipping as clearly visible from the SEM micrograph in

Fig. 1(c). Chemical species might adsorb on restricted areas

such as the pillar top-surfaces, which could affect the molecular

diffusion and result in large deviations of the expected area

or length of the polymerized structures compared to the

growth on typical large and extended terraces, i.e., in-

between the pillars. An analysis of 1,3,5-tris(4-bromophe-

nyl)benzene (TBPB) clusters area and GNR’s length grown

on top of the pillars and in-between the pillars does not show

any particular difference between the two cases (see supple-

mentary material30).

STM measurements in UHV (without any sample treat-

ment) revealed a rough and nonreconstructed Au surface

both on the top-surface of the pillar and in-between the

pillars [see Fig. 2(a)]. Such a surface is not suitable for on-

surface polymerization as cleanliness and atomic scale flat-

ness are crucial requirements for efficient diffusion of the

molecular monomers along the surface.

The microstructured sample surface was then processed by

repeated soft-conditions sputtering/annealing cycles (sputter-

ing conditions: 10 min, beam energy: 0.7 keV, and drain

current¼ 5.4 lA; annealing conditions: 10 min at 400 �C).

This UHV-cleaning left the pillars shape and its periodic

arrangement unperturbed, as shown in Fig. 2(b). As a further

consequence, the Au terminated microstructured stamp sur-

face showed the typical herringbone reconstruction of a

Au(111) surface [see Fig. 2(c)]. Hence, despite the transport

of several days/weeks in air, a clean and microstructured gold

surface, being atomically flat both between and on top of the

pillars, could be achieved by a simple UHV preparation.

Individual pillars have been identified first, and then, their

top-surface was imaged by STM, as shown in Fig. 3(a). The

surface turns to be quite structured as visible from the appa-

rent line profile taken across the pillar surface [see Fig. 3(b)]

and the differentiate z height topography [Fig. 3(c)]. This

roughness is ascribed to the formation of Au crystallites

grown during the Au layer deposition.

B. On-surface synthesis on microstructured Au/MoS2

surfaces

Two-dimensional covalently bound networks made of

1,3,5-tris(4-bromophenyl)benzene molecules (Br3TBPB)

were grown on the microstructured Au/MoS2 stamp surface.

Individual pillars have been first identified by STM and the

top-surface imaged, as shown in Fig. 4(a). Br3TBPB mole-

cules were first deposited on the microstructured sample

kept at room-temperature and then dehalogenated at a tem-

perature of 490 K (sample heating for 5 min).15,33 Large Au

terraces (typically 100 nm wide) with a low coverage of

FIG. 2. (a) STM image of an as-delivered Au/MoS2 microstructured surface (in-between pillars). (b) SEM image of the same sample in panel (a) after being

conditioned by soft sputtering and annealing conditions. (c) STM image taken on top of a pillar of the sample shown in panel (b) showing the typical herring-

bone reconstruction of Au(111).

FIG. 3. (Color online) (a) STM image of a single Au/MoS2 pillar, (b) apparent height line-profile across the pillar shown in (a) showing a height of almost

200 nm (the limited z scan range of the microscope makes a simultaneous imaging of the top-pillar surface and regions in between pillars nearly impossible).

(c) Differential Z height STM topography of image in panel (a).
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covalently linked TBPB-based islands are found, as shown

in Fig. 4(b). Depositing a higher molecular coverage results

in extended polygonal covalently linked networks on top of

the pillars, as shown in Fig. 4(c). Having a high molecular

coverage on top of the microstamps should potentially be

helpful in view of achieving an efficient material transfer by

printing.

C. UHV-printing: Characterization of stamp and target
surfaces by SEM and STM

The stamp surface was repeatedly brought into contact

(in UHV) with a clean and well-prepared single crystal

Au(111) surface (target), and subsequently, both surfaces

were characterized by STM and SEM/EDX techniques.

SEM characterization of the stamp and target surfaces

might give important information at large scale, i.e.,

beyond our STM maximum lateral scan range (2 lm),

about the printing process that otherwise are extremely dif-

ficult to get by STM only. Figure 5(a) shows an STM image

of small TBPB network patches grown on a single Au(111)

crystal surface. The same surface has been imaged ex situ
by SEM. It is known that monolayers of carbon structures

such as graphene35 on a metal substrate or self-assembled

monolayers of alkanethiolates on gold36 can be detected

through a change in secondary electron (SE) signal inten-

sity. As shown in Fig. 5(b), SEM indeed reveals nonuni-

form structures of darker contrast across the surface. Their

aspect is similar to the one observed in the STM overview

image [Fig. 5(a)]. However, due to the limited spatial reso-

lution of the SEM technique, it does not provide a conclu-

sive evidence for the presence of molecular entities based

on TBPB’s (see supplementary material30) grown on the

microstructured stamp surfaces.

SEM imaging of the Au(111) target surface reveals dark/

bright stripes ascribed to the surface topography features

such as terraces and surface steps [Fig. 6(a)] without any evi-

dences for transferred pillars in the imaged areas. Some

other areas show a pronounced deviation in the secondary

electron image contrast [see Fig. 6(b)], indicating new fea-

tures that can likely be assigned to transferred material. The

pronounced SE contrast between the transferred material as

compared to the Au surface was further investigated in terms

of elemental composition by EDX spectroscopy. As shown

in Figs. 6(b) and 6(d), they contain spectroscopic contribu-

tions from Mo and S elements according to the EDX spectra

in Figs. 6(c), 6(e), and 6(f) leaving no doubt about the trans-

fer of material from the stamp to the target surfaces.

As a further check, the stamp surface was imaged by

SEM as well to reveal the effect of the printing process to

the microstamps’ area. Some regions of the pillared area

show a clear and sharp change of the SE contrast, as discern-

ible from Figs. 7(a)–7(b). At higher magnification, it turns

out that these dark-contrast areas are nothing but areas of

decapped pillars [see Fig. 7(b)] that are now MoS2-termi-

nated. The periodic distribution of pillars is locally dis-

rupted, and thin capping layers are identified nearby. Clear

contributions from Mo and S elements from decapped pillars

and part of the capping layers nearby are detected from EDX

spectra in Figs. 7(c) and 7(d).

This is another signature of the mechanical contact

between the stamp and the target surfaces. Printing seems to

FIG. 4. (Color online) TBPB-based 2D-networks on Au/MoS2 pillared sur-

face by on-surface synthesis. (a) STM topography (2.5 V, 40 pA) of part of

a Au/MoS2 pillar (1 � 1 � 0.27 lm). The TBPB chemical structure is shown

in the inset. (b) Zoom-in (2.5 V, 40 pA) of the area indicated by the black

square in panel (a) showing low-coverage TBPB networks on the Au/MoS2

pillar. (c) Large and extended TBPB networks on the microstructured sur-

face after increasing the molecular coverage at the surface. STM image

taken at set points (�2 V, 50 pA) and on the pillars.

FIG. 5. (Color online) SEM characterization of TBPB networks on a flat

Au(111) single crystal surface. (a) STM topography (�2 V, 30 pA) of small

TBPB-islands grown on Au(111) surface by on-surface polymerization. The

inset shows the typical internal structure of a TBPB-based island (�0.3 V,

10 pA). (b) SEM images of the surface shown in panel (a): the small darky-

features might be associated either to TBPB networks or surface topographic

features.
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induce pillar decapping in a very few spots of the micro-

structured area. As a further attempt, the pillar height has

been lowered down to about 150 nm, and we also found clear

evidences for transferred material from the stamp to target

surfaces by combined STM and SEM/EDX measurements.

These features are ascribable to crystallites or part of pillars

(see supplementary material for details).

The STM characterization of the Au(111) target surface

reveals the presence of large and very high clusters, i.e., sev-

eral hundred of nanometers large in lateral size and

150–200 nm high [as shown in the STM topographies, Figs.

8(a)–8(e)]. It is also very common to find large and structur-

ally rough areas of the Au surface [Figs. 8(f)–8(h)] separated

by sharp boundaries from the flat Au areas in the

FIG. 6. (Color online) SEM imaging/EDX spectroscopy of the Au(111) target surface after printing. (a) SEM image showing contrast variations due to steps

and terraces on the Au surface. (b) Contrast variations indicate the presence of transferred material. (c) and (f) SEM/EDX characterization of the dark features

revealed in panel (b) (see crosses). (d) and (e) SEM image and EDX spectrum of a MoS2 sheet.

FIG. 7. (Color online) SEM overview and higher resolution image of the stamp surface after printing at large (a) and small scale (b). (c) and (d) EDX spectra

taken on top of a decapped pillar (d) and likely a residual of a capping layer (c).
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FIG. 8. (Color online) STM characterization of the target Au(111) crystal surface after UHV printing. a) STM image (�2.75 V, 50 pA) and its differential Z

height image (b) showing a large and high (about 150 nm) cluster. (c)–(e) Differential Z height STM topographies revealing large and very structured features

that might have been transferred while bringing target and stamp surfaces into contact; Set points: (c) and (d): (�2 V, 50 pA), (e): (�2 V, 30 pA). (f)–(h) STM

images of large Au(111) surface areas presenting an irregular structure (the border are instead sharply pronounced); Set points: (f) and (g): (�3 V, 30 pA), (h):

(�2 V, 30 pA).

FIG. 9. (Color online) Au(111) target surface after printing. (a)–(e) STM images of small extended carpet-like structures taken on the target surface after print-

ing. These structures are rarely found. Set points: (a) (differential Z height STM image): (�2 V, 10 pA), (b) and (c): (�2 V, 30 pA), (d) and (e): (�1.75 V, 30

pA). (f) TBPB-networks grown on Au(111) [set point: (�2 V, 50 pA)] taken for comparison.
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surrounding [see Figs. 8(f)–8(h)]. Importantly, these features

are never found on the clean target surface before printing.

They are therefore a result of the contact between the stamp

and target surfaces. These large clusters could be Au crystal-

lites that were formed on top of the pillars while growing the

thin Au layer and then transferred to the target surface during

printing. They also might include part of the pillars them-

selves, which is hard to distinguish in the STM images.

However, it is reasonable to conclude that the mechanical

contact between the microstructured stamp and the target

surface caused a local material transfer (gold crystallites and

potentially pillar fragments) at the pillar positions.

As a consequence of this interpretation, one might find

covalent molecular networks just right below them.

Displacing those large clusters via STM-based lateral STM

manipulation37,38 turned out to be not possible to achieve—

likely due either to the large cluster size or the strong bond-

ing to the surface. Operating the STM tip in lateral (con-

stant-current) manipulation mode caused severe tip

modification and no evidence for lateral displacement of the

large clusters. Consequently, the search for transferred mo-

lecular material in the vicinity of these transferred clusters

was attempted, and indeed, some carpetlike structures were

found in proximity of large clusters in STM images [Fig.

9(a)], albeit rarely. A closer look at the internal structure of

these features reveals the lack of a local order and mainly

bumpy features, as shown in Figs. 9(b)–9(e). Importantly,

such structures were never found on the target surface before
printing, indicating that they are related to the printing pro-

cess and therefore probably represent transferred material.

Their nonuniform shapes point to organic molecular struc-

tures (in contrast to much larger structures with straight

edges that are typical for transferred pillar fragments in a

crystalline state). Thus, it seems reasonable to assign them to

transferred TBPB network patches that slightly changed their

appearance during the printing process (either because of

additional material from the stamps or because of chemical

modification) as visible from a comparison between those

identified structures after printing [Figs. 9(c) and 9(e)] and

the typical polygonal structure of an intact TBPB network

[Fig. 9(f)].

IV. SUMMARY AND CONCLUSIONS

Clear signatures that prove a physical contact between the

stamp and target surfaces have been observed. Indeed, MoS2

(stamp substrate material) has been transferred to the target

surfaces and unambiguously identified by EDX/SEM spec-

troscopy. Moreover, large clusters have also been found on

the target surface by STM and interpreted as Au crystallites

or pillar fragments transferred during printing. Molecular

nanostructures made of TBPB’s or GNR’s might reasonably

lie under these clusters. Any attempt to laterally displace

these clusters by STM-based lateral manipulation turned out

to be extremely difficult to achieve likely because of their

large size (hundreds of nanometers wide and high).

Interesting carpetlike structures were also found in rare cases

on the target surface. Importantly, they were never found

before printing and can thus tentatively be assigned to trans-

ferred molecular TBPB structures. Their appearance looks

different when being compared to intact TBPB networks,

which we assign either to the additional transfer of the stamp

material or to a chemical modification during printing, ham-

pering a conclusive assessment.

Based on our experiments, the following points should

be considered for the efficient transfer of molecular struc-

tures under ultraclean conditions: The pillar surfaces

should ideally be homogeneous (i.e., without an additional

layer on top that might be transferred by mistake), atomi-

cally flat, and free of crystallites. The STM technique is

fundamental for imaging of the nanostructures before and

after printing but requires support from a spectroscopy tool

for a chemical characterization of the target and stamp

surfaces.

Moreover, the interactions between the polymers and the

two samples (stamp and target) during printing are a critical

issue. Here, the stamp and target surfaces were both made of

gold, thus with similar sticking coefficients for the molecular

structures. More or less reactive surfaces can change this bal-

ance in favor of one of the two samples, due to the different

adsorption energies. While the lamellar structure of MoS2

provides the softness required to absorb the applied force

while pressing the stamp against the target, the weakly inter-

acting MoS2 layers can also be easily displaced from each

other, resulting in fragmentation or decapping as seen in our

experiments. More stable, yet still soft, stamp materials are

therefore advantageous.

A further issue to be improved for an efficient transfer is

the surface of the pillars that should ideally be atomically

flat, which is not the case in the current study, due to the for-

mation of Au crystallites. This can reduce the diffusion of

molecular species on the pillar surface, a key-ingredient for

the successful in situ synthesis of molecular species.

Furthermore, Au crystallites can be transferred to the target

surfaces—as seen in our experiments—and represent unde-

sired extra-material there, hampering the search for trans-

ferred molecular structures.

ACKNOWLEDGMENT

The financial support from the European Union via the

Project AtMol is gratefully acknowledged.

1J. R. Heath and M. A. Ratner, Phys. Today 56, 43 (2003).
2T. Zambelli, J. V. Barth, and J. Wintterlin, J. Phys.: Condens. Matter 14,

4241 (2002).
3L. Grill, K.-H. Rieder, F. Moresco, G. Rapenne, S. Stojkovic, X. Bouju,

and C. Joachim, Nat. Nanotechnol. 2, 95 (2007).
4S. H€oger, Chem. Eur. J. 10, 1320 (2004).
5L. Zhi and K. M€ullen, J. Mater. Chem. 18, 1472 (2008).
6L. Lafferentz, V. Eberhardt, C. Dri, C. Africh, G. Comelli, F. Esch, S.

Hecht, and L. Grill, Nat. Chem. 4, 215 (2012).
7J. A. Lipton-Duffin, O. Ivasenko, D. F. Perepichka, and F. Rosei, Small 5,

592 (2009).
8J. Cai et al., Nature 466, 470 (2010).
9M. Koch, F. Ample, C. Joachim, and L. Grill, Nat. Nanotechnol. 7, 713

(2012).
10J. F. Dienstmaier, A. M. Gigler, A. J. Goetz, P. Knochel, T. Bein, A.

Lyapin, S. Reichlmaier, W. M. Heckl, and M. Lackinger, ACS Nano 5,

9737 (2011).

011801-8 Nacci et al.: Toward printing molecular nanostructures 011801-8

J. Vac. Sci. Technol. B, Vol. 34, No. 1, Jan/Feb 2016

 Redistribution subject to AVS license or copyright; see http://scitation.aip.org/termsconditions. IP:  128.243.2.29 On: Mon, 03 Oct 2016 15:36:16

http://dx.doi.org/10.1063/1.1583533
http://dx.doi.org/10.1088/0953-8984/14/16/314
http://dx.doi.org/10.1038/nnano.2006.210
http://dx.doi.org/10.1039/B717585J
http://dx.doi.org/10.1038/nchem.1242
http://dx.doi.org/10.1002/smll.200801943
http://dx.doi.org/10.1038/nature09211
http://dx.doi.org/10.1038/nnano.2012.169
http://dx.doi.org/10.1021/nn2032616


11A. Gourdon, Angew. Chem.-Int. Ed. 47, 6950 (2008).
12M. Lackinger and W. M. Heckl, J. Phys. D: Appl. Phys. 44, 464011

(2011).
13J. M�endez, M. F. L�opez, and J. A. Mart�ın-Gago, Chem. Soc. Rev. 40,

4578 (2011).
14M. El Garah, J. M. MacLeod, and F. Rosei, Surf. Sci. 613, 6 (2013).
15R. Gutzler, H. Walch, G. Eder, S. Kloft, W. M. Heckl, and M. Lackinger,

Chem. Comm. 4456 (2009).
16J. A. Lipton-Duffin, J. A. Miwa, M. Kondratenko, F. Cicoira, B. G.

Sumpter, V. Meunier, D. F. Perepichka, and F. Rosei, PNAS 107, 11200

(2010).
17M. Bieri et al., J. Am. Chem. Soc. 132, 16669 (2010).
18M. Kolmer, A. A. A. Zebari, J. S. Prauzner-Bechcicki, W. Piskorz, F.

Zasada, S. Godlewski, B. Such, Z. Sojka, and M. Szymonski, Angew.

Chem. Int. Ed. 52, 10300 (2013).
19M. Kolmer et al., Chem. Commun. 51, 11276 (2015).
20R. Lin, M. Galili, U. J. Quaade, M. Brandbyge, T. Bjornholm, A. D.

Esposti, F. Biscarini, and K. Stokbro, J. Chem. Phys. 117, 321 (2002).
21N. A. Melosh, A. Boukai, F. Diana, B. Gerardot, A. Badolato, P. M.

Petroff, and J. R. Heath, Science 300, 112 (2003).
22A. J. Pollard et al., J. Phys. Chem. C 113, 16565 (2009).
23M. B. Wieland, A. G. Slater, B. Mangham, N. R. Champness, and P. H.

Beton, Beilstein J. Nanotechnol. 5, 394 (2014).
24A. K. Geim and I. V. Grigorieva, Nature 499, 419 (2013).
25J. Kang, D. Shin, S. Bae, and B. H. Hong, Nanoscale 4, 5527 (2012).
26J. Deng, C. Troadec, and C. Joachim, IOP Conf. Ser.: Mater. Sci. Eng. 6,

012033 (2009).

27J. Deng, C. Troadec, H. K. Hui, and C. Joachim, J. Vac. Sci. Technol. B

28, 484 (2010).
28R. J. Hamers, R. M. Tromp, and J. E. Demuth, Phys. Rev. Lett. 56, 1972

(1986).
29R. M. Feenstra, J. A. Stroscio, and A. P. Fein, Surf. Sci. 181, 295 (1987).
30See supplementary material at http://dx.doi.org/10.1116/1.4936886 for in-

formation about the preparation and the surface roughness characterization

of the MoS2 substrate surface as well as the characterization of 2D-TBPB

networks on and off the top pillar surfaces. We included also a combined

STM-SEM/EDX study of the printing transfer of graphene nanoribbons

from a microstructured stamp surface to a single crystal target Au(111)

surface.
31S. Weigelt et al., Angew. Chem.-Int. Ed. 46, 9227 (2007).
32S. A. Krasnikov, C. M. Doyle, N. N. Sergeeva, A. B. Preobrajenski, N. A.

Vinogradov, Y. N. Sergeeva, A. A. Zakharov, M. O. Senge, and A. A.

Cafolla, Nano Res. 4, 376 (2011).
33M. O. Blunt, J. C. Russel, N. R. Champness, and P. H. Beton, Chem.

Commun. 46, 3 (2010).
34G. Eder, E. F. Smith, I. Cebula, W. M. Heckl, P. H. Beton, and M.

Lackinger, ACS Nano 7, 3014 (2013).
35Z.-J. Wang et al., ACS Nano 9, 1506 (2015).
36G. P. Lopez, H. A. Biebuyck, and G. M. Whitesides, Langmuir 9, 1513

(1993).
37G. Meyer, L. Bartels, S. Z€ophel, E. Henze, and K. H. Rieder, Phys. Rev.

Lett. 78, 1512 (1997).
38C. Bombis, F. Ample, J. Mielke, M. Mannsberger, C. J. Villag�omez, C.

Roth, C. Joachim, and L. Grill, Phys. Rev. Lett. 104, 185502 (2010).

011801-9 Nacci et al.: Toward printing molecular nanostructures 011801-9

JVST B - Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena

 Redistribution subject to AVS license or copyright; see http://scitation.aip.org/termsconditions. IP:  128.243.2.29 On: Mon, 03 Oct 2016 15:36:16

http://dx.doi.org/10.1002/anie.200802229
http://dx.doi.org/10.1088/0022-3727/44/46/464011
http://dx.doi.org/10.1039/c0cs00161a
http://dx.doi.org/10.1016/j.susc.2013.03.015
http://dx.doi.org/10.1039/b906836h
http://dx.doi.org/10.1073/pnas.1000726107
http://dx.doi.org/10.1021/ja107947z
http://dx.doi.org/10.1002/anie.201303657
http://dx.doi.org/10.1002/anie.201303657
http://dx.doi.org/10.1039/C5CC02989A
http://dx.doi.org/10.1063/1.1480857
http://dx.doi.org/10.1126/science.1081940
http://dx.doi.org/10.1021/jp906066z
http://dx.doi.org/10.3762/bjnano.5.46
http://dx.doi.org/10.1038/nature12385
http://dx.doi.org/10.1039/c2nr31317k
http://dx.doi.org/10.1116/1.3385674
http://dx.doi.org/10.1103/PhysRevLett.56.1972
http://dx.doi.org/10.1016/0039-6028(87)90170-1
http://dx.doi.org/10.1116/1.4936886
http://dx.doi.org/10.1002/anie.200702859
http://dx.doi.org/10.1007/s12274-010-0092-7
http://dx.doi.org/10.1039/c0cc01810d
http://dx.doi.org/10.1039/c0cc01810d
http://dx.doi.org/10.1021/nn400337v
http://dx.doi.org/10.1021/nn5059826
http://dx.doi.org/10.1021/la00030a015
http://dx.doi.org/10.1103/PhysRevLett.78.1512
http://dx.doi.org/10.1103/PhysRevLett.78.1512
http://dx.doi.org/10.1103/PhysRevLett.104.185502

