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Abstract

We propose a new methodology for facial landmark detection. Similar to other

state-of-the-art methods, we rely on the use of cascaded regression to perform

inference, and we use a feature representation that results from concatenating

66 HOG descriptors, one per landmark. However, we propose a novel regression

method that substitutes the commonly used Least Squares regressor. This new

method makes use of the L2,1 norm, and it is designed to increase the robust-

ness of the regressor to poor initialisations (e.g., due to large out of plane head

poses) or partial occlusions. Furthermore, we propose to use multiple initialisa-

tions, consisting of both spatial translation and 4 head poses corresponding to

different pan rotations. These estimates are aggregated into a single prediction

in a robust manner. Both strategies are designed to improve the convergence

behaviour of the algorithm, so that it can cope with the challenges of in-the-

wild data. We further detail some important experimental details, and show

extensive performance comparisons highlighting the performance improvement

attained by the method proposed here.
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1. Introduction

Existing works on facial landmark detection are often divided into holistic

models (e.g. AAM [1, 2, 3]), and part-based models. Traditionally, part-based

models iteratively alternate between two steps: the construction of landmark-

specific response maps, and the shape fitting step. The response map con-5

struction relies on the use of landmark-specific classifiers trained to fire when

evaluated at the correct landmark location. A response map for a landmark is

constructed by scanning a classifier with a probabilistic output over a region

of interest in a sliding window manner [4]. The subsequent shape fitting step

consists of finding the landmark locations maximising individual responses, but10

constrained to having a valid shape according to the shape model (most typically

a Point Distribution Model [5]).

The two most challenging aspects of part-based classifier models are (1)

training classifiers that are sensitive enough to perform fine grained detection,

and (2) most importantly, the extreme challenge of the shape fitting stage.15

The latter process is plagued with local minima and often results in a costly

maximisation procedure. The most notable efforts within this group are those

of Belhumeur et al. [6], and the DRMF [7]. The former used a RANSAC-

type shape fitting, while the latter used a discriminative regression-based model

predicting shape increments. However, obtaining reliable performance using20

these approaches implies a strong implementation effort and significant know-

how and, even then, their performance now trails behind that of other state-of-

the-art methods.

An important exception both in terms of the theoretical framework and

the practical performance is that of Zhu and Ramanan [29]. In this work, the25

authors used a discriminative classifier and part-based model consisting on an

adaptation of the successful Deformable Parts Model [23] for facial landmark-

ing. The main difference arises from the use of a tree-based graphical model to

capture the face shape. Exact inference becomes possible, but multiple pose-

wise experts can be used to capture different head poses, including profile faces.30
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While their ability to perform exact inference is remarkable and very useful in

practise, their precision is lower than for other methods (provided they con-

verge), and detection can be slow despite the strong speed-up provided by a

complex yet efficient implementation.

Alternatively, Valstar et al. [8] proposed to drive the local search by regres-35

sors performing direct displacement prediction instead of by classifiers measur-

ing landmark fitness. Landmark-specific regression models were trained to this

end, with each regressor being tasked with predicting the displacements in the

x and y direction from the test location directly to the true target location.

While this resulted in promising performance, this approach still has several40

shortcomings, such as its lack of robustness to erroneous regressor predictions,

or the effective inclusion of shape constraints, in particular for non-frontal head

poses. Further improvements on regression-based landmarking was attained by

combining multiple regression predictions into the equivalent of response maps

[9], [10]. Thus, while the response maps obtained were typically more precise45

than those obtained with classification approaches, the shape alignment step

was still hindering practical performance.

A new breakthrough was proposed by Cao et al.[11]. Firstly, they adopted

the cascaded regression framework of Dollár et al. [12], which powered regression-

based predictions to allow for inference being simultaneously robust and precise.50

Secondly, they proposed to directly estimate the shape increments as a whole.

That is to say, instead of having a per-landmark model, they used a combined

model, taking the whole face appearance as input, and predicting increments

for the whole shape. This allowed bypassing the cumbersome shape fitting step,

and shape consistency was enforced through the joint prediction. It is interest-55

ing to note that face shapes are assumed to lie in a linear subspace (once rigid

parameters are eliminated).

However, this approach really became the state-of-the-art due to the work

of Xiong & De la Torre [13]. While the authors followed a similar approach

to that of Cao et al. [11], they managed to greatly simplify the methodology60

by adopting HOG features and only relying on least squares for inference. The
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resulting algorithm attained state-of-the-art performance using only 4 matrix

multiplications and ran in real time on a standard PC with minimal implemen-

tation efforts. The authors also provided an implementation of the method,

including extremely well optimised pre-trained models. Furthermore, due to its65

simplicity, the method can be re-implemented from scratch very easily. Despite

its huge advantages, the method of Xiong & De la Torre still presents some

drawbacks. Firstly, there is no confidence score for each prediction step, so that

there is no knowledge of whether the inference actually improved the solution.

Thus, it is not possible to use multiple initialisations or mixture models, which70

is particularly important for largely non-frontal head poses. Secondly, the use

of least squares is not robust and it is thus not ideal in the presence of partial

occlusions or when a subset of the landmarks are far off from their ground truth

location.

Many works have since then built upon the works of Cao et al. [11] and75

Xiong & De la Torre [13] in different ways. For example, Ren et al. [14] and

Kazemi & Sullivan[15] presented extremely fast face alignment algorithms using

variants of these ideas. Several works have proposed methods for improving the

robustness to partial occlusions. Specifically, Burgos-Artizzu et al. [16] proposed

to train a model tasked with detection occlusions explicitly in a discriminative80

manner. An alternative approach was proposed in Xing et al. [17], where

a sparse dictionary learning approach was followed as an alternative to the

least squares regression of [13]. This thus constitutes a generative approach

rather than discriminative. A specific mechanism within the construction of

the dictionary was also included to tackle fitting under partial occlusions. An85

alternative generative variant of [13] was proposed by Tzimiropoulos [18]. It

maintained the PCA-based model traditional for generative models (see e.g. [1,

2]), but as novel elements it used a cascade regression approach and a novel

mechanism for removing appearance variation in successive levels of the cascade.

The work by Sun et al. [19] proposed instead to use a Convolutional Neural90

Network approach to model the inference problem at each of the cascade levels.

Finally, Yan et al. [20] proposed to use a discriminative ranking model capable
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of selecting and combining multiple predictions, each one obtained using the

SDM method and using a different initial shape hypothesis. In fact, this last

work won the first 300W facial landmark challenge [21].95

In this work we build on the previous efforts mentioned above, aiming to

tackle the problems of a lack of confidence measures of the predictions and the

problem of least squares fragility inherent to [13]. The main methodological

contributions of this paper are as follows: Firstly, we propose a new robust

regression methodology based on the use the L2,1 norm [22]. This norm allows100

us to compare two shapes in a robust manner, so that sparse error patterns

are primed. The details of this approach will be described in 2. Since the

resulting distance is not linear, we resort to its kernelisation, and then employ

a standard Support Vector Regression technique for inference. Secondly, we

resort to multiple initialisations, and employ an estimate aggregation technique105

in order to combine the resulting estimates in a robust manner [9]. The aim

of this process is to increase the robustness to large out-of-plane rotations. In

particular, we use four shapes covering a range of pan head rotations, and for

each head pose we create a number of initialisations by simply displacing the

viewpoint-specific mean shape in a grid manner on the x and y axis. This110

process is explained in detail in section 3. A depiction of the detection process

is summarised in Fig. 1.

While these are the two major methodological components of our method,

we have performed other optimisations worth mentioning. Firstly, we use a face

detector trained using the Deformable Parts Model [23]. This greatly improves115

both the precision and the robustness of the initial estimate respect to that

of a Viola and Jones face detector. Secondly, the features we use to represent

local patches result from first computing a HOG descriptor, and then computing

PCA over them [23]. This serves a twofold purpose: it improves the speed of

the inference evaluations and increases the precision of the predictions. These120

and other minor details and aspects of the algorithm will be detailed in Sec. 4.
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(a) Comparing two examples using the

proposed L2,1-based norm.

(b) Multiple predictions from different

hypothesis are combined at test time.

Figure 1: Overview of the method. The left image depicts the way the L2,1 norm

is used to define a kernelised distance between examples, which is integrated into

the inference model. At test time, multiple initial hypothesis are considered and the

resulting predictions are combined. This is depicted in the right image.
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2. L2,1 norm cascaded regression

One of the remarkable aspects of the work presented by Xiong & De la Torre

[13] is the excellent performance attained even when using Least Squares regres-

sion, a very simple machine learning method. Much of the excellent performance125

is due to the use of cascaded regression. We review the principle of cascaded

regression in Sec. 2.1, both for completeness, and to define notation. Our first

contribution is to change the inference algorithm used in the regression cascade

of [13], substituting the Least Squares regression for a novel L2,1 norm-based

approach. This change is motivated and detailed in Sec. 2.2.130

2.1. Cascade of linear regressors

Inference. A shape contains Npts landmarks (66 in our case), and it is rep-

resented as a 2Npts-dimensional vector. Inference starts with an initial shape

estimate, say s0, typically given by the face detector1. The appearance corre-

sponding to a shape s is constructed by computing a descriptor (HOG in this135

case) on a small patch centred at each of the Npts landmarks defined by shape

s. The resulting descriptors are then concatenated into a single vector. We use

the notation f(s, I) to indicate that the appearance descriptor is computed for

shape s on image I.

Inference is attained by sequentially applying a set of linear regressors, so140

that the output of the previous regressor is the input to the next regressor.

Specifically, each such linear regressor is defined in [13] as {Wk,bk}k=1:Nit
,

where Wk is a matrix containing the regression coefficients, bk is the bias

term2 and Nit is the total number of iterations in the cascade. Nit is fixed, and

there is no convergence criterion, so that the chain of regressors is applied in145

full every time. Specifically, an iteration of the algorithm proceeds as follows:

1Bold lower-case letters indicate vectors. All vectors are column vectors unless indicated

otherwise. Matrices are typeset as upper-case bold letters. All other letters are scalars.
2It is common to simplify the notation by including the bias term within the matrix Wk

and appending a 1 at the end of the input feature vector.
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xk = f(sk−1, I) (1)

yk = (Wk)Txk + bk (2)

sk = sk−1 + yk (3)

where, I is the test image, and sNit is the final shape estimate.

Learning. We note the images within the training set as {Ij}j=1:Nim
. For each

of these images, a set of initial shapes are used {s0i,j}i=1:Ninit . These multiple

initialisations can be obtained by, for example, first registering the mean shape150

to the ground truth using scaling and translation only, and then perturbing the

resulting shape. However, other strategies to generate the initial shapes exist

[12], [13].

The first training set is defined as:

{
(
x1
i,j ,y

1
i,j

)
}i=1:Ninit,j=1:Nim (4)

x1
i,j = f

(
s0i,j , Ij

)
y1
i,j = s∗j − s0i,j

where s∗j is the ground truth shape for image j.155

Then, the first regressor can be learnt as:

arg min
W1,b1

Ninit∑
i=1

Nim∑
j=1

‖s∗j − s0i,j −W1Tx1
i,j − b1‖ (5)

In the general case,

ski,j = sk−1i,j + WkTxki,j + bk (6)

and Wk,bk are obtained using ski,j in a similar manner as in equation 4 and 5.
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2.2. L2,1 norm regression

Our approach follows the same cascaded regression scheme, but we mod-160

ify the regressor of choice. That is, instead of computing a linear regressor(
Wk,bk

)
at every step, we compute a non-linear regressor G(−; θk). The pro-

posed regressor is based on the use of the L2,1 norm [22]. Specifically, we want

to find a way to compare two feature vectors, say x1 and x2, in a robust manner.

Remember that each feature vector x was generated by computing landmark-165

specific feature vectors and then concatenating them together into a single vec-

tor. We re-define the appearance feature vector, now denoted as X, as the

n ×Npts matrix that results from re-ordering the n-dimensional per-landmark

appearance feature vectors corresponding to the Npts landmarks. That is, in-

stead of concatenating the per-landmark appearance feature descriptors verti-170

cally, we concatenate them horizontally, resulting in a matrix rather than a

vector. Then, we define the distance between two appearance feature vectors

as:

d (X1,X2) = ‖X1 −X2‖2,1 (7)

where

‖X‖2,1 =
∑

j=1:Npts

‖X:,j‖2 (8)

where X:,j indicates the column j of matrix X.175

In doing so, the comparison between two shapes is obtained by first com-

puting the L2 distance between per-landmark representations, obtaining a 66-

dimensional vector, and then computing the L1 norm over the resulting vector.

It is interesting to note that the (squared) Euclidean distance used in Least

Squares regression would result from simply computing the L2 norm again on180

the 66-dimensional per-landmark L2 distance. However, by substituting the

computation of the L1 norm for the L2 norm in the second step, we enforce

sparse landmark-to-landmark error patterns. These error patterns are typical

in the presence of partial occlusions, so that the occluded landmarks will yield
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Figure 2: The error measure used should consider the appearance corresponding to the

left-hand side shape to be similar to those of the centre and right-hand side images.

To this end, it is necessary to deal with sparse landmark-wise error patterns

high L2 errors while the rest of the landmarks will result in low ones. A similar185

effect happens when there is a large head pose variation between two examples

(e.g. a frontal shape is used to initialise the search for a non-frontal head pose),

or when contour landmarks are poorly aligned so that the corresponding ap-

pearance patterns can be extracted from the background. This is illustrated in

Fig. 2. This figure shows the test image (left-hand side) with its ground truth,190

and two training images with their ground truth shapes. Since the shapes are

very similar, we would like to use a distance that considers the associated ap-

pearance patterns to be similar. However, the partial occlusion on the test

image requires a robust comparison.

The regression function is now non-linear. Thus, we resort to the use of195

Support Vector Regression (SVR) and use a kernelised version of this norm.

Specifically, we compute:

K(X1,X2) = e−γ‖X1−X2‖2,1 (9)

We use an off-the-shelf solver for this problem [24].
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Figure 3: The four initial shapes on an example image (taken form the iBug dataset).

Left-hand side examples are of near-frontal head poses, while right-hand side ones

correspond to larger head pose rotations.

3. Estimate Aggregation

While the use of a robust regressor improves the algorithm performance in200

images with non-frontal head poses, we further combine this strategy with a

multiple initialisation and aggregation strategy [9]. Specifically, for each image,

we consider a set of four initial shapes corresponding to distinct head poses,

noted {s0i }k=1:4 (see Fig. Fig. 3). The specific four initial shapes used in here

result from the face detection algorithm used ([25], see Sec. 4 for details on the205

face detector used). In particular, face detection results from applying 4 pose-

wise experts, and the pose-wise expert yielding the best score is responsible for

the face detector. A per-expert mean shape is constructed by using the subset

of all the training faces for which the specific expert provided the detection.

This is however a heuristic rule, although in our case this yields better overall210

performance compared to manually defining the initial shapes to be equally

spaced in terms of their rotation angles.

These shapes are fitted to the test image using the bounding box resulting

from the face detection process. Then, each shape is perturbed at regular inter-

vals along the x and y axis in a grid-like manner. This can be done for example215

defining a vector of displacements v = (−R, . . . ,−r, 0, r, . . . R), where r is the

stride or step size, and R is the maximum displacement. Let us define ∆xi as

a 2Npts-dimensional vector with v(i) in its first Npts dimensions and 0 on the

other dimensions, while ∆yi is defined equivalently but with 0 on the first Npts
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dimensions instead. We can then define set of initial shapes as:220

s0k,i,j + ∆xi + ∆yj k = 1 : 4; i, j = 1 : |v| (10)

accounting for a total of 4× |v| × |v| initial shapes.

The first step of the regression cascade is then computed, in our case using

the methodology explained in Section 2.2. This yields a set of predictions s1k,i,j .

Then we aim to combine these estimates into a single prediction. This is done by

using a prediction aggregation strategy, in a similar manner to Local Evidence225

Aggregation [9]. Specifically, we consider a 1-dimensional Gaussian distribution

with fixed covariance σ0. Then, we define a response map for each landmark l,

noted Rl, as follows:

Rl(x, y) =
∑
i,j,k

N
(
x; s1k,i,j(l), σ0

)
N
(
y; s1k,i,j(l +Npts), σ0

)
(11)

This process actually performs a Kernel Density Estimation using a Gaus-

sian isotropic kernel over the regressor predictions. Each of the response maps230

encodes the belief of a certain image location being the true landmark location

when considering all the estimates simultaneously. However, when this belief

is only considered in a local manner, i.e., if we were to pick the maximum of

each response map as the prediction, the resulting shape would not be anthro-

pomorphically consistent. Thus, the aim is now to find the consistent shape235

that maximises the individual responses:

ŝ1 = arg max
s

Npts∑
l=1

Rl (s(l), s(l +Npts)) s.t. s is valid (12)

However, this is a very challenging optimisation (in fact, it has been one of

the most pressing optimisation problems for facial landmark detection over the

last decade). In order to avoid complex procedures at this stage, which is not

the main focus of this work, we resort to the simple strategy of restricting the240
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search space to the estimates s1k,i,j . That is to say, we define:

ŝ1 = arg max
si,j,k

Npts∑
l=1

Rl
(
s1i,j,k(l), s1i,j,k(l +Npts)

)
(13)

This serves the purpose of improving performance in the presence of non-

frontal head poses and of less precise face detections (arguably, the precision

of the face detection is lower for non-frontal head poses, thus both cases often

co-occur). While classification-based approaches can rely on the score of the245

classifier (e.g. using logistic regression [4]), regression-based approaches do not

have an equivalent. Thus, we use the Local Evidence Aggregation property

highlighted by Martinez et al. [9], for which the accumulation of regression

predictions result from meaningful input patterns. Instead, patterns unseen

during training, such as those too far from the ground truth either in terms of250

the head pose or of the displacement, result in random predictions which do not

accumulate.

We repeat this process for the second iteration of the algorithm. However,

in this case we do not use 4 pose-wise shapes. Instead, we only consider ŝ1,

and perturb it by translating it by a smaller amount than used in the first255

iteration. The remaining iterations do not include this procedure as it was shown

ineffective in these cases. This is not surprising, as the algorithm converges very

quickly and the last iterations only fine-tune the prediction.

4. Implementation Details

Features. HOG features [26] have become one of the standard appearance de-260

scriptors for facial landmarking, as they are very suited to in-the-wild landmark-

ing. They are robust to variations in illumination, as they rely on gradients and

the histogram representation is normalised to one. In addition, the effect of

non-frontal head pose rotations can be locally approximated by an affine trans-

formation, to which HOG features are robust. We follow the same procedure265

as Felzenszwalb et al. [23] and compute a HOG-PCA descriptor. HOG-PCA

computes PCA after computing the HOG descriptor for each landmark across
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the entire training set. We optimised the number of components to be retained,

and found that optimal performance was attained with as few as 10 dimensions

for the first two iterations, and 30 for the next two. It is important to note270

that the PCA is done per landmark, and thus we use a total of 660 and 1980

features, respectively. The benefits of using HOG-PCA is two-fold. Firstly, we

are now using a non-linear SVR and thus the model includes all the support

vectors. If the feature dimensionality is very large, then the run-time mem-

ory requirements can quickly become prohibitive. Secondly, we experimentally275

found that the performance improved significantly compared to using the full

HOG descriptor. It is also interesting to note that using a single global PCA on

the concatenated representation is incompatible with the use of the L2,1 norm.

Face detector. Due to the frequent presence of non-frontal head poses, partial

occlusions and the use of in-the-wild imagery in general, we have opted for using280

a face detector obtained by training the successful Deformable Parts Model

[23] for this specific task [25]. The resulting detection is not only robust to

the aforementioned situations, but also offers higher precision in terms of the

initial shape estimate. While the face detector is trained with a mixture of four

different pose-wise components, we avoid using the head pose corresponding to285

the component that yielded the detection. We have experimentally found that

the component resulting in the detection is not always correct, in particular for

non-frontal head poses. Thus, the initial shape would in these cases deviate too

much from the true landmark locations to obtain a correct detection. Instead,

we only rely on the strategy described in Sec. 3 to overcome the problem of how290

to initialise non-frontal head poses.

Internal parameters. The described algorithm depends on some parameters

which need to be optimised. They include the kernel parameter γ (see Sec. 2.2),

the stride of the perturbation grid r, the maximum perturbation R, the variance

σ0 (see Sec. 3), and the number of PCA dimensions of the feature representation.295
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We defined the parameter γ heuristically as follows:

γ =
1

median
Xi,Xj

{d(Xi,Xj)} − min
Xi,Xj

{d(Xi,Xj)}
(14)

However, there might be space for further performance improvement by fine-

tuning this parameter on a validation set.

The remaindert of the parameters were optimised by using LFPW [27] and

Helen [28] datasets for training, and the AFW dataset [29] as a validation300

set. We used several performance measures to decide the best parameters,

including the mean inter-ocular distance (iod) normalised error, the median iod-

normalised error, the cumulative error curves, and the percentage of images in

which the error was reduced respect to the previous estimate. We put particular

emphasis in reducing the amount of gross errors on the first iterations, priming305

robustness over precision (hence the complementary error measures considered

and why we decided on the parameters by visual inspection of these values).

The resulting parameters were r = 5 and R = 20 for the first iteration, and

r = 5 and R = 15 for the second one. This yields a total of 4× 9× 9 = 324 and

7×7 = 49 test shapes on each of the two initial iterations respectively. We found310

the performance to be robust with respect to the value of σ0, and we defined

it as 0.03 times the length of the (square) face bounding box side. Retaining

the first 10 PCA dimensions for the two first iterations of the cascade, and 30

dimensions for the remainder were found to work optimally. We perform 4 iter-

ations of the regression cascade as performance improve marginally to none for315

the fifth iteration.

Prediction target. Similar to [30], we aim to predict the parameters of a shape

model rather than the landmark locations. To this end, we employ the 3D

Point Distribution Model provided by [4]. However, this shape model contains

66 landmarks. The predictions for the last 2 landmarks are added after the320

detection of the other 66 is finished. The main reason behind this is to reduce the

computational cost and, most importantly, the memory storage requirements.

While each output dimension requires its own regressor, we reduce the number
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of output dimensions from the original 136 dimensions to 30 (6 dimensions for

rigid parameters and 24 for flexible parameters).325

Face registration. At the beginning of every iteration, we register the current

shape estimate to the mean shape using a Procrustes transformation. Then, the

same transformation is applied to the image to normalise the face image with

respect to head rotation and scaling prior to the feature extraction step. In the

first step, we normalise to a mean shape corresponding to a face bounding box330

size of 100 pixels. For subsequent steps, we use a mean shape corresponding to

a face bounding box size of 200 × 200 pixels. Registering to a larger size can

affect the robustness of the prediction, as the relative distances to the ground

truth are increased. Later steps of the cascade relate however to the refinement

of the prediction, and it is then useful to be able to use more detailed images.335

5. Experimental Results

The data used. We have trained our model using the training partition of the

LFPW [27] dataset, the training partition of the Helen dataset [28], and the

AFW dataset [29]. Testing datasets include the testing partition of both LFPW

and Helen, the IBUG dataset [31], and the hidden dataset used by the chal-340

lenge organisers. While all of these datasets contain in-the-wild images, they

are of varying difficulty. The LFPW and Helen datasets contain mostly well-

illuminated frontal head poses with limited partial occlusions. Thus, they are

the easiest of the datasets considered. However, the Helen dataset contains more

expressive faces, although the image resolution is also larger in general. The345

AFW dataset contains in comparison more non-frontal head poses than LFPW

and Helen, and has an intermediate difficulty. Finally, the IBUG dataset con-

sists only of 135 images, but it is the most challenging dataset of all. It contains

all kind of frequent self-occlusions, largely non-frontal head poses and a large

variety of illumination conditions.350

Error measure. The graphs shown in this article were constructed using the

function to compute the error provided by the challenge organisers. Firstly, the
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error per image is computed as the Inter-ocular distance (iod) normalised error.

To this end, the average per-landmark Euclidean distance between the detected

location and the true target location is computed. Then, the resulting value is355

divided by the Euclidean distance between the two landmarks corresponding to

the outer corners of the eye, computed using the ground truth. It is interesting

to note that the iod-normalised distance is sometimes defined as the distance

between the centre of the eyes, resulting in larger values to the iod-normalised

error. We also report both the error for inner-facial landmarks (excluding land-360

marks lying on the contour of the face), and for all landmarks (including the

contour ones). Please note that, since our shape model contains 66 landmarks,

the errors reported here are computed over 66 landmarks. The only exception

is the challenge results.

Reproducing the results. Upon acceptance of this paper, we will provide a pub-365

licly available implementation of our method on the authors’ websites. The

code is exactly the same as that submitted to the 300W challenge, including all

the internal parameters, except for the correction of a bug regarding the face

detection. Thus, the performance on the 300W challenge data is actually higher

than reported in this paper.370

While the challenge data was restricted to contain only one face per image,

some images on other datasets contain several faces. In these cases, we have

manually selected the automatically-detected face bounding box corresponding

to the right face (please note that the face detection is still automatic!). We

have also corrected some other cases on the IBUG dataset where, while only one375

face is present in the image, the highest-scored face detection is wrong. This

accounted for 10 images out of the 135 contained in the dataset. In these cases,

we selected the automatically-detected bounding box better fitting the face. In

order to allow the reproduction of the results presented here, we provide the

bounding boxes used to generate the graphs. The code then takes the bounding380

box as an optional input while, if the bounding box is not specified, the face

detection routine is then executed to obtain one. In this case, only the highest-
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scoring bounding box is considered, which might result in the facial landmarking

of the wrong face.

Relative merit of the algorithm components. The first set of experiments shown385

in here is designed to clarify the specific merits of each of the proposed method-

ological improvements (i.e., the use of the L2,1 norm-based regression, and the

regression aggregation procedure). To this end, we show the performance of

our implementation of the Supervised Descent Method (SDM)3 [13], a version

of the cascaded regression using the L2,1 norm-based regression for inference,390

and finally the performance of the full algorithm. It is important to note that

both the proposed regression model and the aggregation strategy are designed

to improve the robustness of the method, but whenever there is convergence,

they might not result in a more precise fitting than the SDM. Robustness is par-

ticularly important on difficult datasets such as the AFW or the IBUG datasets.395

However, of the two, we only report performance on the IBUG dataset. This is

due to the inclusion of examples from the AFW dataset on our training set.

The cumulative error functions for the 49 inner landmarks can be seen on

Fig. 4. It is possible to see how the proposed method is characterised by in-

creased robustness, as the largest gains correspond to the larger error values.400

That is to say, when there is convergence, it might not be more accurate. How-

ever, the proportion of images converging to the right solution is boosted. The

performance difference becomes abysmal for the IBUG dataset, where most im-

ages are very challenging. However, it is also remarkable that for the LFPW

and Helen datasets practically all images have an error under 0.1.405

We further show in Table 1 the performance improvement obtained, in terms

of average and median per-image error, by using different ways of creating the

initial shapes. Specifically, we show the performance when using a single initial-

isation, when using multiple initialisations generated only by shifting the mean

3We have also tested a version of the code provided by the authors, which results in similar

performance.
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(a) LFPW dataset (b) Helen dataset

(c) IBUG dataset

Figure 4: Cumulative iod-normalised error curve for 49 inner-facial landmarks for dif-

ferent datasets. The red line corresponds to the SDM, the black line corresponds to

the cascaded regression using the L2,1-normalised error, and the green line corresponds

to the proposed method.
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LFPW 0.038 (0.035) 0.042 (0.039) 0.046 (0.039)

Helen 0.041 (0.038) 0.049 (0.042) 0.059 (0.043)

IBUG 0.163 (0.088) 0.0162 (0.090) 0.207 (0.130)

Table 1: Mean (median) of the per-image error when using different initialisation strategies.

Left column: the initialisation used in our approach. Centre column: multiple initialiastions

constructed by shifting a frontal exemplar. Right column: Only one initial shape (see text for

more details on these approaches).

shape fitted to the bounding box, and when using our approach. The latter410

creates initial shape hypothesis by fitting 4 reference shapes to the bounding

box (shown in Fig. 3) and then perturbing them spatially. It is interesting to

note here that the computational complexity of the algorithm depends to a large

degree on the number of initial shapes considered. The number of evaluations in

the fist case is 375 (9×9×4+7×7+1+1), 132 in the second (9×9+7×7+1+1)415

and 4 in the latter case. Since our implementation did run comfortably within

the limits set by the organisers, we decided to maximise performance.

Performance per iteration. The graphs shown in Fig. 5 depict the per-iteration

cumulative error graph for the test partitions of the LFPW and Helen datasets,

and for the IBUG dataset. This includes the error resulting from fitting the mean420

shape to the detection bounding box. This is the best guess based only on the

face bounding box, and provides a good measure of the accuracy and robustness

of the face detector. However, in practise we use multiple initialisations. There

is convergence after only three iterations. We perform a fourth one, giving a

marginal increment (curves of the last two iterations are mostly overlapped in425

Fig. 5).

Again, these graphs are constructed exactly with the parameters and code

submitted to the challenge (except for the correction of the face detection bug).

Thus, the parameters were not optimised or tweaked in any way to provide

the best performance on these datasets. It would be however possible to use430

the statistics of the training partition of the LFPW or Helen dataset to obtain
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Figure 5: Cumulative iod-normalised error on the LFPW (left), Helen (centre) and

IBUG (right) datasets. Dashed lines are for the inner facial landmarks, while continu-

ous lines are the error for all landmarks. The colour code indicates the iteration: red

is the face detection, then for each iteration the colour moves towards green. The final

detection is depicted in full green.

better parameters for the test set, while increasing the size of the perturbations

for the IBUG dataset would likely lead to better performance. We consider

however more fair to provide results with exactly the same parameters for all

datasets. Please note that, for Fig. 5, the maximum error shown in the graphs435

is of 0.2 for LFPW and Helen, and of 0.4 for the IBUG dataset.

300W challenge results. As previously mentioned, after submission we found a

bug on the test function for the face detector. The results shown throughout the

paper were obtained with the corrected version. However, the challenge results,

shown in what follows, were obtained with a version of the code that included440

the bug.

6. Conclusions

In this article, we have tackled the problem of facial landmarking in the

wild by focusing on augmenting the robustness of current methods to non-

frontal head poses. While we build on the hugely popular SDM, we have two445

major contributions to differentiate this work from previous ones. Experimental

results confirm that the resulting algorithm is indeed very robust. This results

in particularly good performance for the most challenging datasets.
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Figure 6: Results on the 300W challenge, divided by inlaying points (51 landmarks,

left column) and all (68 landmarks, right column), and between indoor images (upper

row), outdoor images (central row) and both combined (lower row)
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