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Abstract
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manifolds by using techniques from homotopy theory. The extension prescription yields
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folds are recovered up to a natural weak equivalence.
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1 Introduction and summary

In a classical field theory (without gauge symmetry) the field configurations on a manifold M
are described in terms of the set of sections F(M) := Γ∞(EM ) of some natural fibre bundle
EM over M . For example, for a real scalar field theory the field configurations on M are given
by the set C∞(M) of functions on M , which is the set of sections of the trivial line bundle
R×M →M . Naturality allows us to regard F : Manop → Sets as a functor from the category
of (say, oriented m-dimensional) manifolds to the category of sets. The sheaf property of the
set of sections of a fibre bundle allows us to capture all information about the global field
configurations F(M) on a manifold M in terms of the local field configurations in an open
cover {Ui : i ∈ I} of M . More precisely, the sheaf property says that the set F(M) can be
recovered (up to isomorphism) from any open cover {Ui : i ∈ I} of M by taking the limit

F(M)
∼= // lim

(∏
i

F(Ui)→→
∏
i,j

F(Uij)
)

(1.1)

in the category Sets. Here
∏

denotes the categorical product in Sets and as usual we denote
the intersections by Uij := Ui ∩ Uj .

Another essential ingredient of a classical field theory is the characterization of the ob-
servables of the theory, which is usually done by specifying for each manifold M a suitable
algebra A(M) of functions on F(M).1 Following [BFV03], an important guiding principle for
the choice of the observable algebras A(M) is the requirement of functoriality of the assign-
ment A : Man → Alg, where Alg is a suitable category of algebras whose details depend on
the context. Another reasonable requirement is the cosheaf property of A, which would allow
us to capture all information about the global observables A(M) on a manifold M in terms of
the local observables in an open cover {Ui : i ∈ I} of M . More precisely, the cosheaf property
demands that the algebra A(M) can be recovered (up to isomorphism) from any open cover
{Ui : i ∈ I} of M by taking the colimit

A(M) colim
(∐

i,j

A(Uij)→→
∐
i

A(Ui)
)∼=oo (1.2)

in the category Alg. Here
∐

denotes the categorical coproduct in Alg.

1 The algebras A(M) typically carry a Poisson structure for classical field theories defined on globally hy-
perbolic Lorentzian manifolds, see e.g. [BFR12], or they are noncommutative algebras after quantization, see
e.g. [BFV03]. These additional structures will not play a role in the present paper because we do not consider
dynamical aspects of field theories or quantization.
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When studying explicit examples of classical (and also quantum) field theories it might very
well happen that one can construct rather easily the field configurations F(M) and the observ-
ables A(M) of the theory on a special class of manifolds, e.g. on the category of contractible
manifolds Man c©, but that the construction becomes much more involved for non-contractible
manifolds. Reasons for this might be global features, such as non-trivial bundles and topo-
logical charges, which are related to topologically non-trivial manifolds. In such a situation
one would obtain two functors F : Manopc© → Sets and A : Man c© → Alg describing the field
configurations and observables of the theory only on contractible manifolds, and the goal is to
then ‘extend’ these functors to the category of all manifolds Man. In view of the desired sheaf
and cosheaf properties, a reasonable procedure for obtaining such extensions is to define the
field configurations F(M) and the observables A(M) on a generic manifold M in terms of the
limit or, respectively, the colimit of a diagram induced by a suitable open contractible cover of
M . In the context of algebraic quantum field theory, such a procedure has been proposed by
Fredenhagen and it is called the ‘universal algebra’, see e.g. [Fre90, Fre93, FRS92].

In gauge theories the structures discussed above become considerably more complicated.
First of all, the gauge field configurations on a manifold M are not described by a set, but by
a groupoid. For example, the field configurations of gauge theory with structure group G on a
manifold M are described by the groupoid with objects given by all principal G-bundles over
M endowed with a connection and morphisms given by all principal G-bundle isomorphisms
compatible with the connections (i.e. gauge transformations). Instead of forming a sheaf, the
collection of these groupoids for all manifolds M forms a stack, see e.g. [Fan01, Vis05] for
an introduction. For our purposes, a more explicit and also more suitable characterization of
stacks in terms of homotopy sheaves of groupoids has been developed by Hollander [Hol08a].
A stack is the same thing as a functor G : Manop → Groupoids to the category of groupoids
which satisfies the homotopy sheaf property, i.e. for any manifold M the groupoid G(M) can
be recovered (up to weak equivalence) from any open cover {Ui : i ∈ I} of M by taking the
homotopy limit

G(M)
∼ // holim

(∏
i

G(Ui)→→
∏
i,j

G(Uij)
→→→

∏
i,j,k

G(Uijk)
→→→→ · · ·

)
(1.3)

in the category Groupoids.2 Note that forming the coarse moduli spaces (i.e. the gauge orbit
spaces) of a homotopy sheaf in general does not yield a sheaf. Hence the groupoid point of
view is essential for ‘gluing’ local gauge field configurations to global ones.

Classical observables for gauge theories may be described by taking suitable ‘function al-
gebras’ on groupoids, which can be modeled by cosimplicial algebras or differential graded
algebras, see Section 2 below for details. A natural requirement for the choice of such ‘func-
tion algebras’ is again functoriality, i.e. we seek a functor B : Man → cAlg to the category
of cosimplicial algebras (or a functor B : Man → dgAlg to the category of differential graded
algebras). Instead of the cosheaf property which appears in ordinary field theories, this func-
tor should satisfy the homotopy cosheaf property, i.e. the cosimplicial (or differential graded)
algebra B(M) can be recovered (up to weak equivalence) from any open cover {Ui : i ∈ I} of
M by taking the homotopy colimit

B(M) hocolim
(
· · ·
→→→→

∐
i,j,k

B(Uijk)
→→→

∐
i,j

B(Uij)→→
∐
i

B(Ui)
)

∼oo (1.4)

in the category cAlg (or in the category dgAlg).3

2For a concise and very readable introduction to homotopy theory and model categories see [DS95].
3See [CC04, Jar97] for details on the relevant model category structures on cAlg and dgAlg.
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In gauge theories we are exactly in the situation where the groupoids of field configurations
are rather simple and explicit for contractible manifolds M , while they are much harder to de-
scribe for non-contractible manifolds. This is because on a contractible manifoldM all principal
G-bundles are isomorphic to the trivial principal G-bundle M ×G→M . Consequently, gauge
field observables on contractible manifolds are also much easier to describe than those on non-
contractible manifolds. Hence we can rather easily get two functors G : Manopc© → Groupoids

and B : Man c© → cAlg (or B : Man c© → dgAlg) which describe gauge field configurations
and observables only on contractible manifolds. The goal is then to extend these two func-
tors to the category Man by taking homotopy limits or, respectively, homotopy colimits of
diagrams induced by suitable open contractible covers of manifolds M . From the perspec-
tive of algebraic quantum field theory, these constructions may be interpreted as a gauge
theoretic (or homotopy theoretic) version of Fredenhagen’s ‘universal algebra’ construction.
Let us emphasize again the importance of describing gauge field configurations in terms of
groupoids and observables in terms of cosimplicial (or differential graded) algebras, instead
of working with gauge orbit spaces and gauge invariant observable algebras. As an explicit
example of what may go wrong when not doing so, see [DL12, FL14] where the ‘universal
algebra’ has been constructed for gauge invariant observable algebras of Abelian gauge the-
ory. These ‘universal algebras’ fail to produce the correct global gauge invariant observable
algebras [BSS14] because they neglect flat connections and violate the quantization condition
for magnetic charges in the integral cohomology H2(M,Z). See also [BDHS14, BDS14] for a
presentation of the global gauge invariant observable algebras for a fixed but arbitrary prin-
cipal bundle and [FP03, DS13, SDH14, CRV13, Ben14] for the trivial principal bundle. Cer-
tain aspects of non-Abelian gauge theories and also gravity in this context have been studied
in [Hol08b, FR13, CRV12, BFR13, Kha14, Kha15].

In this paper we shall make explicit and test the above ideas for constructing global gauge
field configurations and observables by homotopy theoretic techniques. We shall consider the
simplest example of a classical gauge theory, namely that whose structure group is the circle
group G = T = U(1). From the perspective of differential cohomology, there already exist
several models for the groupoid of gauge potentials in this case which have been discussed from
the perspective of ‘locality’ of (generalized) Abelian gauge theories: The category of differential
cocycles constructed by [HS05] is based on singular cochains (see also [Sza12, Section 2.4]),
while the Čech theoretic model of [FW99] is somewhat closer in spirit to our approach (see
also [Fre00, Example 1.11]); see also [BM06] for a more heuristic proposal. A similar functorial
description of abelian gauge theories is discussed by [FSS15]. To simplify our constructions, we
shall study this gauge theory on a purely kinematical level, leaving out both dynamical aspects
(i.e. Maxwell’s equations) and quantization for the moment.

The outline of the remainder of this paper is as follows: In Section 2 we give an explicit and
very useful description of the groupoids of gauge field configurations on contractible manifolds
in terms of chain complexes of Abelian groups. This formulation allows us to identify a simple
class of gauge field observables, given by smooth group characters, which also forms a chain
complex of Abelian groups. Our constructions are functorial in the sense that we obtain
a functor C : Manopc© → Ch≥0(Ab) describing gauge field configurations and a functor O :
Man c© → Ch≤0(Ab) describing observables on the category of contractible manifolds Man c©.
In Section 3 we shall construct an extension of the functor C : Manopc© → Ch≥0(Ab) to the
category Man of all manifolds by using homotopy limits. For this we first show that any
manifold M has a canonical open cover by contractible subsets, which induces a canonical
diagram of gauge field configurations on M . We compute explicitly the homotopy limit of
this diagram and show that it is isomorphic to the Deligne complex in the canonical cover.
This will imply that our homotopy limit describes all possible gauge field configurations on M ,
including also non-trivial principal T-bundles whenever H2(M,Z) 6= 0. As the canonical cover
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is functorial, it is easy to prove that the global field configurations given by the homotopy limits
are described by a functor Cext : Manop → Ch≥0(Ab). We shall show that this functor is an
extension (up to a natural quasi-isomorphism) of our original functor C : Manopc© → Ch≥0(Ab).
In Section 4 we shall focus on the gauge field observables and construct an extension of the
functor O : Man c© → Ch≤0(Ab) to the category Man by using homotopy colimits. Similarly
to the gauge field configurations, we obtain a canonical diagram of gauge field observables
on any manifold M and we compute explicitly the homotopy colimits. Functoriality of the
global observables Oext : Man → Ch≤0(Ab) is again a simple consequence of functoriality of
the canonical cover. We then show that this functor is an extension (up to a natural quasi-
isomorphism) of our original functor O : Man c© → Ch≤0(Ab). Finally, we construct a natural
pairing between global gauge field configurations and observables, which allows us to show that
our class of observables separates all possible gauge field configurations. Two appendices at
the end of the paper summarize some of the more technical details which are used in the main
text. In Appendix A we review the (dual) Dold-Kan correspondence, which is an important
technical tool for our constructions. In Appendix B we summarize the explicit techniques to
compute homotopy (co)limits for chain complexes of Abelian groups given in [Dug, Section
16.8] and [Rod14].

2 Local gauge field configurations and observables

In this section we consider gauge fields on contractible manifolds; in this paper all manifolds
considered are oriented.

2.1 Groupoids and cosimplicial algebras

Let G be a (matrix) Lie group, g its Lie algebra and M a contractible manifold. Then all
principal G-bundles over M are isomorphic to the trivial G-bundle, and the field configurations
of gauge theory with structure group G onM are described by the g-valued one-forms Ω1(M, g);
elements A ∈ Ω1(M, g) are typically called ‘gauge potentials’. Recall that gauge theory comes
with a distinguished notion of gauge group, the group of vertical automorphisms of the principal
G-bundle. In the present case the gauge group may be identified with the group of G-valued
smooth functions C∞(M,G) and it acts on gauge potentials from the left via

ρ : C∞(M,G) ×Ω1(M, g) −→ Ω1(M, g) , (g,A) 7−→ ρ(g,A) = g Ag−1 + g dg−1 , (2.1)

where d denotes the exterior derivative.

Having available both gauge potentials and gauge transformations, one can ask which math-
ematical structure is suitable for describing the relevant field content of gauge theory on M .
The most obvious option is to take the orbit space Ω1(M, g)/C∞(M,G) under the ρ-action,
which identifies all gauge potentials that differ by a gauge transformation; this is often called
the ‘gauge orbit space’. However, there are several problems with the orbit space construction:
First, even though both Ω1(M, g) and C∞(M,G) can be equipped with a suitable (locally
convex infinite-dimensional) smooth manifold structure, the orbit space is in general singu-
lar [ACMM86, ACM89]. Second, forming the orbit space inevitably leads to a substantial loss
of information; even though we can still decide whether or not two gauge potentials A and
A′ are gauge equivalent, we cannot keep track of the gauge transformation g that identifies
A with A′ when they are equivalent. The latter information is essential whenever one wants
to obtain global field configurations of gauge theory on a topologically non-trivial manifold M
by ‘gluing’ local configurations in contractible patches. A classic example is Dirac’s famous
magnetic monopole which represents the Chern class in Abelian gauge theory with structure
group the circle group G = T = U(1): Its construction is based on gauge potentials A1 and A2
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on an open cover {U1, U2} of a topologically non-trivial manifold M subject to the requirement
A2|U12 −A1|U12 = g12 dg

−1
12 for some fixed g12 ∈ C

∞(U12,T) on the overlap U12 = U1∩U2. This
operation of ‘gluing up to gauge transformations’ cannot be described in terms of gauge orbit
spaces.

In order to solve these and other problems, a more modern perspective suggests that, instead
of looking at gauge orbits, one should organize the gauge potentials and gauge transformations
into a groupoid. Recall that a groupoid is a small category in which every morphism is invert-
ible. The groupoid corresponding to gauge theory with structure group G on a contractible
manifold M is simply the action groupoid C∞(M,G) ⋉ Ω1(M, g) ⇒ Ω1(M, g): The set of ob-
jects is Ω1(M, g) and the set of morphisms is C∞(M,G)×Ω1(M, g), an element (g,A) of which
should be interpreted as an arrow

ρ(g,A)
(g,A)
←−−−− A (2.2)

starting at A and ending at the gauge transform (2.1) of A by g. Two morphisms (g′, A′) and
(g,A) are composable whenever A′ = ρ(g,A) and the composition reads as (g′, A′) ◦ (g,A) =
(g′ g,A). The identity morphisms are idA = (e,A), where e is the identity element in C∞(M,G),
i.e. the constant function to the identity element of the structure group G. As an aside, note
that one can use the techniques of [ACMM86] to realize that this action groupoid is moreover a
(locally convex infinite-dimensional) Lie groupoid, i.e. a groupoid carrying a smooth structure.
This smooth structure will not play a role in the present paper, since we will shortly restrict
ourselves to Abelian gauge theory with structure group G = T, which can be studied in purely
algebraic terms. However, in studies of non-Abelian gauge theory the smooth structures will
play an important role.

Instead of using groupoids, we may equivalently organize the gauge potentials and gauge
transformations into a simplicial set (or even a simplicial manifold if we use the smooth struc-
ture discussed above). Recall that a simplicial set is a collection {Sn}n∈N0 of sets together with
face maps ∂ni : Sn → Sn−1, for n ≥ 1 and i = 0, 1, . . . , n, and degeneracy maps ǫni : Sn → Sn+1,
for n ≥ 0 and i = 0, 1, . . . , n, satisfying simplicial identities, see e.g. [GJ99, Section I.1]. The
simplicial set corresponding to our groupoid (which is called its nerve) may be depicted as

Ω1(M, g) C∞(M,G) × Ω1(M, g)oo
oo C∞(M,G)×2 × Ω1(M, g)oo

oo

oo
· · ·oo

oo

oo

oo

, (2.3)

where the arrows are the face maps and we have suppressed the degeneracy maps for notational
convenience. Explicitly, the face maps read as

∂ni : C∞(M,G)×n × Ω1(M, g) −→ C∞(M,G)×n−1 × Ω1(M, g) ,

(g1, . . . , gn, A) 7−→





(g2, . . . , gn, A) , for i = 0 ,

(g1, . . . , gi gi+1, . . . gn, A) , for i = 1, . . . , n− 1 ,

(g1, . . . , gn−1, ρ(gn, A)) , for i = n ,

(2.4a)

and the degeneracy maps read as

ǫni : C∞(M,G)×n × Ω1(M, g) −→ C∞(M,G)×n+1 × Ω1(M, g) ,

(g1, . . . , gn, A) 7−→ (g1, . . . , gi, e, gi+1, . . . , gn, A) . (2.4b)

The simplicial set perspective has the advantage of making clear how to describe gauge
theory observables. Interpreting (2.3) as the simplicial set of gauge field configurations, it is
natural to model (classical) observables as functions on it. This can be done by taking the
algebra of complex-valued functions C(− ,C) on each degree of (2.3). Doing so, a cosimplicial
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algebra is obtained by dualizing the face and degeneracy maps to co-face and co-degeneracy
maps under the contravariant functor C(− ,C) : Sets → Alg between sets and algebras. Re-
stricting to infinitesimal gauge transformations, this picture reduces nicely to the well-known
BRST formalism, see [FR12] for a presentation of this topic in the context of the algebraic ap-
proach to field theory. By the dual Dold-Kan correspondence (see Appendix A) we can regard
our cosimplicial algebra as a differential graded algebra (dg-algebra), see also [CC04] for more
details. This dg-algebra can be ‘linearized’ via a procedure called the van-Est map (here we re-
quire the smooth structure mentioned above) to yield the BRST algebra (Chevalley-Eilenberg
dg-algebra) of gauge theory, see e.g. [Cra03]. It is important to stress that this linearization
procedure neglects finite gauge transformations and hence leads to an incomplete description
of gauge theory. Our cosimplicial algebra (or its associated dg-algebra) should be interpreted
as an improvement of the usual BRST algebra, which keeps track of all gauge transformations
and not only of the infinitesimal ones; in fact, finite gauge transformations are essential for
gluing local field configurations to global ones. Using the analogy with the BRST formalism,
we may call the factors C∞(M,G) in (2.3) the ‘ghost fields’. Notice that these ghost fields are
non-linear in the sense that they are functions with values in the structure group, while the
ordinary ghost fields in the BRST formalism are described by the tangent space C∞(M, g) at
the identity e ∈ C∞(M,G) and hence they are linear.

2.2 Abelian gauge theory

In the remainder of this paper we shall fix the structure group G = T with Lie algebra t = iR
and hence consider only Abelian gauge theory. Then the structures described above simplify
considerably. In particular, all sets appearing in (2.3) naturally become Abelian groups with
respect to the direct product group structure given by

(g1, . . . , gn, A) (g
′
1, . . . , g

′
n, A

′) := (g1 g
′
1, . . . , gn g

′
n, A+A′) . (2.5)

Moreover, the action of the gauge group on gauge potentials (2.1) simplifies to ρ(g,A) =
A + g dg−1, and it is easy to show that the face and degeneracy maps (2.4) are group homo-
morphisms. It follows that the simplicial set (2.3) is a simplicial Abelian group, which under
the Dold-Kan correspondence can be identified with a non-negatively graded chain complex of
Abelian groups, see Appendix A. This chain complex is called the normalized Moore complex
and in the present case it reads explicitly as

C(M) :=
(⊕

n≥0

C(M)n , δ
)
:=

(
Ω1(M, t) ⊕ C∞(M,T) , δ

)
, (2.6)

where Ω1(M, t) sits in degree 0 and C∞(M,T) sits in degree 1. As a convenient sign convention,
we shall take as the differential (of degree −1) in C(M) the negative of the differential in the
normalized Moore complex (A.2), i.e.

δ(A ⊕ g) = (g dg−1)⊕ 0 . (2.7)

M being contractible, the homology H∗ of the chain complex C(M) is given by

H0(C(M)) =
Ω1(M, t)

dC∞(M, t)
, H1(C(M)) ≃ T , (2.8)

which gives the gauge orbit space in degree 0 and the global constant gauge transformations
in degree 1. Notice that the first homology group is not a vector space, but only an Abelian
group. This feature naturally distinguishes between the Abelian gauge theories with structure
groups G = T and G = R: Both theories have the same zeroth homology (i.e. the same gauge
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orbit space) on contractible manifolds, but they differ in the first homology which is always
isomorphic to G.

For Abelian gauge theory we also obtain a distinguished class of observables: Since in this
case (2.3) is a simplicial Abelian group, instead of all complex-valued functions C(− ,C) on
each degree, we can take only those functions which are group characters, i.e. homomorphisms
of Abelian groups HomAb(− ,T) to the circle group. The group characters do not form an
algebra, but rather an Abelian group called the character group; of course one can generate an
algebra by the group characters, but this will not be done in the present paper. The character
group should be interpreted as a generalization of the vector space of linear observables for a
real scalar field theory, which also does not form an algebra, but which generates a polynomial
algebra. Taking the character groups HomAb(− ,T) in each degree of (2.3) gives rise to a
cosimplicial Abelian group because all face and degeneracy maps dualize to co-face and co-
degeneracy maps. Under the dual Dold-Kan correspondence this can be identified with a
non-positively graded chain complex of Abelian groups, see Appendix A, which for our model
explicitly reads as

(
C∞(M,T)∗ ⊕ Ω1(M, t)∗ , δ∗

)
, (2.9)

where − ∗ := HomAb(− ,T). Here C
∞(M,T)∗ sits in degree −1 and Ω1(M, t)∗ sits in degree 0,

while the differential δ∗ (of degree −1) is the dual of the differential (2.7). Using the smooth
character groups as in [BSS14], the chain complex (2.9) can be restricted to

O(M) :=
(⊕

n≤0

O(M)n , δ
∗
)
:=

(
Ωm
c,Z(M)⊕ Ωm−1

c (M) , δ∗
)
, (2.10)

where m is the dimension of M and the subscript c indicates differential forms of compact
support. By Ωm

c,Z(M) we denote the subgroup of Ωm
c (M) consisting of compactly supported

top-degree forms which integrate to an integer, i.e. χ ∈ Ωm
c,Z(M) if and only if

∫
M
χ ∈ Z. It is

instructive to explain in more detail how (2.10) defines group characters on (2.6) and to give
an explicit formula for δ∗: Let us define the non-degenerate pairing

〈
−,−

〉
M

: O(M)× C(M) −→ T ,

(χ⊕ ϕ,A⊕ g) 7−→ exp
( ∫

M

(
A ∧ ϕ+ log(g)χ

))
. (2.11)

We observe that (2.11) is a bi-character, i.e.

〈
χ⊕ ϕ+ χ′ ⊕ ϕ′, A⊕ g

〉
M

=
〈
χ⊕ ϕ,A ⊕ g

〉
M

〈
χ′ ⊕ ϕ′, A⊕ g

〉
M
, (2.12a)

〈
χ⊕ ϕ,A⊕ g +A′ ⊕ g′

〉
M

=
〈
χ⊕ ϕ,A ⊕ g

〉
M

〈
χ⊕ ϕ,A′ ⊕ g′

〉
M
, (2.12b)

and that it is compatible with the gradings of O(M) and C(M) if we take the target T to sit in
degree 0. The differential δ∗ in O(M) is defined via the duality induced by (2.11); we compute

〈
χ⊕ ϕ, δ(A ⊕ g)

〉
M

=
〈
χ⊕ ϕ, (g dg−1)⊕ 0)

〉
M

= exp
(
−

∫

M

d log(g) ∧ ϕ
)

=
〈
dϕ⊕ 0, A ⊕ g

〉
M

=:
〈
δ∗(χ⊕ ϕ), A ⊕ g

〉
M
, (2.13)

from which we find δ∗(χ⊕ ϕ) = dϕ⊕ 0. Recalling that in the present section all manifolds are
contractible, it follows that the homology H∗ of the chain complex (2.10) is given by

H−1(O(M)) ≃ Z , H0(O(M)) = Ωm−1
c,d (M) := Ker

(
d : Ωm−1

c (M)→ Ωm
c (M)

)
. (2.14)
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Comparing these groups with (2.8), we see that H−1(O(M)) contains exactly the group charac-
ters on H1(C(M)) and that H0(O(M)) is given by the (smooth) group characters on the gauge
orbit space H0(C(M)), i.e. the zeroth homology of O(M) describes gauge invariant group char-
acters and hence gauge invariant observables of that kind.

All of these constructions are functorial. Let us denote by Man c© the following category
of contractible manifolds: The objects in Man c© are all contractible oriented manifolds of
a fixed dimension m (which we suppress from the notation) and the morphisms in Man c©

are all orientation preserving open embeddings. The chain complexes in (2.6) are described
by a functor C : Manopc© → Ch≥0(Ab), where Manopc© denotes the opposite category (i.e. the
category with reversed arrows) of Man c© and Ch≥0(Ab) is the category of non-negatively graded
chain complexes of Abelian groups; the functor C assigns to any object M in Man c© the chain
complex C(M) given in (2.6) and to any morphism fop :M ′ →M in Manopc© (i.e. any morphism
f :M →M ′ in Man c©) the morphism of chain complexes

C(fop) := f∗ : C(M ′) −→ C(M) , A′ ⊕ g′ 7−→ f∗(A′)⊕ f∗(g′) , (2.15)

where f∗ is the pull-back of functions/differential forms along f . Similarly, the chain complexes
in (2.10) are described by a functor O : Man c© → Ch≤0(Ab) to the category of non-positively
graded chain complexes of Abelian groups; the functor O assigns to any object M in Man c©

the chain complex O(M) given in (2.10) and to any morphism f : M → M ′ in Man c© the
morphism of chain complexes

O(f) := f∗ : O(M) −→ O(M ′) , χ⊕ ϕ 7−→ f∗(χ)⊕ f∗(ϕ) , (2.16)

where f∗ is the push-forward of compactly supported differential forms along f . It follows that
the pairing (2.11) is natural in the sense that the diagram

O(M)× C(M ′)

f∗×id
��

id×f∗

// O(M)× C(M)

〈−,−〉M
��

O(M ′)× C(M ′)
〈−,−〉M′

// T

(2.17)

commutes for all morphisms f :M →M ′ in Man c©.

3 Homotopy limits and global gauge field configurations

Our functor C : Manopc© → Ch≥0(Ab) given by (2.6) and (2.15) describes the chain complexes
of gauge field configurations (together with gauge transformations) of Abelian gauge theory
on contractible manifolds. Notice that for an arbitrary manifold M the chain complex in (2.6)
does not necessarily describe all gauge field configurations on M : For example, M might have
a non-trivial second cohomology H2(M,Z) 6= 0, hence allowing for non-trivial principal T-
bundles which are not captured by (2.6). The goal of this section is to extend the functor
C : Manopc© → Ch≥0(Ab) to the category Man of all oriented m-dimensional manifolds (with
morphisms given by orientation preserving open embeddings) by using homotopy theoretic
techniques.

3.1 Canonical diagrams of gauge field configurations

To any object M in Man we can assign the category D(M) of all contractible open subsets
U ⊆ M with morphisms given by subset inclusions U ⊆ V . The set of objects D(M)0 of
D(M) is an open cover of M , i.e.

⋃
U∈D(M)0

U = M . Notice that, even though every U ∈

9



D(M)0 is contractible, the open cover D(M)0 is not a good cover: The intersection of two
contractible open subsets fails to be contractible in general. This is not problematic since our
main constructions do not use intersections. To any morphism f : M → M ′ in Man we can
assign the functor D(f) : D(M)→ D(M ′) which maps any contractible open subset U ⊆M to
its image f(U) ⊆M ′. In summary, we have defined a functor

D : Man −→ Cat (3.1)

to the category Cat of small categories.

Let now M be any object in Man. Notice that any object U in D(M) carries a canonical
orientation by pulling back the orientation of M under the subset inclusion U ⊆ M . Hence
we may regard D(M) as a subcategory of Man c© and we can restrict the functor C : Manopc© →
Ch≥0(Ab) to a functor on D(M)op, which we shall denote by CM : D(M)op → Ch≥0(Ab). The
functor CM assigns to any contractible open subset U ⊆ M the chain complex C(U) given by
(2.6) and to any subset inclusion U ⊆ V the restriction map |U : C(V )→ C(U) given by (2.15)
for the subset inclusion U ⊆ V . Given now any morphism f : M → M ′ in Man, the functor
(3.1) gives a functor D(f) : D(M) → D(M ′), which defines a functor (denoted by the same
symbol) D(f) : D(M)op → D(M ′)op between the opposite categories. Hence we obtain two
functors

CM : D(M)op −→ Ch≥0(Ab) , CM ′ ◦D(f) : D(M)op −→ Ch≥0(Ab) , (3.2)

with the same source and target category. The pull-back (2.15) then defines a natural trans-
formation (denoted by the same symbol)

f∗ : CM ′ ◦ D(f) =⇒ CM . (3.3)

3.2 Homotopy limit of canonical diagrams

In this subsection we shall fix an arbitrary object M in Man and study the homotopy limit of
the canonical diagram CM : D(M)op → Ch≥0(Ab) given in (3.2), which we denote by

Cext(M) :=
(⊕

n≥0

Cext(M)n , δ
)
:= holim(CM ) . (3.4)

We use the techniques of [Dug, Section 16.8] and [Rod14], which we have summarized in detail
in Appendix B.1. Recall the explicit form of the functor C : Manopc© → Ch≥0(Ab) given by (2.6)
and (2.15). In order to compute the homotopy limit (3.4) of its restriction CM : D(M)op →
Ch≥0(Ab), we first take the cosimplicial replacement of this functor. This yields a cosimplicial
object in Ch≥0(Ab), see (B.1), (B.2) and (B.3) for detailed expressions. Using the co-normalized
Moore complex (A.3), we assign to this cosimplicial object in Ch≥0(Ab) a double chain complex
in Ch≤0(Ch≥0(Ab)), cf. (B.5), which for our present functor CM : D(M)op → Ch≥0(Ab) explicitly
reads as

∏
U

Ω1(U, t)

δv

��

∏
U

C∞(U,T)

δv

��

δhoo

∏
U⊂V

Ω1(U, t)

δv

��

∏
U⊂V

C∞(U,T)

δv

��

δhoo

∏
U⊂V⊂W

Ω1(U, t)

δv
��

∏
U⊂V⊂W

C∞(U,T)

δv
��

δhoo

...
...

(3.5)
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where the products are respectively over all objects U in D(M), over all proper subset inclusions
U ⊂ V (i.e. all non-identity arrows in D(M)), and in lower vertical degree over all n-fold proper
subset inclusions. The horizontal differential δh is given by the product of the differentials in
(2.6) and the vertical differential δv is defined as the alternating sum of the co-face maps, see
Appendix B.1. The homotopy limit (3.4) is then the truncated

∏
-total complex of the double

complex (3.5), see (B.6) and (B.7). Explicitly, we find Cext(M)n = 0, for all n ≥ 2, and

Cext(M)1 =
∏

U

C∞(U,T) , (3.6a)

Cext(M)0 ⊆
∏

U

Ω1(U, t) ×
∏

U⊂V

C∞(U,T) . (3.6b)

The degree 0 component Cext(M)0 in (3.6) is given by the subgroup of all elements
∏

U AU ×∏
U⊂V g(U⊂V ) satisfying the conditions

AV

∣∣
U
−AU = g(U⊂V ) dg

−1
(U⊂V ) , (3.7a)

for all U ⊂ V , and

g(V ⊂W )

∣∣
U
g−1
(U⊂W ) g(U⊂V ) = 1 ∈ C∞(U,T) , (3.7b)

for all U ⊂ V ⊂W . The differential δ : Cext(M)1 → Cext(M)0 is explicitly given by

δ
(∏

U

gU

)
=

∏

U

gU dg−1
U ×

∏

U⊂V

gV
∣∣
U
g−1
U . (3.8)

3.3 Deligne complex

We shall show that the chain complex Cext(M), given by the homotopy limit (3.4), is isomorphic
to the Deligne complex for the canonical cover D(M)0 of M ; see [Bry07, Bou10, Sza12] for
details on the Deligne complex and Deligne cohomology. In the canonical cover D(M)0, the
Deligne complex reads as

Del(M) =
(
Del(M)0 ⊕Del(M)1 , δ

Del
)
, (3.9)

where

Del(M)0 ⊆
∏

U

Ω1(U, t) ×
∏

U,V

C∞(U ∩ V,T) (3.10)

is the subgroup of all elements
∏

U AU ×
∏

U,V gUV satisfying the conditions

AV

∣∣
U∩V

−AU

∣∣
U∩V

= gUV dg−1
UV , (3.11a)

for all U, V , and

gVW

∣∣
U∩V ∩W

g−1
UW

∣∣
U∩V ∩W

gUV

∣∣
U∩V ∩W

= 1 ∈ C∞(U ∩ V ∩W,T) , (3.11b)

for all U, V,W . The degree 1 component is given by

Del(M)1 =
∏

U

C∞(U,T) , (3.12)

and the differential δDel : Del(M)1 → Del(M)0 reads as

δDel
(∏

U

gU

)
=

∏

U

gU dg−1
U ×

∏

U,V

gV
∣∣
U∩V

g−1
U

∣∣
U∩V

. (3.13)
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We define a Ch≥0(Ab)-morphism

ψ : Del(M) −→ Cext(M) (3.14)

by setting the identity ψ1 = id on
∏

U C∞(U,T) in degree 1 and

ψ0

(∏

U

AU ×
∏

U,V

gUV

)
=

∏

U

AU ×
∏

U⊂V

gUV (3.15)

in degree 0. Using (3.11), it is easy to show that the image of ψ0 lies in Cext(M)0, i.e. that the
conditions (3.7) are fulfilled. Using also (3.8) and (3.13) one easily shows that ψ preserves the
differentials, i.e. δ ◦ ψ1 = ψ0 ◦ δ

Del.

Let us now define a Ch≥0(Ab)-morphism

ϕ : Cext(M) −→ Del(M) (3.16)

by setting the identity ϕ1 = id on
∏

U C∞(U,T) in degree 1 and

ϕ0

(∏

U

AU ×
∏

U⊂V

g(U⊂V )

)
=

∏

U

AU ×
∏

U,V

g̃UV (3.17)

in degree 0, where the functions g̃UV ∈ C∞(U ∩ V,T) are defined by the following gluing
construction: Let us denote by {Ui : i ∈ I} the set of all contractible open subsets of M which
are strictly contained in U ∩ V . Then {Ui : i ∈ I} is an open cover of U ∩ V and we define

(g̃UV )i := g(Ui⊂V ) g
−1
(Ui⊂U) ∈ C

∞(Ui,T) , (3.18)

for all i ∈ I. Given now i, j ∈ I such that Ui ∩ Uj 6= ∅, there exists a subset K ⊆ I such that
{Uk : k ∈ K} is an open cover of Ui ∩ Uj. Given any element Uk of that cover, the conditions
(3.7b) imply that

(g̃UV )i
∣∣
Uk

= (g̃UV )k = (g̃UV )j
∣∣
Uk

. (3.19)

Hence (g̃UV )i and (g̃UV )j coincide on the overlap Ui∩Uj. Using now the fact that C∞(− ,T) is a
sheaf of Abelian groups, there exists an element g̃UV ∈ C

∞(U∩V,T) such that g̃UV |Ui
= (g̃UV )i,

for all i ∈ I. This is the element appearing on the right-hand side of (3.17). Using (3.7),
it is easy to show that the image of ϕ0 lies in Del(M)0, i.e. that the conditions (3.11) are
fulfilled. Using also (3.8) and (3.13) one easily shows that ϕ preserves the differentials. The
two Ch≥0(Ab)-morphisms ψ and ϕ are inverse to each other, which implies that Cext(M) and
Del(M) are isomorphic.

Because the cover D(M)0 consists of contractible open subsets of M , any principal T-
bundle connection pair on M can be trivialized on this cover and hence it can be described by
an element in Del(M)0. (For this statement it does not matter that the intersections U ∩ V
are in general non-contractible.) Conversely, we can construct for any element in Del(M)0 a
principal T-bundle connection pair. Furthermore, it is easy to check from the definition of
δDel : Del(M)1 → Del(M)0 that its kernel corresponds to locally constant T-valued functions
onM , namely the cohomology group H0(M,T) classifying global gauge transformations. Using
in addition the isomorphism between Cext(M) and Del(M), we have a chain of isomorphisms

H∗(C
ext(M)) ≃ H∗(Del(M)) ≃ Ĥ2(M ;Z)⊕H0(M,T) , (3.20)

where Ĥ2(M ;Z) is the second differential cohomology group, i.e. the Abelian group which
classifies principal T-bundles with connection on M (up to isomorphism). In summary, we
have shown that the chain complex Cext(M) given by the homotopy limit (3.4) describes all
possible global gauge field configurations on M . In particular, whenever H2(M,Z) 6= 0, the
chain complex Cext(M) accounts for non-trivial principal T-bundles on M .
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3.4 Functoriality

We can assign to any object M in Man the chain complex Cext(M) given by the homotopy
limit (3.4). Using (3.3) and functoriality of the homotopy limit it immediately follows that this
assignment is a functor

Cext : Manop −→ Ch≥0(Ab) . (3.21)

Explicitly, for any morphism fop :M ′ →M in Manop (i.e. any morphism f :M →M ′ in Man)
there is a Ch≥0(Ab)-morphism

Cext(fop) := f∗ : Cext(M ′) −→ Cext(M) (3.22)

given in degree 0 by

f∗
(∏

U ′

A′
U ′ ×

∏

U ′⊂V ′

g′(U ′⊂V ′)

)
=

∏

U

f∗
(
A′

f(U)

)
×

∏

U⊂V

f∗
(
g′(f(U)⊂f(V ))

)
, (3.23a)

and in degree 1 by

f∗
(∏

U ′

g′U ′

)
=

∏

U

f∗
(
g′f(U)

)
. (3.23b)

3.5 Functor extension

We shall show that the functor Cext : Manop → Ch≥0(Ab) given in (3.21) is an extension of our
original functor C : Manopc© → Ch≥0(Ab), i.e. that there is a diagram of functors

Manopc©

$$❏
❏❏

❏❏
❏❏

❏

C //

η

��

Ch≥0(Ab)

Manop
Cext

88rrrrrrrrrr

(3.24)

which commutes up to a natural transformation η. The functor Manopc© → Manop is simply the
full subcategory embedding. We further show that the natural transformation η is a natural
quasi-isomorphism, so that the functors C and Cext give weakly equivalent descriptions of the
gauge field configurations on contractible manifolds. Our extension Cext of C is distinguished
by the fact that it gives a correct description of the global gauge field configurations on non-
contractible manifolds, see (3.20).

For any object M in Man c©, there is a Ch≥0(Ab)-morphism

ηM : C(M) −→ Cext(M) (3.25)

given by

ηM 0(A) =
∏

U

A|U ×
∏

U⊂V

1 , ηM 1(g) =
∏

U

g
∣∣
U
. (3.26)

One easily checks that ηM are the components of a natural transformation, i.e. for all morphisms
f :M →M ′ in Man c© there is a commutative diagram

C(M ′)

f∗

��

ηM′
// Cext(M ′)

f∗

��

C(M)
ηM

// Cext(M)

(3.27)
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in the category Ch≥0(Ab). Hence the diagram of functors (3.24) commutes up to the natural
transformation η and Cext is an extension of C.

It remains to show that η is a natural quasi-isomorphism, i.e. that any component ηM is a
quasi-isomorphism in Ch≥0(Ab). For this, we define a (non-natural) Ch≥0(Ab)-morphism

θM : Cext(M) −→ C(M) (3.28)

by setting

θM0

(∏

U

AU ×
∏

U⊂V

g(U⊂V )

)
= AM , θM 1

(∏

U

gU

)
= gM . (3.29)

Notice that θM ◦ ηM = id and that ηM ◦ θM − id = δ ◦ h+ h ◦ δ with chain homotopy

h : Cext(M)0 −→ Cext(M)1 ,
∏

U

AU ×
∏

U⊂V

g(U⊂V ) 7−→
∏

U

g(U⊂M) . (3.30)

Hence any Ch≥0(Ab)-morphism (3.25) is a quasi-isomorphism.

4 Homotopy colimits and global gauge field observables

Our functor O : Man c© → Ch≤0(Ab) given by (2.10) and (2.16) describes the chain complexes
of gauge field observables (given by smooth group characters) of Abelian gauge theory on
contractible manifolds. For an arbitrary manifold M , the chain complex in (2.10) does not
describe sufficiently many observables to separate all gauge field configurations on M . In
particular, if H2(M,Z) 6= 0, there are non-trivial principal T-bundles over M which are not
measured by the observables in (2.10). In this section we perform the dual of the construction
in Section 3 in order to extend the functor O : Man c© → Ch≤0(Ab) to the category Man of all
oriented m-dimensional manifolds.

4.1 Canonical diagrams of gauge field observables

Recalling the functor D : Man → Cat given in Subsection 3.1 (cf. (3.1)) and the fact that
D(M) may be regarded as a subcategory of Man c©, for any object M in Man, we can restrict
the functor O : Man c© → Ch≤0(Ab) to a functor on D(M), which we shall denote by OM :
D(M)→ Ch≤0(Ab). The functor OM assigns to any contractible open subset U ⊆M the chain
complex O(U) given by (2.10) and to any subset inclusion U ⊆ V the extension (by zero) map
extV : O(U)→ O(V ) given by (2.16) for the subset inclusion U ⊆ V . Given now any morphism
f :M →M ′ in Man, the functor (3.1) gives a functor D(f) : D(M)→ D(M ′), hence there are
two parallel functors

OM : D(M) −→ Ch≤0(Ab) , OM ′ ◦ D(f) : D(M) −→ Ch≤0(Ab) . (4.1)

The push-forward (2.16) then defines a natural transformation (denoted by the same symbol)

f∗ : OM =⇒ OM ′ ◦ D(f) . (4.2)

4.2 Homotopy colimit of canonical diagrams

We fix any object M in Man and study the homotopy colimit of the canonical diagram OM :
D(M)→ Ch≤0(Ab) given in (4.1), which we denote by

Oext(M) :=
(⊕

n≤0

Oext(M)n , δ
∗
)
:= hocolim(OM ) . (4.3)
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We use the techniques summarized in Appendix B.2. Recall the explicit form of the functor
O : Man c© → Ch≤0(Ab) given by (2.10) and (2.16). In order to compute the homotopy colimit
(4.3) of its restriction OM : D(M)→ Ch≤0(Ab), we first take the simplicial replacement of this
functor. This yields a simplicial object in Ch≤0(Ab), see (B.8), (B.9) and (B.10) for detailed
expressions. Using the normalized Moore complex (A.2), we assign to this simplicial object in
Ch≤0(Ab) a double chain complex in Ch≥0(Ch≤0(Ab)), cf. (B.12), which for our present functor
OM : D(M)→ Ch≤0(Ab) explicitly reads as

...

δv

��

...

δv

��∐
U⊂V⊂W

Ωm
c,Z(U)

δv

��

∐
U⊂V⊂W

Ωm−1
c (U)

δv

��

δhoo

∐
U⊂V

Ωm
c,Z(U)

δv

��

∐
U⊂V

Ωm−1
c (U)

δv

��

δhoo

∐
U

Ωm
c,Z(U)

∐
U

Ωm−1
c (U)

δhoo

(4.4)

where the coproducts are respectively over all objects U in D(M), over all proper subset
inclusions U ⊂ V , and in higher vertical degree over all n-fold proper subset inclusions. The
horizontal differential δh is given by the coproduct of the differentials in (2.10) and the vertical
differential δv is defined as the alternating sum of the face maps, see Appendix B.2. The
homotopy colimit (4.3) is then the truncated

∐
-total complex of the double complex (4.4), see

(B.13) and (B.14). Explicitly, we find Oext(M)n = 0, for all n ≤ −2, and

Oext(M)−1 =
∐

U

Ωm
c,Z(U) , (4.5a)

Oext(M)0 =
(∐

U

Ωm−1
c (U) ⊕

∐

U⊂V

Ωm
c,Z(U)

)/
I(M) . (4.5b)

The quotient in Oext(M)0 is by the Abelian subgroup I(M) that is generated by the elements

ιU (ϕ)− ιV
(
extV (ϕ)

)
− ι(U⊂V )(dϕ) , (4.6a)

for all U ⊂ V and ϕ ∈ Ωm−1
c (U), and

ι(U⊂V )(χ)− ι(U⊂W )(χ) + ι(V ⊂W )

(
extV (χ)

)
, (4.6b)

for all U ⊂ V ⊂W and χ ∈ Ωm
c,Z(U). Here ι− denote the inclusion morphisms in the coproducts

and as before ext− denote the extension maps. The differential δ∗ : Oext(M)0 → Oext(M)−1 is
explicitly given by

δ∗
(
ιU (ϕ)

)
= ιU (dϕ) , δ∗

(
ι(U⊂V )(χ)

)
= ιU (χ)− ιV

(
extV (χ)

)
, (4.7)

where we suppress the equivalence classes in Oext(M)0.

4.3 Functoriality

We can assign to any object M in Man the chain complex Oext(M) given by the homotopy
colimit (4.3). Using (4.2) and functoriality of the homotopy colimit, it immediately follows
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that this assignment is a functor

Oext : Man −→ Ch≤0(Ab) . (4.8)

Explicitly, for any morphism f :M →M ′ in Man there is a Ch≤0(Ab)-morphism

Oext(f) := f∗ : O
ext(M) −→ Oext(M ′) (4.9)

given in degree 0 by

f∗
(
ιU (ϕ)

)
= ιf(U)

(
f∗(ϕ)

)
, f∗

(
ι(U⊂V )(χ)

)
= ι(f(U)⊂f(V ))

(
f∗(χ)

)
, (4.10a)

and in degree −1 by

f∗
(
ιU (χ)

)
= ιf(U)

(
f∗(χ)

)
. (4.10b)

4.4 Functor extension

We shall show that the functor Oext : Man → Ch≤0(Ab) given in (4.8) is an extension of our
original functor O : Man c© → Ch≤0(Ab), i.e. that there is a diagram of functors

Man c©

$$❍
❍
❍❍

❍❍
❍❍

O // Ch≤0(Ab)

Man
Oext

99sssssssss

ζ

KS (4.11)

which commutes up to a natural transformation ζ. We further show that ζ is a natural quasi-
isomorphism, so that the functors O and Oext give weakly equivalent descriptions of the gauge
field observables on contractible manifolds.

For any object M in Man c©, there is a Ch≤0(Ab)-morphism

ζM : Oext(M) −→ O(M) (4.12)

given in degree 0 by

ζM 0

(
ιU (ϕ)

)
= extM (ϕ) , ζM0

(
ι(U⊂V )(χ)

)
= 0 , (4.13a)

and in degree −1 by

ζM−1

(
ιU (χ)

)
= extM (χ) . (4.13b)

One easily checks that ζM are the components of a natural transformation, i.e. for all morphisms
f :M →M ′ in Man c© there is a commutative diagram

Oext(M)

f∗
��

ζM // O(M)

f∗
��

Oext(M ′)
ζM′

// O(M ′)

(4.14)

in the category Ch≤0(Ab).

It remains to show that ζ is a natural quasi-isomorphism, i.e. that any component ζM is a
quasi-isomorphism in Ch≤0(Ab). For this, we define a (non-natural) Ch≤0(Ab)-morphism

κM : O(M) −→ Oext(M) (4.15)

by setting

κM 0(ϕ) = ιM (ϕ) , κM−1(χ) = ιM (χ) . (4.16)

Notice that ζM ◦ κM = id and that κM ◦ ζM − id = δ∗ ◦ k + k ◦ δ∗ with chain homotopy

k : Oext(M)−1 −→ Oext(M)0 , ιU (χ) 7−→ −ι(U⊂M)(χ) . (4.17)

Hence any Ch≤0(Ab)-morphism (4.12) is a quasi-isomorphism.
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4.5 Natural pairing

For any object M in Man, there is a grading-preserving pairing given by the bi-character

〈
−,−

〉ext
M

: Oext(M)× Cext(M) −→ T (4.18)

defined by

〈
ιV (χ) ,

∏

U

gU

〉ext

M
:=

〈
χ, gV

〉
V
, (4.19a)

〈
ιW (ϕ) ,

∏

U

AU ×
∏

U⊂V

g(U⊂V )

〉ext

M
:=

〈
ϕ,AW

〉
W
, (4.19b)

〈
ι(W⊂X)(χ) ,

∏

U

AU ×
∏

U⊂V

g(U⊂V )

〉ext

M
:=

〈
χ, g−1

(W⊂X)

〉
W
, (4.19c)

where the right-hand sides are given by the pairings (2.11) for contractible manifolds. Using
the conditions (3.7), one immediately checks that this pairing is compatible with the quotient
in Oext(M)0 that is generated by the elements (4.6). Moreover, the differentials δ in Cext(M)
and δ∗ in Oext(M) are dual to each other via the pairing (4.18), i.e.

〈
δ∗F,B

〉ext
M

=
〈
F, δB

〉ext
M

, (4.20)

for all F ∈ Oext(M) and B ∈ Cext(M). The pairing (4.18) is natural in the sense that the
diagram

Oext(M)× Cext(M ′)

f∗×id
��

id×f∗

// Oext(M)× Cext(M)

〈−,−〉ext
M

��

Oext(M ′)× Cext(M ′)
〈−,−〉ext

M′

// T

(4.21)

commutes for all morphisms f :M →M ′ in Man.

Notice that the pairing (4.18) is non-degenerate in the right entry, i.e. the observables
Oext(M) separate all possible global gauge field configurations Cext(M) on M . In particular,
when H2(M,Z) 6= 0, our homotopy colimit construction has produced enough observables to
measure and distinguish all possible principal T-bundles on M .
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A Dold-Kan correspondence and Moore complex

We shall briefly review the Dold-Kan correspondence between simplicial Abelian groups and
non-negatively graded chain complexes of Abelian groups. In particular, we shall give explicit
formulas for the normalized Moore complex, which is used at various instances in this paper.
For further details and full proofs, see [GJ99, Section III.2].

Denoting by sAb the category of simplicial Abelian groups and by Ch≥0(Ab) the category of
non-negatively graded chain complexes of Abelian groups, the Dold-Kan correspondence states
that there are two functors

N : sAb −→ Ch≥0(Ab) , Γ : Ch≥0(Ab) −→ sAb , (A.1)

which form an equivalence of categories, see [GJ99, Section III.2, Corollary 2.3]. For the
purposes of the present paper, we only need an explicit description of the functor N , which
is called the normalized Moore complex. Let A = {An}n∈N0 be any simplicial Abelian group
with face and degeneracy maps denoted by ∂ni : An → An−1, for i = 0, 1, . . . , n and n ≥ 1,
and ǫni : An → An+1, for i = 0, 1, . . . , n and n ≥ 0. Then the functor N assigns to A the
non-negatively graded chain complex of Abelian groups

N(A) :=
(⊕

n≥0

N(A)n , δ
)
, (A.2a)

where

N(A)n :=
An

ǫn−1
0 (An−1) + · · ·+ ǫn−1

n−1(An−1)
, (A.2b)

for all n ≥ 0, and the differential δ (of degree −1) is defined as the alternating sum of the face
maps, i.e. we set

δ :=
n∑

i=0

(−1)i ∂ni (A.2c)

on N(A)n.

The dual Dold-Kan correspondence is an equivalence between the categories of cosimplicial
Abelian groups cAb and non-positively graded chain complexes of Abelian groups Ch≤0(Ab).
For our purposes we only have to explain the functor N∗ : cAb → Ch≤0(Ab), which is called
the co-normalized Moore complex. Let A = {An}n∈N0 be any cosimplicial Abelian group with
co-face and co-degeneracy maps denoted by din : An → An+1, for i = 0, 1, . . . , n+ 1 and n ≥ 0,
and ein : An → An−1, for i = 0, 1, . . . , n − 1 and n ≥ 1. Then the functor N∗ assigns to A the
non-positively graded chain complex of Abelian groups

N∗(A) :=
(⊕

n≤0

N∗(A)n , δ
∗
)
, (A.3a)

where

N∗(A)−n :=

n−1⋂

i=0

Ker
(
ein : An → An−1

)
, (A.3b)

for all n ≥ 0, and the differential δ∗ (of degree −1) is defined as the alternating sum of the
co-face maps, i.e. we set

δ∗ :=
n+1∑

i=0

(−1)i din (A.3c)
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on N∗(A)−n.

Note that the normalized Moore complex (A.2) is still defined when we replace the cat-
egory of Abelian groups Ab by other Abelian categories, such as the category of (possibly
unbounded) chain complexes of Abelian groups Ch(Ab). In this case the normalized Moore
complex N assigns to simplicial chain complexes of Abelian groups sCh(Ab) double chain com-
plexes of Abelian groups Ch≥0(Ch(Ab)), where the first grading is non-negative. Similarly, the
co-normalized Moore complex (A.3) is still defined when we replace the category of Abelian
groups Ab by Ch(Ab). Then the co-normalized Moore complex N∗ assigns to cosimplicial chain
complexes of Abelian groups cCh(Ab) double chain complexes of Abelian groups Ch≤0(Ch(Ab)),
where the first grading is non-positive.

B Homotopy limits and colimits for chain complexes

We shall briefly explain how to compute homotopy limits and colimits of diagrams of chain
complexes of Abelian groups. Our presentation follows mainly [Dug, Section 16.8], but we also
refer the reader to [Rod14] for more technical details.

B.1 Homotopy limits for non-negatively graded chain complexes

Let D be a small category. Given any functor X : D → Ch≥0(Ab), which we interpret as a
diagram in Ch≥0(Ab) of shape D, we would like to compute the homotopy limit holim(X). This
construction is a three step procedure: First, one takes the cosimplicial replacement of the
diagram X : D→ Ch≥0(Ab), which gives a cosimplicial object in Ch≥0(Ab). Then one assigns a
double chain complex in Ch≤0(Ch≥0(Ab)) via the co-normalized Moore complex, where the first
grading is non-positive and the second grading is non-negative. Finally one forms the

∏
-total

complex, which gives the homotopy limit holim(X) after truncation to non-negative degrees.
We shall now explain these steps in more detail and give explicit formulas.

The nerve of the small category D is the simplicial set {Dn}n∈N0 , where D0 is the set of
objects in D and Dn, for n ≥ 1, is the set of all composable n-arrows in D. For n ≥ 1, we shall
denote an element of Dn by an n-tuple (f1, . . . , fn) of morphisms in D such that the source of fi
is the target of fi+1 (i.e. the compositions fi◦fi+1 exist). The face maps are given by composing
two subsequent arrows (or throwing away the first/last arrow) and the degeneracy maps are
given by inserting the identity morphisms. The cosimplicial replacement of X : D→ Ch≥0(Ab)
is the cosimplicial object in Ch≥0(Ab) given by

∏
d∈D0

X(d) //
//
∏

f∈D1

X(t(f))
//

//
//

∏
(f1,f2)∈D2

X(t(f1))
//
//

//

//
· · · , (B.1)

where the arrows are the co-face maps and we have suppressed the co-degeneracy maps for
notational convenience. Here

∏
denotes the product in the category Ch≥0(Ab) and we have de-

noted by t(f) the target of a morphism f in D. The co-face maps din :
∏

(f1,...,fn)∈Dn
X(t(f1))→∏

(f1,...,fn+1)∈Dn+1
X(t(f1)), for n ≥ 0 and i = 0, 1, . . . , n+1, are defined by using the universal

property of the product; explicitly, for i = 0,

∏
(f1,...,fn)∈Dn

X(t(f1))

π(h2,...,hn+1)

��

d0n //
∏

(f1,...,fn+1)∈Dn+1

X(t(f1))

π(h1,...,hn+1)

��

X(t(h2))
X(h1)

// X(t(h1))

(B.2a)
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for 1 ≤ i ≤ n,

∏
(f1,...,fn)∈Dn

X(t(f1))

π(h1,...,hi◦hi+1,...,hn+1) ''P
PP

PP
PP

PP

din //
∏

(f1,...,fn+1)∈Dn+1

X(t(f1))

π(h1,...,hn+1)vv♠♠
♠♠
♠♠
♠♠
♠♠

X(t(h1))

(B.2b)

and for i = n+ 1,

∏
(f1,...,fn)∈Dn

X(t(f1))

π(h1,...,hn) ''P
PP

PP
PP

PP

dn+1
n //

∏
(f1,...,fn+1)∈Dn+1

X(t(f1))

π(h1,...,hn+1)vv♠♠
♠♠
♠♠
♠♠
♠♠

X(t(h1))

(B.2c)

where π− are the projection morphisms from the products. The co-degeneracy maps ein :∏
(f1,...,fn)∈Dn

X(t(f1))→
∏

(f1,...,fn−1)∈Dn−1
X(t(f1)), for n ≥ 1 and i = 0, 1, . . . , n− 1, are also

defined by using the universal property of the product; explicitly, for i = 0, 1, . . . , n− 1,

∏
(f1,...,fn)∈Dn

X(t(f1))

π(h1,...,hi,id,hi+1,...,hn−1) ''P
PP

PP
PP

PP

ein //
∏

(f1,...,fn−1)∈Dn−1

X(t(f1))

π(h1,...,hn−1)vv♠♠
♠♠
♠♠
♠♠
♠♠

X(t(h1))

(B.3)

Using the co-normalized Moore complex (A.3), we can assign to the cosimplicial object
(B.1) in Ch≥0(Ab) a double chain complex in Ch≤0(Ch≥0(Ab)). Denoting this double chain
complex by X∗,∗, a simple calculation shows that

X0,∗ =
∏

d∈D0

X(d) , X−n,∗ =
∏

(f1,...,fn)∈Dn
fi 6=id

X(t(f1)) , (B.4)

for all n ≥ 1, where the second product is taken over all composable n-arrows (f1, . . . , fn) such
that none of the fi is an identity morphism. The vertical differential δv : X∗,∗ → X∗−1,∗ is
given by the alternating sum of the co-face maps, i.e. δv =

∑n+1
i=0 (−1)i din on X−n,∗, and the

horizontal differential δh : X∗,∗ → X∗,∗−1 is given by the product of the differentials in the chain
complexes X(d), for d an object in D. The double complex X∗,∗ may be visualized as

X0,0

δv

��

X0,1

δv

��

δhoo X0,2

δv

��

δhoo · · ·
δhoo

X−1,0

δv

��

X−1,1

δv

��

δhoo X−1,2

δv

��

δhoo · · ·
δhoo

X−2,0

δv

��

X−2,1

δv

��

δhoo X−2,2

δv

��

δhoo · · ·
δhoo

...
...

...
. . .

(B.5)

We now form the
∏
-total complex

XTot :=
(⊕

n∈Z

XTot
n , δTot

)
:=

(⊕

n∈Z

∏

p+q=n

Xp,q , δ
Tot := δv + (−1)p δh

)
(B.6)
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and we notice that XTot is a Z-graded chain complex of Abelian groups, in particular it is non-
trivial in negative degrees. The homotopy limit holim(X) of the diagram X : D→ Ch≥0(Ab) is
then the truncation of XTot to non-negative degrees. Explicitly,

holim(X) =
(⊕

n≥0

holim(X)n , δ
)
, (B.7a)

where

holim(X)0 = Ker
(
δTot : XTot

0 → XTot
−1

)
, holim(X)n = XTot

n , (B.7b)

for all n ≥ 1, and the differential is given by δ = δTot.

B.2 Homotopy colimits for non-positively graded chain complexes

Let D be a small category. Given any functor Y : D → Ch≤0(Ab), the homotopy colimit
hocolim(Y) is constructed in a three step procedure: First, one takes the simplicial replacement
of the diagram Y : D → Ch≤0(Ab), which gives a simplicial object in Ch≤0(Ab). Then one
assigns a double chain complex in Ch≥0(Ch≤0(Ab)) via the normalized Moore complex, where
the first grading is non-negative and the second grading is non-positive. Finally one forms
the

∐
-total complex, which gives the homotopy colimit hocolim(Y) after truncation to non-

positive degrees. Notice that this is precisely the dual of the construction for homotopy limits
presented in Subsection B.1. However, we find it useful to go through these steps in more detail
and give explicit formulas.

Denoting as before the nerve of the small category D by {Dn}n∈N0 , the simplicial replace-
ment of Y : D→ Ch≤0(Ab) is the simplicial object in Ch≤0(Ab) given by

∐
d∈D0

Y(d)
∐

f∈D1

Y(s(f))oo
oo ∐

(f1,f2)∈D2

Y(s(f2))oo

oo
oo · · · ,oo

oo

oo

oo

(B.8)

where the arrows are the face maps and we have suppressed the degeneracy maps for notational
convenience. Here

∐
denotes the coproduct in the category Ch≤0(Ab) and we have denoted

by s(f) the source of a morphism f in D. The face maps ∂ni :
∐

(f1,...,fn)∈Dn
Y(s(fn)) →∐

(f1,...,fn−1)∈Dn−1
Y(s(fn−1)), for n ≥ 1 and i = 0, 1, . . . , n, are defined using the universal

property of the coproduct; explicitly, for i = 0,

∐
(f1,...,fn)∈Dn

Y(s(fn))
∂n
0 //

∐
(f1,...,fn−1)∈Dn−1

Y(s(fn−1))

Y(s(hn))

ι(h1,...,hn)

hhPPPPPPPPP ι(h2,...,hn)

55❧❧❧❧❧❧❧❧❧❧

(B.9a)

for 1 ≤ i ≤ n− 1,

∐
(f1,...,fn)∈Dn

Y(s(fn))
∂n
i //

∐
(f1,...,fn−1)∈Dn−1

Y(s(fn−1))

Y(s(hn))

ι(h1,...,hn)

hhPPPPPPPPP ι(h1,...,hi◦hi+1,...,hn)

55❧❧❧❧❧❧❧❧❧❧

(B.9b)

and for i = n,

∐
(f1,...,fn)∈Dn

Y(s(fn))
∂n
n //

∐
(f1,...,fn−1)∈Dn−1

Y(s(fn−1))

Y(s(hn))

ι(h1,...,hn)

OO

Y(hn)
// Y(s(hn−1))

ι(h1,...,hn−1)

OO

(B.9c)
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where ι− are the inclusion morphisms to the coproducts. For n ≥ 0 and i = 0, 1, . . . , n, the
degeneracy maps ǫni :

∐
(f1,...,fn)∈Dn

Y(s(fn)) →
∐

(f1,...,fn+1)∈Dn+1
Y(s(fn+1)) are also defined

by using the universal property of the coproduct; explicitly, for all i = 0, 1, . . . , n,

∐
(f1,...,fn)∈Dn

Y(s(fn))
ǫni //

∐
(f1,...,fn+1)∈Dn+1

Y(s(fn+1))

Y(s(hn))

ι(h1,...,hn)

hhPPPPPPPPP ι(h1,...,hi,id,hi+1,...,hn)

55❧❧❧❧❧❧❧❧❧❧

(B.10)

Using the normalized Moore complex (A.2), we can assign to the simplicial object (B.8) in
Ch≤0(Ab) a double chain complex in Ch≥0(Ch≤0(Ab)). Denoting this double chain complex by
Y∗,∗, a simple calculation shows that

Y0,∗ =
∐

d∈D0

Y(d) , Yn,∗ =
∐

(f1,...,fn)∈Dn
fi 6=id

Y(s(fn)) , (B.11)

for all n ≥ 1, where the second coproduct is taken over all composable n-arrows (f1, . . . , fn)
such that none of the fi is an identity morphism. The vertical differential δv : Y∗,∗ → Y∗−1,∗

is given by the alternating sum of the face maps, i.e. δv =
∑n

i=0 (−1)
i ∂ni on Yn,∗, and the

horizontal differential δh : Y∗,∗ → Y∗,∗−1 is given by the coproduct of the differentials in the
chain complexes Y(d), for d an object in D. The double complex Y∗,∗ may be visualized as

. . .
...

δv

��

...

δv

��

...

δv

��

· · · Y2,−2
δhoo

δv

��

Y2,−1
δhoo

δv

��

Y2,0
δhoo

δv

��

· · · Y1,−2
δhoo

δv

��

Y1,−1
δhoo

δv

��

Y1,0
δhoo

δv

��

· · · Y0,−2
δhoo Y0,−1

δhoo Y0,0
δhoo

(B.12)

We now form the
∐
-total complex

YTot :=
(⊕

n∈Z

YTot
n , δTot

)
:=

(⊕

n∈Z

∐

p+q=n

Yp,q , δ
Tot := δv + (−1)p δh

)
(B.13)

and we notice that YTot is a Z-graded chain complex of Abelian groups, in particular it is non-
trivial in positive degrees. The homotopy colimit hocolim(Y) of the diagramY : D→ Ch≤0(Ab)
is then the truncation of YTot to non-positive degrees. Explicitly,

hocolim(Y) =
(⊕

n≤0

hocolim(Y)n , δ
)
, (B.14a)

where

hocolim(Y)0 =
YTot

0

Im
(
δTot : YTot

1 → YTot
0

) , hocolim(Y)n = YTot
n , (B.14b)

for all n ≤ −1, and the differential is given by δ = δTot.
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