
1

From Interval-Valued Data to General Type-2 Fuzzy
Sets

Christian Wagner, Senior Member, IEEE, Simon Miller, Member, IEEE, Jonathan M. Garibaldi, Member, IEEE,
Derek T. Anderson, Member, IEEE, Timothy C. Havens, Senior Member, IEEE,

Abstract—In this paper a new approach is presented to
model interval-based data using Fuzzy Sets (FSs). Specifically,
we show how both crisp and uncertain intervals (where there
is uncertainty about the endpoints of intervals) collected from
individual or multiple survey participants over single or repeated
surveys can be modelled using type-1, interval type-2, or general
type-2 FSs based on zSlices. The proposed approach is designed to
minimise any loss of information when transferring the interval-
based data into FS models, and to avoid, as much as possible
assumptions about the distribution of the data. Furthermore, our
approach does not rely on data pre-processing or outlier removal
which can lead to the elimination of important information.
Different types of uncertainty contained within the data, namely
intra- and inter-source uncertainty, are identified and modelled
using the different degrees of freedom of type-2 FSs, thus provid-
ing a clear representation and separation of these individual types
of uncertainty present in the data. We provide full details of the
proposed approach, as well as a series of detailed examples based
on both real-world and synthetic data. We perform comparisons
with analogue techniques to derive fuzzy sets from intervals,
namely the Interval Approach (IA) and the Enhanced Interval
Approach (EIA) and highlight the practical applicability of the
proposed approach.

Index Terms—Survey data, zSlices, uncertainty, Computing
With Words, Type-2, agreement, Interval Agreement Approach

I. INTRODUCTION

Surveying groups of individuals on an area of interest is
an important means of eliciting information and knowledge.
By combining people’s opinions, overall opinions of groups
and sub-groups of those people can be produced. Further, the
dynamics (and variations) in decision-making among those
surveyed can be studied, represented statistically, and models
of the underlying relationships in the data and between those
surveyed can be created. Employing survey tools that enable
the capturing of the uncertainty in the responses of individuals
(e.g., [1], [2], [3] and [4]) and capturing this uncertainty in the
resulting models allows, for example, the creation of expert
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systems for automatic reasoning which take uncertainty levels
into account, as well as decision support systems which pro-
vide recommendations while highlighting relevant uncertainty
levels in the underlying data. Fuzzy logic, in particular Type-2
(T2) fuzzy logic, has proven to be both a useful and popular
method of modelling the opinions and perceptions of groups of
people. As part of the recent surge in interest in the Computing
with Words (CW) paradigm, a number of techniques have
been investigated in order to capture user opinions of words
expressed through surveys, including [1], [3]–[7].

In general terms, uncertainty in survey data takes many
forms including the uncertainty that a specific participant has
about their answer (for example, through lack of informa-
tion/knowledge), variation amongst the individual opinions of
a group of participants (inter-expert uncertainty), and varia-
tion in the opinions of a particular participant (intra-expert
uncertainty). The latter type of uncertainty can itself be split
into two independent sources of uncertainty. First, variation in
the participants’ responses over time, i.e. participants provide
different responses when queried repeatedly (they may have
new or better information about the problem domain, may have
forgotten specific details, may be in a different mood, etc.).
Second, participants may be uncertain about the endpoints of
a given interval response, i.e., there may be indecision about
the exact level of uncertainty.

While previous approaches to model survey-based data
using T2 FSs, such as the Interval Approach (IA) [5] and
Enhanced Interval Approach (EIA) [1], [2], have shown great
promise, they require data pre-processing (e.g., outlier re-
moval), and/or depend on specific FS models, such as trian-
gular or trapezoidal membership functions. Furthermore, most
current approaches combine all different types of uncertainty
(e.g., inter- and intra-expert uncertainty) in one uncertainty
model, such as the Footprint of Uncertainty (FOU) of Interval
Type-2 (IT2) FSs.

In this article, we extend our previous work [3] [4] by
detailing how zSlices-based General Type-2 (zGT2) FSs [8]
can be used to model the different aspects of inter- and intra-
expert uncertainty. Specifically, we propose a novel approach
to capture and model survey-based uncertainty which requires
no pre-processing of the data, nor the prior definition of
a specified membership function (MF) type. While no pre-
processing is required in our model, this does not preclude the
removal of data known to be ‘bad,’ if desired, to protect the
veracity of the constructed model. However, in our experience
with real-world survey data, it is often hard to distinguish
whether an outlier is ‘bad’ or represents a valid view which
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Fig. 1. Example interval responses (from a real survey), where ‘a’ is a less
uncertain response and ‘b’ is a more uncertain response

is different from the consensus (e.g., novel insight). Thus, our
method provides flexibility to the model creator by making
pre-processing an option, rather than a requirement.

Throughout this article, in order to capture uncertainty
during data collection, we employ a survey design in which
participants can express their uncertainty about a given re-
sponse by specifying an interval, rather than specifying or
choosing a crisp point such as on a Likert scale. The width of
the interval denotes the participant’s certainty in their answer,
a narrow interval is used when they are sure where on the
scale the answer lies, and a wider one where they are less
certain. Figure 1 provides examples of less and more uncertain
responses collected in our surveys. Our approach leverages
the different degrees of freedom of zGT2 FSs to individually
model the different types of uncertainty cited above. We
describe which types of uncertainty the proposed approach
aims to model (i.e., intra- and inter-expert uncertainty) and
show how each type is captured in the resulting FSs. For the
remainder of this article we refer to our proposed method as
the Interval Agreement Approach (IAA).

We show how to construct zGT2 FSs [8] from data based on
both synthetic data (to demonstrate the advanced features of
the IAA method) and real-world data samples, and detail how
the resulting FS models can be used in practical applications.
Specifically, we illustrate the use of IAA in three case studies /
worked examples before detailing a practical application. Case
one features a real-world data set collected as part of an ongo-
ing research project between the University of Nottingham and
CESG, the UK Government’s National Technical Authority
for Information Assurance, which is exploring the uncertainty
in cyber-security experts’ assessments of real-world security
threats. Case two features data collected within the University
of Nottingham concerning the rating of local restaurants.
This data set is then synthetically extended to incorporate
uncertain endpoints (of the intervals) and is used in the third
case. Finally, we describe a set of sample applications (also
discussed in [4]) which employ the proposed IAA approach
in the context of linguistic summarization and CW.

The paper is structured as follows. Section II provides
background on type-2 FSs and the IA/EIA [1], [5] methods.
Section III introduces and details the IAA method. Section IV
shows a series of numeric examples for different data including
comparisons to the results generated when employing the
IA/EIA approaches. It is followed by a real world application
example of the IAA in Section V. Finally, Section VI provides
a discussion of the IAA approach in the general context of
transforming interval data to fuzzy sets while Section VII

explores the conclusions and considers directions of future
work.

II. BACKGROUND

In this section we succinctly review IT2 and GT2 FSs [9],
zGT2 FSs [8], and current methods employed to design IT2
FSs from survey data.

A. General and Interval Type-2 Fuzzy Sets

GT2 FSs [9] were initially introduced by Zadeh [10] as
a generalisation of type-1 (T1) FSs. Instead of a single
point of membership µ at each point on the domain x, the
membership is defined itself as a T1 FS. This increased level
of complexity of GT2 FSs, while enabling a more fine-grained
and potentially more accurate modelling of uncertainty, results
in a considerable increase in computational complexity which
has only recently been addressed through the inception of new
forms of representation for GT2 FSs, including [8], [11], [12]
and [13]. IT2 FSs [14] were introduced as a simplification
of GT2 FSs where the primary membership is defined as an
interval [y, y], where y and y are the degrees of membership
of x in the lower membership function (LMF) and upper
membership function (UMF), respectively [15]. It is worth
noting that both the UMF and LMF are T1 FSs.

It is common practice in the fuzzy logic community to refer
to the membership of a T1 FS as µ while for T2 FSs, the
primary membership is referred to as u and the secondary
membership is referred to as µ [15]. As we are employing
the individual dimensions of the FSs to model different types
of uncertainty and are employing both T1 and T2 FSs, we
generally refer to the primary membership of all FSs as y
(being on the y-axis) and the secondary membership as z
(being on the z-axis) to avoid any confusion. An IT2 set Ã is
fully described by its UMF and LMF and can be written as:

Ã =

∫
x∈X

∫
y∈[y

x
,yx]

1/(x, y), (1)

where the integral notation describes the union.

B. zSlices and zSlices based General Type-2 Fuzzy Sets

A zSlice [8] is formed by slicing a GT2 FS in the third
dimension (z) at level zi. This slicing action results in an
interval set in the third dimension with height zi. As such, a
zSlice Z̃i is equivalent to an IT2 FS with the exception that
its membership grade in the third dimension is not fixed to 1
but is equal to zi where 0 ≤ zi ≤ 1. Thus a zSlice Z̃i can be
written as follows:

Z̃i =

∫
x∈X

∫
yx
i
∈[yx

i
,yx

i ]

zi/(x, y
x
i ), (2)

where at each x value (shown in Fig. 2a), zSlicing creates
an interval set with height zi and domain [yx

i
, yxi ] ⊂ [0, 1] as

shown in Fig. 2b, 1 ≤ i ≤ I , where I is number of zSlices
(excluding Z̃0) and zi = i/I . A GT2 FS F̃ can be seen as
equivalent to the collection of an infinite number of zSlices
(3),
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(b)

Fig. 2. zSlices based GT2 FSs, where (a) is a front view of a zGT2 set F̃
with I = 4 and (b) is the third dimension (vertical slice) at x′. Note, in (b)
the horizontal axis represents y while in (a) the horizontal axis represents x.

F̃ =

∫
0≤i≤I

Z̃i, I →∞. (3)

In the discrete case, (3) can be rewritten as

F̃ =

I∑
i=0

Z̃i (4)

We will refer to the discrete version at (4) throughout the
paper. It should be noted that the summation sign in (4) does
not denote arithmetic addition but the fuzzy union operation
as discussed in [15]. Figure 3 shows a 3-dimensional plot of
a GT2 FS (shown in Fig. 3a and Fig. 3c) that is represented
as a zGT2 FS (Fig. 3b and Fig. 3d) with I = 3. More details
on the operations of zSlices based GT2 FSs are available in
[8].

C. The Interval and Enhanced Interval Approaches

The IA [5] introduced by Liu and Mendel is a procedure
for taking intervals describing words and building IT2 FSs that
represent those intervals/words. It is part of a recent research
effort towards CW which aims to employ FSs to model
words (generally adjectives) and thus make them suitable for
computation and approximate reasoning (e.g., see [6], [16],
[17]). The IA method is composed of two distinct parts, the
data part and the fuzzy set part.

In the data part, intervals are pre-processed and data statis-
tics are produced for the intervals that ‘survive’ the pre-
processing phase. The pre-processing phase eliminates out-
liers, non-sensical data, data that do not fall within a tolerance
threshold, and intervals that do not overlap with another
interval. In the next stage the remaining intervals are assigned

(a) (b)

(c) (d)

Fig. 3. (a) Side view of a GT2 FS, indicating three zLevels on the third
dimension. (b) Side view of the zSlices version (zGT2 set) of the set in (a),
with I = 3. (c) Tilted rear/below view of the GT2 set in (a). (d) Tilted
rear/below view of the zGT2 set in (b).

a probability distribution and data statistics are produced [5].
The mean and standard deviation are used to calculate data
statistics which are used in the FS part.

The FS part of the IA method [5] involves nine steps:

1) Select a T1 FS model - either a left-shoulder, symmet-
rical triangle or right shoulder T1 MF.

2) Establish FS uncertainty measures - In this case the un-
certainty measures are the mean and standard deviation.

3) Compute uncertainty measures for T1 FS models -
Compute the mean and standard deviation for the T1
FS.

4) Compute general formulas for parameters of T1 FS
models - Equate the mean and standard deviation of a
T1 FS to each data interval.

5) Establish nature of FOU - Classify the set of data
intervals as either an interior, left-shoulder or right-
shoulder FOU, depending on the mean values of the
left and right end points of the data intervals.

6) Compute Embedded T1 FSs - Map the remaining data
intervals to their respective T1 FSs.

7) Delete inadmissable T1 FSs - Discard embedded T1 FSs
with a support that falls outside the desired range.

8) Compute an IT2 FS using the “union” - Create an IT2
FS by taking the “union” of the T1 FSs.

9) Compute mathematical model for FOU - Approximate
the UMFs and LMFs of the FOU.

In [5], the IA method is demonstrated with survey data
containing peoples’ opinions on the meaning of a set of
linguistic terms such as ‘very little’ and ‘a lot.’ An Enhanced
version of the IA method (EIA) is presented in [1]. In this
version, the pre-processing stage is altered so that a narrower
FOU is produced, and the calculation of the interior LMF
is altered. Pre-processing has been changed as (while using
data from a large online survey of people not necessarily
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familiar with Fuzzy Logic or the purpose of the survey) the
authors found that the IT2 FSs produced for words using the
standard IA were much wider than those observed originally
in [5]. The EIA is designed to produce IT2 sets that capture
the uncertainty of words while retaining the basic shape of
the trapezoidal or shoulder FOUs. We focus on the IA/EIA
approaches as a basis for comparison in this paper as both
IA/EIA have a similar aim of translating interval-based data
into FSs as the proposed IAA approach.

III. THE INTERVAL AGREEMENT APPROACH

This section introduces a novel process of generating FSs
from interval-valued data, called the Interval Agreement Ap-
proach (IAA). The approach is built on top of previously
published work in [3], [4], [18]. Section III-A reviews the
specific aims and motivation behind the IAA, followed in
Sections III-B, III-C and III-D by in-depth descriptions of the
individual stages involved, namely:
• capturing the information from one or more intervals

(with crisp or uncertain interval endpoints) collected from
a single source (e.g., single-expert responses over one or
multiple surveys)

• capturing the information from one or more intervals
(with crisp or uncertain interval endpoints) collected from
multiple sources (e.g., multi-expert responses over one or
multiple surveys).

We consider crisp intervals (no uncertainty about the interval
endpoints) and uncertain intervals (each endpoint is uncertain
and itself modelled as a crisp interval), as shown in Fig. 4.
Throughout the paper we denote crisp intervals with an
overbar, e.g., A, with the left and right endpoints as lA and rA.
We denote uncertain intervals with an umlaut to indicate the
interval nature of the left and right endpoints, e.g., B̈. The crisp
intervals representing the left and right ends of the uncertain
interval are denoted as [llB̈

, rlB̈
] and [lrB̈ , rrB̈ ], respectively

(see Fig. 4).
Numeric examples and comparisons of the IAA and the

IA/EIA are provided in Section IV.

Fig. 4. Crisp (A) and uncertain (B̈) intervals (where for the latter each
endpoint is itself an interval).

A. Motivation

The aim of the IAA is to accurately model information
captured through the collection of crisp or uncertain intervals
(e.g., through surveys). Considering the latter, it is clear that
one could continue the process of modelling the uncertainty
about endpoints indefinitely, i.e., model the uncertainty about
each endpoint of the interval that itself captures the uncertainty
about an interval endpoint. However, it invariably becomes
both challenging to provide an intuitive interpretation for
such an approach and difficult to justify the required effort
(computational and in terms of data-collection), particularly

when considering the diminishing returns in terms of relating
modelling quality to modelling effort. Hence, we present a
framework which allows the modelling of:

• individual interval-based data items such as survey re-
sponses (rather than just crisp points);

• uncertainty about the endpoints of those intervals (i.e.,
the modelling of uncertain intervals);

• uncertainty about the above from a single source over one
or more data capture cycles (e.g., surveys);

• uncertainty arising from responses of multiple sources
over one or more data capture cycles / surveys.

The IAA enables these capabilities while minimising the
number and scope of assumptions during the model-creation
process. In concrete terms, it generates non-parametric FS
models of the interval-based data without preselecting a spe-
cific FS type (such as triangular or Gaussian) and minimises
the loss of information during the model creation process
(from the original, potentially uncertain intervals). Finally, the
IAA leverages the different degrees of freedom of zGT2 FSs
to represent and to distinguish the different types of uncer-
tainty. Specifically, agreement/variation over multiple interval
samples (e.g., survey responses) from the same source (e.g.,
expert) is commonly captured using the primary memberships
(y ∈ [0, 1]), with lower and upper bounds of primary member-
ship modelling potential uncertainty about interval endpoints.
Uncertainty originating from the agreement/variation between
multiple sources (e.g., experts) of information is modelled
through the secondary memberships of the zGT2 FSs (z ∈
[0, 1]). Note that the choice of in which dimension to model
which type of uncertainty is arbitrary and either choice is valid
- as long as data collection and the interpretation of the re-
sulting sets is modified accordingly. To illustrate, consider the
case where only a single sample/survey was administered to a
large number of subjects; here, it is preferable to model inter-
expert uncertainty using the primary membership, resulting in
simpler and easier interpretable (type-1 FS) models.

B. Method

Using multiple sets of interval-valued data in a survey con-
text, we can model to what extent participants agree with their
own previously surveyed responses (intra-expert uncertainty),
and to what extent they agree with the opinions of other
candidates in the survey group (inter-expert uncertainty). As
noted, the two types of uncertainty are represented individually
through the primary and secondary memberships of (GT2)
FSs. Two stages comprise the overall method, the first to
model the intra-expert uncertainty using T1 and IT2 FSs,
and the second to combine the individual participant-specific
FSs into a single GT2 FS while incorporating inter-expert
uncertainty information. The resulting FSs capture both intra-
and inter-expert uncertainty. Both stages are described in
Sections III-C and III-D. As stated before, it is worth noting
that the decision of which type of uncertainty is modelled
using which dimension is a design choice made based on a
given application.
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C. Modelling interval-based data from a single source

In this section, we consider two variations of modelling
interval-based data from a single source (e.g., an expert): the
case of crisp intervals and the case of “uncertain” intervals,
i.e. where each endpoint of the interval is expressed itself
as an interval to represent the uncertainty about the specific
endpoint. Each of the two cases is considered for single
and multiple samples (e.g., survey iterations) per information
source.

(a) T1 FS model of a single
crisp interval [lĀ, rĀ]

(b) T1 FS model of two crisp intervals
[lĀ, rĀ] and [lB̄ , rB̄ ]

Fig. 5. Modelling crisp interval(s) from a single source using the IAA (no
uncertainty about interval endpoints). Note that the order of the intervals does
not matter as the operation extracts n-tuple agreement.

1) Modelling one or more crisp intervals from a single
source: For a given information source (e.g., an expert), a T1
FS is created on the basis of the provided crisp interval(s) (see
Fig. 5a) which represents the expert’s opinion/response over
one or more survey iterations. In other words, the resulting
T1 FS encodes the intra-expert uncertainty present in the
survey data over multiple survey iterations. The degree of
membership y of the set over the survey domain x captures the
number of intervals that are overlapping (are in agreement) at a
particular point. For example, consider a series of intervals Ān,
n ∈ {1, . . . , N}, where N is the number of intervals/survey
iterations. In order to combine the intervals Ān we create a
T1 FS A defined by the MF µ(A) as described at (5).

µ(A) = y1/

N⋃
i1=1

Āi1

+ y2/

(
N−1⋃
i1=1

N−1⋃
i2=i1+1

(
Āi1 ∩ Āi2

))

+ y3/

(
N−2⋃
i1=1

N−1⋃
i2=i1+1

N⋃
i3=i2+1

(
Āi1 ∩ Āi2 ∩ Āi3

))
+ . . .

+ yN/

(
1⋃

i1=1

. . .

N⋃
iN=N

(
Āi1 ∩ . . . ∩ ĀiN

))
,

where yi =
i

N

(5)

Equation (5) employs the common notation of membership
for FSs where / refers to the degree of membership, not
division. Also, note that ∪ and ∩ denote the union, respectively

the intersection of intervals and + denotes the traditional union
operation (using the max t-conorm) of the T1 FSs resulting
from each part of the equation. Thus, the overall T1 FS is
formed by the union of a sequence of components (each a
T1 FS), where the first one is formed as the union of all
intervals, associated with a primary membership of y1, the
second one as the union of all possible two-tuple intersections
of intervals associated with y2, etc. Figures 5(a,b) show the
case of generating a T1 FS for single and multiple (two in
this case) intervals respectively using the IAA. Note that when
source intervals do not overlap, the resulting IAA model may
be both non-convex and non-normal (see Fig. 21 for examples
of such models). Algorithm 1 is a formal description of the
T1 FS model generation. In [19], we proved that (5) can be
efficiently calculated in a recursive manner (see Remark 1,
page 3 of [19]). In practical applications the actual generation
of the complete (continuous) T1 FS model can also often be
avoided as the resulting set will be discretized. If this is the
case, the discrete membership function can be formulated as

µA(x′) =

(∑N
i=1 µĀi

(x′)
)

N
,

µĀi
(x′) =

{
1 lĀi

≤ x′ ≤ rĀi
,

0 else

(6)

(a) IT2 FS model of a single
interval

[
lÄn

, rÄn

] (b) IT2 FS model of multiple intervals[
lÄn

, rÄn

]
and
[
lB̈n

, rB̈n

]
Fig. 6. Modelling uncertain interval(s) from multiple sources using the IAA
- Uncertainty about interval endpoints (shaded)

2) Modelling one or more uncertain intervals from a single
source: When information is provided in the form of an
uncertain interval, an IT2 FS is employed to model this
information gathered over one or more (survey) iterations from
a single source. For example, consider a series of uncertain
intervals Än, n ∈ {1, . . . , N}, where N is the number of
intervals/survey iterations. In order to combine the individual
uncertain intervals we proceed similarly as for crisp intervals,
however, we employ (5) independently for all “outer” and
“inner” endpoints, resulting in the (T1) UMF and LMF of
the IT2 FS model. Figures 6(a,b) illustrate the case of using
the IAA to generate an IT2 FS for single and multiple (two
in this case) uncertain intervals respectively, while numeric
examples are provided in Section IV. It is worth noting that
the crisp interval case can be considered a special case of the
more general uncertain interval case where the left and right
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Algorithm 1 Generation of type-1 FS models from crisp-interval data
1: Input the Ān, n ∈ {1, . . . , N} . Where N is the number of intervals. We refer to the set of all intervals as S
2: Compute the primary degrees of membership yi = i/N, i ∈ {1, ..., N}
3: for each yi do
4: Calculate the intersections INT i

b , b ∈ {1, ..., Bi} for all i-combinations of S . Where Bi is the
binomial coefficient

(
N
i

)
. For example, consider the set S = {Ā, B̄, C̄}, B1 = 3, INT 1

1 = Ā, INT 1
2 = B̄, INT 1

3 = C̄;
B2 = 2, INT 2

1 = Ā ∩ B̄, INT 2
2 = Ā ∩ C̄, INT 2

3 = B̄ ∩ C̄ and B3 = 1, INT 3
1 = Ā ∩ B̄ ∩ C̄.

5: Calculate the union Ūi over all intersections INT i
b . . Note that the resulting interval may be non-continuous.

6: Associate Ūi with the primary membership degree yi, i.e. ∀x ∈ Ūi, µŪi
(x) = yi and ∀x /∈ Ui, µŪi

(x) = 0 to create
the T1 FS Ui.

7: end for
8: Calculate the union over all interval FSs Ui to generate the output/overall T1 FS.

endpoints defining the endpoints of a given uncertain interval
are equal and therefore, so are the UMF and LMF of the IT2
FS; thus the IT2 FS simplifies to a T1 FS (considering that
the secondary membership of IT2 FSs can be omitted).

D. Modelling interval-based data from multiple sources

While the previous section focused on using the IAA to
model data collected from individual sources (experts) (i.e.
intra-source/intra-expert uncertainty), this section focuses on
how the IAA can be used to aggregate those single-source
models to capture inter-source (inter-expert) uncertainty. Sim-
ilarly to the previous section, we consider the case of crisp
and uncertain intervals separately in the respective subsections
below.

1) Modelling one or more crisp intervals from multiple
sources: In order to capture the intra-source uncertainty (vari-
ation and agreement) between multiple sources, all individual-
source based T1 FS models can be aggregated into a GT2 FS
which subsequently provides an overall model of the intra- and
inter-source uncertainties across the (surveyed) sources. The
resulting zGT2 FS represents both the intra- and inter-source
variability in two separate domains, specifically the primary
and secondary memberships of the zGT2 FS. The process of
creating this set shares many similarities with the single-source
model creation process illustrated in Section III-C. The set is
computed using (7), where each zSlice is calculated separately
and the number of zSlices is equal to the number of experts.
Again, / refers to the degree of membership, ∪ and ∩ denote
the union, respectively the intersection of intervals and and
+ denotes the union operation for zGT2 FSs (using the max
t-conorm) [20]. The corresponding algorithm is provided in
Algorithm 2. For more information on zSlices or zGT2 FSs,
see [8]. Similarly as in (6), a recursive calculation can be
employed and for discrete values of x, a rapid form to compute
(7) is possible but for space consideration in this paper we will
describe this in more detail in a future publication.

µ(Ã) = z1/

N⋃
i1=1

Ai1 + z2/

(
N−1⋃
i1=1

N⋃
i2=i1+1

(Ai1 ∩Ai2)

)

+ z3/

(
N−2⋃
i1=1

N−1⋃
i2=i1+1

N⋃
i3=i2+1

(Ai1 ∩Ai2 ∩Ai3)

)
+ . . .

+ zN/

(
1⋃

i1=1

. . .

N⋃
iN=N

(Ai1 ∩ . . . ∩AiN )

)
,

where zi =
i

N

(7)

For example, consider a series of T1 FSs An, where
n ∈ {1, . . . , N} and N is the number of sources/sets/experts.
In order to fuse the T1 FSs into a GT2 FS Ã, we employ
the agreement principle [18] and associate a higher secondary
membership (zLevel) to areas where the T1 FSs overlap,
effectively weighting “areas” of high agreement highly. Thus,
as shown in (7), the lowest zLevel z1 is associated with the
union of all T1 FSs, the union of all 2-tuple intersections of
T1FSs is associated with z2, that of 3-tuple intersections with
z3, etc. Figure 14 provides a visual example of zGT2 FS model
produced using the IAA based on multiple crisp intervals from
multiple sources.

The zGT2 FSs produced using the IAA employ all of the
information available to represent the agreement between a
group of sources/individuals. No information is removed or
added, and any assumptions (such as on the membership
function type, e.g., triangular or Gaussian) are kept to a
minimum. The agreement-based model focuses on agreement
between sources where all sources (experts) are individually
given an equal weighting, though giving extra weight to more
reliable sources (and vice versa) would be possible. Outliers
are purposely not removed but modelled at a low level of
agreement, reducing their impact but preserving their input.
As stated before, if we know that elements of a data set are
bad we will remove them; however, in our work it is often not
possible to tell whether data is bad or whether the participant is
contributing new, previously unknown knowledge. If required,
data pre-processing (as seen in [5] and [1]) could be applied
to remove intervals regarded as non-sensical or not useful. An
example of this has been included in Section V-A. Finally,
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Algorithm 2 Generation of zGT2 FS models from T1 FSs
1: Input the An, n ∈ {1, . . . , N} . Where N is the number of T1 FSs. We refer to the set of all T1 FSs as S
2: Compute the secondary degrees of membership zi = i/N, i ∈ {1, ..., N}
3: for each zi do
4: Calculate the intersections INT i

b , b ∈ {1, ..., Bi} for all i-combinations of S . Where Bi is the
binomial coefficient

(
N
i

)
. For example, consider the set S = {A,B,C}, B1 = 3, INT 1

1 = A, INT 1
2 = B, INT 1

3 = C;
B2 = 3, INT 2

1 = A ∩B, INT 2
2 = A ∩ C, INT 2

3 = B ∩ C and B3 = 1, INT 3
1 = A ∩B ∩ C.

5: Calculate the union Ui over all intersections INT i
b . . Note that the resulting T1 FS may be non-convex.

6: Associate Ui with the secondary membership degree zi, i.e. ∀x ∈ Ui, µUi(x) = yi and ∀x /∈ Ui, µUi(x) = 0 to create
the zSlice (GT2 FS) Ũi.

7: end for
8: Calculate the union over all zSlices (GT2 FSs) Ũi to generate the output zGT2 FS.

it is worth mentioning that the described process may result
in non-convex FSs. Where this is the case, this is a direct
result of the data and we believe it is important to maintain
this characteristic. In [4] we showed how such sets can be
used in real world applications (we do not show additional
examples here for space restrictions). In the future, we foresee
significant potential in characterising the resulting sets as the
respective distributions (e.g., bimodal vs. unimodal) contain
valuable information about the nature of the consensus in the
data.

2) Modelling one or more uncertain intervals from multiple
sources: To generate a model capturing multiple source-
specific uncertain intervals from multiple sources, the IT2 FSs
generated for each source (see Section III-C2) are aggregated
to create a zGT2 FS. As part of the aggregation process, (7)
is applied twice, once for all source-specific UMFs (resulting
in the UMFs of the respective zSlices) and once for all
source-specific LMFs (resulting in the LMFs of the respective
zSlices). The resulting zGT2 FS provides a model of both
the intra-source (intra-expert) and inter-source (inter-expert)
uncertainty for the given set of uncertain intervals. Figure 19
provides an example of a zGT2 FS model produced using
the IAA based on multiple uncertain intervals from multiple
sources.

IV. NUMERIC EXAMPLES

We provide three numeric examples illustrating the mod-
elling of different types of interval-based survey data as dis-
cussed in Section III. Specifically, we focus on demonstrating
the following:

1) modelling of individual crisp intervals (i.e., from a single
survey) from multiple sources (Section IV-A);

2) modelling of multiple crisp intervals (i.e., from repeated
surveys) from multiple sources (Section IV-B);

3) modelling of multiple uncertain intervals (i.e., from
repeated surveys) from multiple sources (Section IV-C).

For each of the three cases we provide an overview of the
specific dataset employed (based on real-world and synthetic
survey data) as well as a comparison of the FS models
produced with the IAA and the IA/EIA methods.

TABLE I
EXAMPLE 1 - SINGLE INTERVALS FROM MULTIPLE SOURCES - DATA.

Expert Interval Interval Mean
A [0.20,0.50] 0.35
B [0.40,0.80] 0.60
C [0.20,0.60] 0.40
D [0.19,0.64] 0.415

Mean of experts [0.248,0.66] 0.454

A. Example 1: Individual Crisp Intervals from Multiple
Sources

In this example we use data collected during an exercise
carried out in collaboration with CESG, the UK Government’s
National Technical Authority for Information Assurance. A
group of cyber-security professionals was asked to rate 26
IT network components with regard to the difficulty of com-
promising or bypassing them. This was done using a series
of questions relating to the security level provided by the
component. For example, questions included “How mature is
this type of technology?” and “How likely is it that there will
be a publicly available tool that could help with this attack?”
Each expert provided a single response to each question in
the form of an interval contained in [0, 1]. Based on the
approach detailed in Section III-C, we show how the intervals
provided by four individual experts can be modelled as T1
FSs and (employing the approach detailed in Section III-D1)
how a cross-expert zGT2 FS model (encompassing inter-expert
variability) can be created from the individual T1 FSs. For this
example, the opinions of four (rather than all) experts were
used as this allows demonstration of the IAA while limiting
the overall complexity, allowing presentation of the actual
calculations and visualisation of the results. Table I shows
an example of the data/intervals collected for the question
“Overall, how difficult would it be for an attacker to do this?”
for one of the 26 components. Intervals are in the range 0
(Very Easy) to 1 (Very Hard).

Section III-C describes how one can create T1 FSs from
the original crisp interval-based data. In this case, as shown in
Table I, the data do not include uncertainty information about
the interval endpoints, i.e., the intervals are crisp. Further, as
each expert has only been surveyed once, only a single interval
is available per expert, avoiding the need (or potential) to
model intra-expert uncertainty by computing the agreement
over multiple intervals collected from the same expert for the
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same question. We address intra-expert uncertainty modelling
in Section IV-B.

Figure 7 shows the T1 FSs generated using the IAA at
Equation (5) for the intervals provided by each of the four
experts (Table I). The models generated by employing the
IA/EIA approach are included for comparison. Note that some
assumptions (discussed in Appendix B) had to be made in
order to generate models based on the same data using all
three approaches.

(a) Expert A - IAA
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(b) Expert A - EIA/IA

(c) Expert B - IAA
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(d) Expert B - EIA/IA

(e) Expert C - IAA
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(f) Expert C - EIA/IA

(g) Expert D - IAA
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(h) Expert D - EIA/IA

Fig. 7. Example 1 - T1 FSs for each individual expert using the IAA (left
column) and the EIA/IA (right column). (For this dataset the EIA/IA result
in the same models.)

From Fig. 7 it is worthwhile to note that the T1 FSs
are a direct (FS based) representation of the interval data
in Table I, i.e. no assumptions (such as a converting the
interval into a distribution such as a triangular or Gaussian
FS) have been made. Clearly, one could argue that assuming
an equally weighted interval is itself making an assumption but
for the limited information available (i.e. interval endpoints),
this approach adheres to the principle of least commitment
[21], [22]. Further, it can be argued that the resulting in-

terval T1 FSs are not “fuzzy” at all (i.e. their degree of
membership is either 0 or 1). This is true by design — the
intervals by themselves contain no (known) uncertainty, hence
no uncertainty is present in the equivalent FS based model.
As uncertainty is introduced in the data, such as through
variation encountered based on repeated sampling or through
the sampling of multiple sources (experts), this uncertainty
information will be captured in the T1 and T2 FSs respectively
as is detailed in the examples below.

After generating T1 FS models for each expert, we proceed
to combine these T1 sets to produce a zGT2 FS that represents
the inter-expert uncertainty as detailed in Section III-D1. As
described, in order to create a model capturing the outputs of
all four experts, the secondary membership domain is divided
into four levels, one for each level of agreement between
the four experts, giving secondary membership degrees of
z1 = 1/4, z2 = 2/4, z3 = 3/4 and z4 = 1. Clearly,
different secondary memberships could be chosen to weight
different levels of agreement in different ways; however, in the
current paper we proceed with the most simple case of evenly
distributing degrees of secondary membership across levels
of agreement. The actual degree of secondary membership
at a given x can be computed using the number of T1 sets
(representing the separate expert’s opinions) that intersect at
that particular point in the domain of x and y, following (7).

In our example, the GT2 FS Z̃ consists of four zSlices
Z̃1, Z̃2, Z̃3 and Z̃4. Equations (8), (9) , (10) and (11) describe
how each of these slices are calculated using (7). Equation
(12) shows the combination of the individual zSlices into the
complete zGT2 FS Z̃. Table II provides the numeric details
of all of the zSlices, as well as the centroids of each zSlice
and the defuzzified value of the overall zGT2 set Z̃. Note
that all of the centroids are effectively a crisp number (rather
than an interval) as the original intervals were crisp, leading
to T1 sets and consequently to zSlices where the UMF and
LMF are identical. When the end points of the initial intervals
collected are associated with uncertainty, this uncertainty can
be modelled using the FOU as is shown in the subsequent
examples. Figure 8 shows 2D representations of the zSlices
at the respective secondary membership degrees of 0.25, 0.5,
0.75 and 1. Figure 9 shows the same slices in 3D and Fig.
10a shows a rear view of the full zGT2 FS Z̃, representing all
of the experts opinions. Figure 10b shows a front view of the
same set.

Z̃1 = 0.25/ (1/ ([0.20, 0.50] ∪ [0.40, 0.80] ∪ [0.20, 0.60]

∪ [0.19, 0.64]))

= 0.25/ (1/ [0.19, 0.80])

(8)

Z̃2 = 0.5/ (1/ (([0.20, 0.50] ∩ [0.40, 0.80]) ∪ ([0.20, 0.50]

∩ [0.20, 0.60]) ∪ ([0.20, 0.50] ∩ [0.19, 0.64])

∪ ([0.40, 0.80] ∩ [0.20, 0.60]) ∪ ([0.40, 0.80]

∩ [0.19, 0.64]) ∪ ([0.20, 0.60] ∩ [0.19, 0.64])))

= 0.5/ (1/ [0.20, 0.64])
(9)
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Z̃3 = 0.75/ (1/ (([0.20, 0.50] ∩ [0.40, 0.80] ∩ [0.20, 0.60])

∪ ([0.20, 0.50] ∩ [0.40, 0.80] ∩ [0.19, 0.64])

∪ ([0.20, 0.50] ∩ [0.20, 0.60] ∩ [0.19, 0.64])

∪ ([0.40, 0.80] ∩ [0.20, 0.60] ∩ [0.19, 0.64])))

= 0.75/ (1/ [0.20, 0.60])
(10)

Z̃4 = 1/ (1/ ([0.20, 0.50] ∩ [0.40, 0.80] ∩ [0.20, 0.60]

∩ [0.19, 0.64]))

= 1/ (1/ [0.40, 0.50])

(11)

Z̃ = Z̃1 ∪ Z̃2 ∪ Z̃3 ∪ Z̃4 (12)

(a) z1 = 0.25 (b) z2 = 0.5

(c) z3 = 0.75 (d) z4 = 1

Fig. 8. Example 1 - 2D view of the zSlices produced using T1 sets and the
agreement process for zGT2 FSs [18].

TABLE II
EXAMPLE 1 - ZSLICE PARAMETERS WITH INTERVALS AND ASSOCIATED

PRIMARY AND SECONDARY MEMBERSHIPS.

z1 = 0.25 z2 = 0.5 z3 = 0.75 z4 = 1
y = 1 [0.19,0.80] [0.20,0.64] [0.20,0.60] [0.40,0.50]

Centroid 0.25/0.495 0.5/0.42 0.75/0.40 1/0.45
Defuzzified 0.434

Comparison: In order to provide a comparison between the
IAA and the IA/EIA, we employed the software accompanying
the research papers of Liu and Mendel [5] and Coupland,
Mendel and Wu [1] to generate FS models of the data. In
order to use the provided code ‘as is’ some assumptions
had to be made which are detailed in Appendix B. The sets
generated for each individual expert using the IAA and IA/EIA
approaches are shown in Fig. 7, while Figs. 10 and 11 show
the sets generated to capture all four experts. Table III shows
the centroids (and defuzzified values where applicable) of the
FSs generated by the IAA and IA/EIA, both for the indivudal
expert, as well as for the “all expert” models.

(a) z1 = 0.25 (b) z2 = 0.5

(c) z3 = 0.75 (d) z4 = 1

Fig. 9. Example 1 - 3D view of the zSlices produced using T1 sets and the
agreement process for zGT2 FSs [18].

(a) (b)

Fig. 10. Example 1 - zGT2 FS for all four experts, (a) is a rear view and
(b) is a front view.
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Fig. 11. Example 1 - IT2 FS for all four experts created using the (a) EIA
and (b) IA.

Performing a one-to-one comparison, beyond a visual and
numeric comparison, between the outputs of both methods
is not trivial. While the individual sets for all four experts
mainly differentiate each other through the type of membership
function (the IA/EIA mapping the intervals to a triangular
function), the overall models (Figs. 10 and 11) are significantly
different. The IAA generates a zGT2 FS based on the agree-
ment principle [18], indicating how at each increasing zLevel,
the agreement diminishes (in terms of its support) but is valued



10

more highly (in terms of the secondary membership). Also, it
can be noted that in the resulting set the primary degree of
membership is 1 over the whole support, indicating that there
is no intra-expert uncertainty. Only the secondary membership
varies indicating the inter-expert uncertainty/variability. For
the IA/EIA approaches, an overall output set based on a
triangular IT2 FS membership function is generated, modelling
uncertainty in its FOU.

B. Example 2: Multiple Crisp Intervals from Multiple Sources

In this second example, we demonstrate how the extra
uncertainty introduced by having multiple crisp intervals from
each expert can be represented using the proposed IAA
method. In this case, the extra information is provided by
repeated surveys of the same individuals with the same ques-
tions, resulting in both intra-expert variation (across surveys)
as well as inter-expert variation (across experts). As a real-
world example, we use a survey conducted within the In-
telligent Modelling and Analysis (IMA) research group at
the University of Nottingham. The survey was conducted on
students which, in contrast to the GCHQ security expert data,
resulted both in the lack of confidentiality requirements and the
straightforward possibility of repeated surveying. Participants
were asked to rate various aspects of a series of restaurants
in the Nottingham city centre area. For example, questions
included “How polite are the staff?” and “Overall, how would
you rate this eating place?” Ratings were provided using
intervals to define where on a scale they thought the answer
lay, and how certain/confident they were in their opinion (see
example in Fig. 1). Participants’ ratings of restaurants were
based on their memories of eating in each of the restaurants
(i.e., they hadn’t necessarily visited each restaurant recently)
which is clearly a contributory factor of uncertainty; if a
participant has visited a restaurant once, a long time ago,
unless the experience was extreme in some way, they are
unlikely to have a clear recollection of all of the factors they
are questioned about.

In order to provide an example of the survey results here
that allows demonstrating the modelling approach while still
being intuitive, we provide a small subset of the collected data,
using the answers given by three participants on two separate
occasions (approximately eight weeks apart) to one of the
questions for one of the restaurants. Though using only a small
amount of the available data, the example demonstrates the
use of our method of representing crisp interval-based survey
data from multiple sources collected over multiple surveys. We
focus on the answers to the question ‘How good is the food?’,
where the possible answers ranged from 0 (Very Poor) to 1
(Very Good). Table IV contains the (crisp interval) answers
given by the participants on each occasion/survey.

TABLE IV
EXAMPLE 2 - MULTIPLE INTERVALS FROM MULTIPLE SOURCES

Participant 1st Answer 2nd Answer
A [0.51,0.84] [0.42,0.77]
B [0.23,0.87] [0.17,0.87]
C [0.62,0.70] [0.31,0.91]

In the first stage, as in the previous example, the intervals
for each participant are modelled with T1 FSs, capturing intra-
participant uncertainty for each participant. However, unlike
in the previous example, we now have multiple intervals (one
from each survey iteration) for each expert. Therefore, the
number of intervals for a particular participant that overlap at a
particular point determines the degree of primary membership
in the resulting T1 FS of this point. Specifically, as there
are two sets of survey data, the primary membership domain
(y) is divided into two, giving membership degree levels of
y1 = 1/2 and y2 = 1. The membership function of the FS can
then be calculated using (5). Equation (13) gives an example,
using Participant A, of how (5) is used with the intervals
from Table IV to create a T1 FS incorporating both surveys.
Figure 12 shows the T1 FS created for each participant in
the group, providing also a visual model of intra-participant
variability. Table V provides the numeric detail of the sets
where the intervals are associated with their respective primary
membership grades (where a point is associated with more
than one primary membership degree, the maximum degree
applies). Also shown is the defuzzified centroid for each set
which is provided for information and comparison purposes.

Using (5) with the intervals [0.51, 0.84] and [0.42, 0.77],
(y1 = 0.5 and y2 = 1), results in:

µ(A) = (y1/ ([0.51, 0.84] ∪ [0.42, 0.77])

+y2/ ([0.51, 0.84] ∩ [0.42, 0.77]))

= (0.5/ [0.42, 0.84] + 1/ [0.51, 0.77])

(13)

TABLE V
EXAMPLE 2 - T1 FS PARAMETERS WITH INTERVALS AND ASSOCIATED

PRIMARY MEMBERSHIP.

Participant y = 0.5 y = 1 Defuzzified (overall)
A [0.42,0.84] [0.51,0.77] 0.637
B [0.17,0.87] [0.23,0.87] 0.54
C [0.31,0.91] [0.62,0.70] 0.643

After the creation of the T1 sets from the intervals during
the first stage, we combine these T1 FSs to produce a zGT2 FS
representing both the intra- and inter-expert uncertainty in the
primary and secondary membership domains respectively. The
secondary membership domain is divided into three zLevels,
one for each level of agreement between the three participants,
at membership degrees of z1 = 1/3 ≈ 0.33, z2 = 2/3 ≈ 0.66,
and z3 = 3/3 = 1 (see (7), [18]). The resulting zGT2 FS
Z̃ consists of three zSlices Z̃1, Z̃2 and Z̃3. Equations (14),
(15) and (16) describe how each of these slices are calculated
using (7). Equation (17) shows their combination, producing
the complete zGT2 FS Z̃. Table VI provides the numeric
details of all of the zSlices, as well as the centroids of each
zSlice and the defuzzified value of the overall zGT2 set Z̃.
Again, all of the centroids are effectively a crisp number as
the UMFs and LMFs of each zSlice are identical—there is no
uncertainty about the interval endpoints in this example. When
the end points of the initial intervals collected are associated
with uncertainty, this uncertainty can be modelled using the
FOU. This will be explored further in the next example. Figure
13 shows 2D representations of the zSlices at the respective
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TABLE III
EXAMPLE 1 - CENTROIDS AND DEFUZZIFIED VALUES OF FSS (SEE FIGS. 7, 10 AND 11) PRODUCED WITH THE EIA [1], IA [5] AND IAA

EIA IA IAA
Expert Centroid Defuzzified Centroid Centroid Defuzzified Centroid Centroid Defuzzified Centroid

A 0.35 0.35 0.35 0.35 0.35 0.35
B 0.60 0.60 0.60 0.60 0.60 0.60
C 0.40 0.40 0.40 0.40 0.40 0.40
D 0.415 0.415 0.415 0.415 0.415 0.415

All [0.34,0.43] 0.38 [0.32,0.62] 0.47 [0.434,0.434] 0.434

(a) Participant A -IAA
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(c) Participant A - IA
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(e) Participant B - EIA
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(f) Participant B - IA

(g) Participant C - IAA
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(h) Participant C - EIA
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(i) Participant C - IA

Fig. 12. Example 2 - T1 FSs for each participant over both surveys using the IAA (column 1), EIA (column 2) and the IA (column 3).

zLevels (secondary membership degrees) of 0.33, 0.66 and 1.
Figures 14(a,b) show a rear and front view of the complete
set Z̃.

Z̃1 = 0.33/ (y1/ ([0.42, 0.84] ∪ [0.17, 0.87] ∪ [0.31, 0.91])

+ y2/ ([0.51, 0.77] ∪ [0.23, 0.87] ∪ [0.62, 0.70]))

= 0.33/ (0.5/ [0.17, 0.91] + 1/ [0.23, 0.87])
(14)

Z̃2 = 0.66/ (y1/ (([0.42, 0.84] ∩ [0.17, 0.87]) ∪ ([0.42, 0.84]

∩ [0.31, 0.91]) ∪ ([0.17, 0.87] ∩ [0.31, 0.91]))

+ y2/ (([0.51, 0.77] ∩ [0.23, 0.87]) ∪ ([0.51, 0.77]

∩ [0.62, 0.70]) ∪ ([0.23, 0.87] ∩ [0.62, 0.70])))

= 0.66/ (0.5/ [0.31, 0.87] + 1/ [0.51, 0.77])
(15)

Z̃3 = 1/ (y1/ [0.42, 0.84] ∩ [0.17, 0.87] ∩ [0.31, 0.91]

+ y2/ ([0.51, 0.77] ∩ [0.23, 0.87] ∩ [0.62, 0.70]))

= 1/ (0.5/ [0.42, 0.84] + 1/ [0.62, 0.70])

(16)

Z̃ = Z̃1 ∪ Z̃2 ∪ Z̃3 (17)

TABLE VI
EXAMPLE 2 - ZSLICE DETAILS WITH INTERVALS AND ASSOCIATED

PRIMARY AND SECONDARY MEMBERSHIPS.

zSlice Z̃1 Z̃2 Z̃3

z1 = 0.33 z2 = 0.66 z3 = 1
y = 0.5 [0.17,0.91] [0.31,0.87] [0.42,0.84]
y = 0.1 [0.23,0.87] [0.51,0.77] [0.62,0.70]
Centroid 0.33 / 0.5467 0.66 / 0.6233 1 / 0.65

Defuzzified Z̃ 0.6239
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(a) z1 = 0.33 (b) z2 = 0.66 (c) z3 = 1

Fig. 13. Example 2 - 2D view of the zSlices produced with the IAA.

(a) (b)

Fig. 14. Example 2 - zGT2 FS produced with the IAA where, (a) is a rear
view and (b) is a front view.
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Fig. 15. Example 2 - IT2 FS produced with (a) EIA and (b) IA for all
individuals.

It can be seen from the results that the IAA method allows
the representation of multiple survey, multiple expert data with
minimal loss or addition of information, i.e., the resulting
representation uses all of the data available and is solely
determined by the data. There is also a clear distinction in
the representation of intra- and inter-expert uncertainty in the
primary and secondary degrees of membership respectively.

Comparison: Again, we provide a comparison of IAA and
IA/EIA. As in the previous example it was necessary to
address some specific requirements of the software provided
by the creators of IA/EIA [5], [1]—full details can be found
in Appendix B. Figures 12 and 15 show the resulting sets for
IA/EIA, and Table VII shows the centroids and the defuzzified
centroid values of the FSs produced by IA/EIA and IAA
respectively.

Comparing the individual models generated for each par-
ticipant by the three approaches, it is clear how the IA/EIA
approaches model the intra-participant uncertainty in the FOU
of the resulting IT2 FSs while the IAA models it using the
primary degree of membership of the T1 FSs. In the overall

cross-participant models (i.e., Figs. 14 and 15), as in the
previous example, the difference in terms of type of FS (zGT2
FS and IT2 FS) is visualised. While the IA/EIA approaches
model both intra- and inter-participant uncertainty using the
FOU of the output set, from Fig. 14, it can be seen how the
IAA method captures the intra-participant uncertainty arising
from the two survey iterations in the primary membership
and the inter-participant uncertainty arising from the three
participants surveyed in the secondary membership.

C. Example 3: Multiple Uncertain Intervals from Multiple
Sources

In this synthetic example we simulate the case of four
experts being asked to provide their answer to a given question
using intervals on three separate occasions. The endpoints
of the individual intervals have been associated with a 5%
(of the total range of [0,1]) uncertainty evenly spread around
the original interval endpoints. In a real-world scenario, this
uncertainty information might be sourced directly from the
candidates (who would be asked to provide a range capturing
their uncertainty about each endpoint) or existing knowledge
about participants (such as the level of experience) which
could then be factored in through an injected level of un-
certainty (e.g., low spread for highly experienced candidates
and high spread for novices). Alternatively, direct collection of
this information is possible by for example asking participants
to provide minimum and maximum bounds using ellipses on
a scale (as in Fig. 4). We will address such expanded survey
designs in future work and focus on the described synthetically
augmented dataset here.

Equation 18 shows how each pair of intervals is calculated,
where p̈ is the resulting pair of intervals, u is the uncertainty
value and [a, b] is an expert’s interval-valued opinion. Table
VIII shows the intervals before and after the endpoint un-
certainty has been applied. Further, Fig. 16 shows how the
FS generated from the interval provided by candidate A for
the first survey looks before (T1 FS) and after (IT2 FS) the
endpoint uncertainty has been injected.

p̈ = [[a− u, a+ u], [b− u, b+ u]] (18)

(a) (b)

Fig. 16. Example 3 - FS based on intervals provided by Candidate 1, where,
(a) is the original (crisp) interval and (b) is the (uncertain) interval after
endpoint uncertainty has been applied.
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TABLE VII
EXAMPLE 2 - CENTROIDS AND DEFUZZIFIED VALUES OF FSS PRODUCED WITH THE EIA [1], IA [5] AND IAA

EIA IA IAA
Expert Centroid Def. Centroid Centroid Def. Centroid Centroid Def. Centroid

A (i.e. Figs. 12b, 12c and 12a) [0.59,0.68] 0.635 [0.59,0.68] 0.635 0.6367 0.6367
B (i.e. Figs. 12e, 12f and 12d) [0.52,0.55] 0.535 [0.52,0.55] 0.535 0.54 0.54
C (i.e. Figs. 12h, 12i and 12g) [0.47,0.79] 0.631 [0.46,0.80] 0.628 0.6433 0.6433
All (i.e. Figs. 15a, 15b and 14) [0.36,0.80] 0.579 [0.31,0.83] 0.570 [0.6239,0.6239] 0.6239

TABLE VIII
EXAMPLE 3 - CRISP INTERVALS AND UNCERTAIN INTERVALS

Crisp Intervals
Candidate 1st Survey 2nd Survey 3rd Survey

A [0.40,0.80] [0.30,0.60] [0.35,0.70]
B [0.40,0.85] [0.50,0.80] [0.45,0.95]
C [0.20,0.80] [0.30,0.85] [0.25,0.75]
D [0.25,0.75] [0.35,0.75] [0.30,0.70]

Uncertain Intervals (5% uncertainty (=0.05)) (see Fig. 4)
Candidate 1st Survey 2nd Survey 3rd Survey

A [[0.35,0.45],[0.75,0.85]] [[0.25,0.35],[0.55,0.65]] [[0.30,0.40],[0.65,0.75]]
B [[0.35,0.45],[0.80,0.90]] [[0.45,0.55],[0.75,0.85]] [[0.40,0.50],[0.90,1]]
C [[0.15,0.25],[0.75,0.85]] [[0.25,0.35],[0.80,0.90]] [[0.20,0.30],[0.70,0.80]]
D [[0.20,30],[0.70,0.80]] [[0.30,0.40],[0.70,0.80]] [[0.25,0.35],[0.65,0.75]]

In the present example, the uncertain intervals are converted
into IT2 FSs as described in Section III-D2 during Stage 1,
whereas in the previous examples the crisp intervals were
converted into T1 FSs. The resulting sets capture the intra-
participant uncertainty/variability across the three surveys and
include the uncertainty information available on the uncertain
endpoints of the original intervals. As discussed in Section
III-D2, the individual IT2 FSs are created by performing the
procedure seen in previous examples (for the T1 case and crisp
intervals) twice, once for the UMF and once for the LMF. The
LMF is computed using the interior endpoints of the intervals
(i.e., the right hand side of the left intervals and the left hand
side of the right intervals), and the UMF is created using the
exterior endpoints of intervals (i.e., the left hand side of the
left and the right hand side of the right intervals).

Equations (19) and (20) give examples (for Candidate A) on
how (5) is used with the uncertain intervals from Table VIII
to create the UMF (µ(A)) and LMF (µ(A)) which together
completely describe the IT2 FS Ã for Candidate A. In the
primary domain, y1 ≈ 0.33, y2 ≈ 0.66 and y3 = 1. A more
detailed view of the calculations can be found in Appendix
A-A. Figure 17 shows the IT2 FSs created for each of the
experts in this example over the three surveys; Table IX shows
the numeric detail of the sets where the intervals for the
UMF and LMF are associated with their respective primary
membership grades (where a point is associated with more
than one primary membership degree, the maximum degree
applies). Also shown is the centroid for each set, which is
provided for information and comparison purposes. Note that
as the uncertainty has been injected into the source examples
symmetrically, the centroids of the UMF and LMF are equal.

µ(Ã) = (y1/ [0.25, 0.85] + y2/ [0.30, 0.75]

+y3/ [0.35, 0.65])
(19)

µ(Ã) = (y1/ [0.35, 0.75] + y2/ [0.40, 0.65]

+y3/ [0.45, 0.55])
(20)

TABLE IX
EXAMPLE 3 - T1 FS PARAMETERS WITH INTERVALS AND ASSOCIATED

PRIMARY MEMBERSHIP

Candidate y = 0.33 y = 0.66 y = 1 Centroid
UMF

A [0.25,0.85] [0.30,0.75] [0.35,0.65] 0.5167
B [0.35,1] [0.40,0.90] [0.45,0.85] 0.6542
C [0.15,0.90] [0.20,0.85] [0.25,80] 0.525
D [0.20,0.80] [0.25,0.80] [0.30,0.75] 0.5208

LMF
A [0.35,0.75] [0.40,0.65] [0.45,0.55] 0.5167
B [0.45,0.90] [0.50,0.80] [0.55,0.75] 0.6542
C [0.25,0.80] [0.30,0.75] [0.35,0.70] 0.525
D [0.30,0.70] [0.35,0.70] [0.40,0.65] 0.5208

After the participant-specific uncertain intervals have been
captured using IT2 FSs in Stage 1, we proceed to Stage
2 where we combine the IT2 FSs to create a zGT2 FS
representing the intra- and inter-expert uncertainty. As previ-
ously shown, the secondary membership domain is divided
into four levels, one for each level of agreement between
the four participants, at membership degrees of 0.25, 0.5,
0.75 and 1. We employ the IT2 sets generated in the first
stage to compute each level of secondary membership (by
computing the agreement over all IT2 FSs, see (7) and [18]).
In our example, the zGT2 FS Z̃ consists of four zSlices
Z̃1, Z̃2, Z̃3 and Z̃4. Equations (21) to (24) provide the detail
of the zSlices which are calculated using (7). Equation (25)
shows the combination of the individual zSlices, producing
the actual zGT2 FS Z̃. The calculations can be found in
Appendix A-B. Table X provides the numeric details of all
of the zSlices, as well as the centroids of each zSlice and the
overall defuzzified value of the zGT2 set. Notice that, unlike
in previous examples, the LMF and UMF are not equal as
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(c) Candidate A - IA
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(f) Candidate B - IA

(g) Candidate C
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(i) Candidate C - IA

(j) Candidate D
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(k) Candidate D - EIA
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(l) Candidate D - IA

Fig. 17. Example 3 - IT2 FSs produced with IAA from uncertain intervals for each candidate (left column), and EIA and IA using corresponding crisp
intervals for each candidate (middle and right column).

we are modelling the uncertainty about the endpoints of the
uncertain intervals. Figure 18 shows 2D views of the zSlices
at the respective secondary membership degrees (zLevels) of
0.25, 0.5, 0.75 and 1. Figures 19(a,b) show rear and front
views of the complete zGT2 set Z̃, representing an aggregate
of all of the experts’ opinions over all surveys.

Z̃1 = 0.25/ (0.33/ [0.15, 1] + 0.66/ [0.20, 0.90]

+1/ [0.25, 0.85])

Z̃1 = 0.25/ (0.33/ [0.25, 0.90] + 0.66/ [0.30, 0.80]

+1/ [0.35, 0.75])

(21)

Z̃2 = 0.5/ (0.33/ [0.20, 0.90] + 0.66/ [0.25, 0.85]

+1/ [0.30, 0.80])

Z̃2 = 0.5/ (0.33/ [0.30, 0.80] + 0.66/ [0.35, 0.75]

+1/ [0.40, 0.70])

(22)

Z̃3 = 0.75/ (0.33/ [0.25, 0.85] + 0.66/ [0.30, 0.80]

+1/ [0.35, 0.75])

Z̃3 = 0.75/ (0.33/ [0.35, 0.75] + 0.66/ [0.40, 0.70]

+1/ [0.45, 0.65])

(23)

Z̃4 = 1/ (0.33/ [0.35, 0.80] + 0.66/ [0.40, 0.75]

+1/ [0.45, 0.65])

Z̃4 = 1/ (0.33/ [0.45, 0.70] + 0.66/ [0.50, 0.65]

+1/ [0.55, 0.55])

(24)

Z̃ = Z̃1 ∪ Z̃2 ∪ Z̃3 ∪ Z̃4 (25)

It can be seen from the results that IAA allows the represen-
tation of multiple-expert, multiple-survey data with minimal
loss or addition of information, i.e., the resulting representation
uses all of the data available without, for example, employing
a predefined type of membership function (e.g., triangular or
Gaussian). Additionally, there is a clear separation between
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TABLE X
EXAMPLE 3 - ZSLICE DETAILS WITH INTERVALS AND ASSOCIATED

PRIMARY AND SECONDARY MEMBERSHIPS.

z1 = 0.25 z2 = 0.5 z3 = 0.75 z4 = 1

UMFs Z̃
1

Z̃
2

Z̃
3

Z̃
4

y = 0.33 [0.15,1] [0.20,0.90] [0.25,0.85] [0.35,0.80]
y = 0.66 [0.20,0.90] [0.25,0.85] [0.30,0.80] [0.40,0.75]
y = 1 [0.25,0.85] [0.30,0.80] [0.35,0.75] [0.45,0.65]

Centroid 0.25/0.5542 0.5/0.55 0.75/0.55 1/0.5625

LMFs Z̃1 Z̃2 Z̃3 Z̃4

y = 0.33 [0.25,0.90] [0.30,0.80] [0.35,0.75] [0.45,0.70]
y = 0.66 [0.30,0.80] [0.35,0.75] [0.40,0.70] [0.50,0.65]
y = 1 [0.35,0.75] [0.40,0.70] [0.45,0.65] [0.55,0.55]

Centroid 0.25/0.5542 0.5/0.55 0.75/0.55 1/0.5625

Z̃ defuzzified 0.5554

(a) z1 = 0.25 (b) z2 = 0.5

(c) z3 = 0.75 (d) z3 = 1

Fig. 18. Example 3 - 2D view of the zSlices produced with IAA.

(a) (b)

Fig. 19. Example 3 - GT2 FS Z̃ produced using IAA for all candidates over
all surveys, (a) is a rear view and (b) is a front view.

the representation of intra- and inter-participant uncertainty
through the primary and secondary degrees of membership.

Finally, it is worthwhile repeating that the decision whether
to model the intra-participant uncertainty in the primary
membership domain and the inter-participant uncertainty in
the secondary membership domain or vice-versa is applica-
tion/design dependent. It is however essential that this choice
is consciously made and taken into account at the time of the
interpretation or use of the resulting sets.
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Fig. 20. Example 3 - IT2 FS produced for all candidates/surveys with (a)
EIA and (b) IA.

1) Comparison: In order to compare IAA to IA/EIA, as
in the previous examples we have generated FSs for each
participant as well as an overall set capturing all participants.
Figures 17 and 20 show the resulting sets for IA/EIA, and
Tables XI and XII show the centroids and defuzzified centroids
of IA/EIA FSs and those produced using the IAA respectively.

As in the previous examples, a direct comparison of the
outputs of both approaches is not trivial, in particular based
on the numeric results. However, comparing the candidate-
specific sets (i.e., Fig. 17), the similarity in shape of the
sets generated by all three approaches is apparent. While the
shapes are similar, it can also be seen how the proposed
IAA approach models the intra-participant uncertainty (across
three survey iterations) in the primary membership, modelling
the uncertainty about the interval endpoints in the FOU. The
sets generated by the IA/EIA approaches model the intra-
user uncertainty across the three surveys using the FOU.
The uncertainty about the interval endpoints has not been
captured as the IA/EIA approaches currently do not support the
modelling of uncertain intervals. Finally, a comparison of the
overall sets (i.e., Figs. 19 and 20(b)) shows how IAA models
intra-participant uncertainty in the primary membership and
how the uncertainty about the interval endpoints is captured
in the FOU. The secondary membership models the inter-user
uncertainty across all four participants. The FSs generated by
the IA/EIA approach combine both intra- and inter-participant
uncertainties in the triangular IT2 FS model.

V. REAL-WORLD APPLICATION

While the creation of models from data such as those
produced by the IAA may provide direct utility in terms of
the interpretability and conciseness of the models, it is their
utility in applications such as decision support and automatic
decision making systems that provides crucial value. As an
illustration of such applications for the models arising from
the IAA, we showcase their application in conjunction with
similarity measures as initially reported in [4]. Specifically,
we derive linguistic descriptions of public houses using IAA-
generated models of concepts (e.g., ambience or service) for
each public house, and models of words (i.e., adjectives like
excellent or neutral) in a specific context, where the context
arises from the concepts mentioned (e.g., excellent Ambience
may be different from excellent Service). The concept models
are then compared with the word models using Jaccard’s
similarity measure for type-1 and type-2 fuzzy sets (see [23])
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TABLE XI
EXAMPLE 3 - CENTROIDS OF FSS (SEE FIGS. 17 AND 20) PRODUCED WITH THE EIA [1] AND IA [5].

EIA IA
Expert A B C D All A B C D All

Centroid [0.45,0.60] [0.60,0.73] [0.48,0.58] [0.48,0.56] [0.37,0.76] [0.45,0.60] [0.60,0.73] [0.48,0.58] [0.48,0.56] [0.36,0.77]
Defuzz. 0.526 0.664 0.526 0.517 0.562 0.526 0.664 0.526 0.517 0.563

TABLE XII
EXAMPLE 3 - DEFUZZIFIED CENTROIDS OF FSS PRODUCED WITH THE IAA.

Expert A B C D All
Centroid [0.482,0.582] [0.611,0.711] [0.474,0.575] [0.465,0.565] [0.509,0.611]
Defuzz. 0.532 0.661 0.525 0.515 0.560

to gauge the level to which each venue can be described using
each concept-describing word.

The example shown in this section has been produced using
Juzzy, an object-oriented toolkit for the development of T1,
IT2 and GT2 fuzzy systems [24], which is freely available
online at http://juzzy.wagnerweb.net/.

A. Comparing Concepts and Words

In this example two sets of models are created using the
IAA:

1) Concept models of six concepts (Ambience, Service,
Variety of Beer, Quality of Beer, Cost of Beer and
Overall) for a series of 13 venues (public houses) in
the centre of Nottingham, UK.

2) Word models describing a set of three adjectives (e.g.,
low, medium, high) for each of the six concepts in the
context of public houses in general.

Both models are created with the IAA based on data collected
during a single iteration, small-scale survey exercise with 18
local residents that employed two separate questionnaires;
one for the rating of the words and one for the rating of
the concepts. Note that only a single survey iteration was
conducted, i.e., no participant was asked more than once (no
intra-participant variation information is available). The survey
uses the ellipse method of eliciting opinions as described in
Section I and participants were issued with the two ques-
tionnaires (in random order). The overall aim is to provide
linguistic descriptions of the public houses without relying
on any expert-designed FSs, meaning all FSs are generated
directly from data by the IAA: both the sets describing each
public house, and the sets that describe the actual low, medium,
high) valuations of all six concepts in the context of public
houses. For space considerations, we have not included all
details of this process. For full details, please see [4].

Once the data was collected, the IAA was used to create T1
FSs representing each word and each concept. In this example,
the primary degree of membership represents the inter-user
variation, that is, it shows the agreement between users over
where the word lies on the scale. In the examples described
in Section IV we modelled intra-user variability using the
primary domain, and inter-user variation in the secondary
domain. We could continue this approach and model each
individual as an interval T1 FS, and combine them to produce
a GT2 FS. However, we feel that in this case, where we have

only one set of data for each individual, it is more intuitive
and practical to use the primary domain as this produces a
more accessible result.

Figure 21a provides an example of the T1 FS models of
the Ambience concept for the public houses Trip to Jerusalem
and Joseph Else. The figure shows that the concept has been
rated quite differently in the context of the individual public
houses with the rating for the Trip to Jerusalem being much
superior to the rating for the Joseph Else. From a technical
perspective, we can note that the FS models resulting from
the IAA (as noted in [3]) are non-convex and non-normal.
The non-convexity is a direct result of the IAA which does
not remove outliers (by design). The non-normality is a result
of the agreement operation (see [3]), which results in wider
and less “high” FSs for lower levels of agreement (overlap)
of constituting intervals and conversely, in higher FSs with
a narrower support for strong overlap. Thus, the resulting
FSs directly reflect the agreement and discord on the given
concept in the given context across participants. While it may
be tempting at first glance to normalise the sets, the fact that
there is no perfect agreement across all participants means that
the model for the word/concept should not be completely true
(i.e., 1) anywhere.

Figure 21b provides an example of the T1 FS word models
for Negative, Neutral and Positive in the context of public
house ambience. As with the concept models, the resulting FSs
clearly indicate agreement and discord amongst participants.

It is interesting to note that the data captured for Neutral
contains three contributions which would generally be referred
to as outliers (as they do not overlap with any other contribu-
tions). Namely, one participant rated neutral as [10, 26], while
another rated it as [77, 100]. Furthermore, one participant rated
Positive as [34, 69]. Fig. 21b shows clearly how these inputs
are preserved by the IAA. If one opts for pre-processing and
outlier removal, the resulting model (without said participants)
would change as shown in Fig. 21c. Note that even if outliers
are removed, the general shape of the model stays intact, i.e.,
the IAA captures outliers but produces robust models that
capture their input without being drastically altered. The main
change in the model is the increased level of agreement (e.g.,
now 1.0 for Neutral as the discord in relation to the outliers
has been removed. Employing the centroid as a basic numeric
summarisation of the sets, the outlier free models of Neutral
and Positive have centroids of 51.435 and 81.696 respectively,
while their original counterparts (with outliers) have centroids
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of 52.143 and 76.271. The centroids indicate that the outliers
are captured and influence the models. However, they do
not drastically alter them. Thus, we believe that it is up to
the experimenter to make the decision if outlier-removal is
warranted and to apply it where necessary/appropriate.

(a)

(b)

(c)

Fig. 21. T1 FSs produced with the IAA for (a) the concept of Ambience in
Trip to Jerusalem and Joseph Else, (b) the word models associated with the
concept Ambience and, (c) the same as in (b) but with outliers removed.

In the context of the application, it is noteworthy that the
word models can easily change. For example, with a more
demanding group different intervals may be elicited. Also,
different words may provide (more) meaningful results. For
example, one could build models for the concept of music
volume with individual word models, e.g., low, ok, loud,
unbearable. Again, different groups are likely to provide very
different ratings for the words resulting in different user-centric
mappings (similarities) between concepts (pubs/venues) and
the given words. We provide an interpretation of the similar-
ities computed from the FS models created for this example
in subsection V-B below.

1) Concept Models: During the same survey exercise in
which the data for the word models was collected, participants
completed a second survey concerning a series of 13 pubs. For
each pub (e.g., Rose and Crown), participants were asked a
series of questions (e.g., ‘How would you rate the service?’)
that required them to rate one of six concepts using the ellipse
method. The resulting data was used to create a set of six (one
for each concept) T1 FSs for each pub. Again, in this example
the primary domain is used to represent the level of inter-user
agreement.

B. Relating Concepts to Words - Results

Once a set of word models and a set of concept models has
been produced, the next task is to compare the concept models
for each specific public house with each of the generic (in the
context of public houses) word models for each concept. To
recapitulate, the aim is to compare the ratings of the concepts
(e.g., service in pub x) to the x-independent word models of
the same concept (e.g., poor, acceptable or excellent service).
This gives us an insight into which word model most closely
matches the model of the pub-specific concept, in other words,
is public house x’s service most similar to poor, acceptable
or excellent service in the context of service in pubs? This
similarity in turn can be used to generate, for example, a
linguistic description of the public house which is specific
to the individual/group of individuals surveyed. To compute
similarity we use the Jaccard similarity measure as described
in [4].

Figure 22 shows three example profiles detailing the simi-
larity between the T1 fuzzy models of each concept for each
venue and the T1 fuzzy word models representing the positive,
neutral and negative labels associated with each question. In
Fig. 22 we see that the concept models produced for Trip
to Jerusalem have a high degree of similarity to the word
models that represent positive labels for most questions. A
more evenly balanced response is shown for the Ropewalk
and the Joseph Else, where the concept models mostly match
the neutral word models associated with each question.

Table XIII provides linguistic descriptions of each concept
for each venue in Fig. 22. The words are selected by taking
the word model (i.e., FS) that has the maximum similarity to
the concept model for each venue. The linguistic descriptions
are clearly representative of the profiles previously shown
(Fig. 22). However, in some cases, taking the maximum may
not provide as much information as one would like. For
example, the concept service for Trip to Jerusalem produces
close similarity values when compared with the word models
acceptable and excellent. By taking the maximum (excellent)
we discard the information that it has a (relatively) high
similarity with acceptable. To address this, the method could
be extended to contain qualifiers for each term (e.g., quite
or very). Defining such quantifiers could potentially involve a
similar methodology to that used to produce the word models.

The column charts in Fig. 23 illustrate two examples of
the similarity between the word models associated with an
individual concept (e.g., positive, neutral, negative) and the
concept models (e.g., ambience of the pubs) generated from
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Fig. 23. Similarity profiles for ambience and overall rating of pubs.

Fig. 22. Similarity profiles for Trip to Jerusalem, Ropewalk and Joseph Else.

TABLE XIII
LINGUISTIC DESCRIPTIONS OF CONCEPTS FOR EACH PUB

Concept Trip to Jerusalem Ropewalk Joseph Else
Ambience Positive Positive Neutral

Service Excellent Acceptable Acceptable
Variety of Beer Wide Reasonable Reasonable
Quality of Beer Delicious Acceptable Acceptable

Cost of Beer Reasonable Reasonable Cheap
Overall Excellent Excellent Acceptable

the survey. The Ambience chart shows that for most venues
the concept model produced for the ambience question is most
similar to the fuzzy word model for positive ambience. The
results are slightly more varied for the overall concept which
shows a stronger bias toward the acceptable label. Figure 24
contains three column charts, each showing the total similarity
of the concept models for each venue to groupings of the
positive, neutral and negative word models associated with
each concept. As all concepts were rated with three words,
we grouped the words describing positive ratings, the words
describing neutral ratings and the words describing negative
ratings in the top, middle and bottom rows respectively. In
each chart the columns are divided, showing the contribution
each concept has to the overall total similarity for each
pub/word group. It is immediately obvious that very few of
the venues had greatest similarity with the negative word

group models associated with each concept. For most venues
the strongest similarities are with the neutral labels. Overall,
this representation quickly summarises the desirability of the
different public houses (e.g., height of column in positive
section) and visualises which aspects (ambience, service, etc.)
have contributed to this height/rating and how much.

All the results in this section are based directly on data-
driven FS models generated by the IAA. While the models
shown are still relatively simple, in the future we are looking
to demonstrate the IAA in more complex scenarios with richer
datasets. For now, we proceed to a discussion on the role of
the IAA, in particular in the context of the existing techniques
such as the IA and EIA.

VI. DISCUSSION

The IA/EIA methods were developed to take series of
interval definitions (from multiple sources) of linguistic terms
(generally adjectives) and to create IT2 FS based models
of an overall consensus opinion. In IA/EIA, data statistics
of the source intervals are mapped to predefined FS types
(e.g., triangular FSs) in order to generate the output FS
model. The IAA method follows a similar aim of capturing an
overall model of multiple intervals defining a specific linguistic
term. However, it differs from the IA/EIA approaches in the
use of GT2 rather than IT2 FSs and in the basic approach
to generating the FS, i.e., it does not employ predefined
FS types, aiming to avoid assumptions. Fundamentally, the
IAA approach is designed to follow the principle of least
commitment [21], [22], i.e. it avoids making any assumptions
about what the “true” distribution of the uncertainty over
the given intervals may look like. Further, IAA differentiates
between different types of uncertainty—specifically intra- and
inter-source uncertainty—which are mapped to the primary
and secondary membership levels of the zGT2 FSs. We feel
that allowing differentiation between the different types of
uncertainty is an essential feature of the proposed approach.
At a fundamental level, it is worth noting the difference in the
resulting set model types generated by IAA and IA/EIA for
different types/numbers of input intervals:

• when modelling crisp intervals from a single source (e.g.,
a single expert’s opinion) over one or more surveys, IAA
produces a T1 FS capturing the intra-source uncertainty,
whereas IA produces an IT2 FS;
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Fig. 24. Total similarity of each public house with Positive, Neutral and Negative word groups.

• when modelling crisp intervals from multiple sources
over one or more surveys, IAA produces a zGT2 FS
capturing both intra- and inter-source uncertainty in the
primary and secondary membership levels of the set re-
spectively, whereas IA/EIA produce an IT2 FS combining
both types of uncertainty;

• the IAA approach enables the capturing and modelling of
uncertain intervals which is currently not directly possible
with the IA/EIA approaches.

While we fully recognise that pre-processing of data is
often desirable, IAA neither includes nor requires any pre-
processing stage. We view pre-processing (informally) as
an orthogonal process to model creation. Of course, pre-
processing and model creation are inextricably linked in that
the choice of the pre-processing method may depend on the
model creation method (and vice versa) and the effects of
pre-processing will affect the resultant model. However, by
de-coupling the two processes, we leave the choice of the pre-
processing method—including none, one or a combination of
several methods—to the model creator. In our experience, the
selection of a pre-processing method is heavily context (and
data) dependent. For example, if one is modelling expert opin-
ion, then an ‘outlier’ (an observation far from the remainder
of the sample) may be a perfectly valid difference of opinion,
such as arising from new or ground-breaking knowledge, just
as much as it may be an ‘error’ to be ignored. By separating
pre-processing from model creation, pre-processing may be
carried out before or alongside IAA, as deemed appropriate
by the model creator.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced IAA, a novel approach to mod-
elling interval-based data using non-parametric FS models. We
detailed how IAA can capture intra- and inter-source uncer-
tainty, which allows the capturing of information gathered over
one or multiple surveys from one or more survey participants.
Moreover, we showed how IAA enables the capturing of both
crisp and uncertain intervals (where the endpoints themselves
are uncertain) and how the resulting FSs capture uncertainty
using the primary and secondary degrees of membership
of zGT2 FSs, separating the modelling of intra- and inter-
source uncertainty. We have highlighted the motivations for the
creation of IAA, in particular the perceived need to design a
method which generates interpretable FS models from interval-
based data while minimising any loss of information and
any assumptions (such as the application of predefined FS
types such as triangular or Gaussian FSs). In particular, IAA
makes minimal assumptions about the distributions within the
collected interval-based data and further, it does not rely on
data pre-processing or outlier removal. We feel the latter is
important, as in our experience, outliers may still be correct
or contribute essential information. The IAA method does not
exclude information contributed by outliers (unless we know
it is bad data, in which case we would remove it) but includes
it in the final model with a low “weight,” whereas areas of
high agreement (among sources) are weighted more strongly.

The paper includes a series of numerical examples based
on both real-world as well as synthetic data which provide
complete detail of the creation of FS models from raw data.
The numerical examples include a comparison of the resulting
models to those generated through the Interval Approach (IA)
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[5] introduced by Liu and Mendel and the Enhanced Interval
Approach (EIA) [1] by Coupland et al., which also enable the
capturing of interval-based data to generate FSs but rely on
data pre-processing, use predefined types of FSs and do not
support the processing of uncertain intervals.

While the scope of the current paper does not allow for
the inclusion of real-world application examples beyond the
numeric examples provided, we refer the interested reader to
[4] where we describe a selection of applications based on
IAA and similarity measures applied to the resulting type-2
FS models.

We feel IAA contributes a highly useful method for cap-
turing interval-based (survey) data and associated uncertainty
information in FS models. It minimises any assumptions, any
loss of information and supports crisp or uncertain intervals
originating from one or multiple sources captured over one or
many survey iterations.

In the future, we aim to both drive the theoretical develop-
ment of IAA as well as the exploration of practical applications
with a particular focus on conducting a web- or mobile-app
based data collection exercise, which will enable us to access
more representative data and better evaluate the proposed
approach in real-world contexts.
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APPENDIX A
EXAMPLE 3: DETAILED COMPUTATION

This appendix contains a detailed view of the calculations
required for Example 3 (Section IV-C), where y1 ≈ 0.33,
y2 ≈ 0.66 and y3 = 1.

A. Step 1: Uncertain Intervals to Interval Type-2 FSs

µ(Ã) = (y1/ ([0.35, 0.85] ∪ [0.25, 0.65] ∪ [0.30, 0.75])

+ y2/ (([0.35, 0.85] ∩ [0.25, 0.65]) ∪ ([0.35, 0.85]

∩ [0.30, 0.75]) ∪ ([0.25, 0.65] ∩ [0.30, 0.75]))

+y3/ ([0.35, 0.85] ∩ [0.25, 0.65] ∩ [0.30, 0.75]))

= (0.33/ [0.25, 0.85] + 0.5/ [0.30, 0.75]

+1/ [0.35, 0.65])
(26)

µ(Ã) = (y1/ ([0.45, 0.75] ∪ [0.35, 0.55] ∪ [0.40, 0.65])

+ y2/ (([0.45, 0.75] ∩ [0.35, 0.55]) ∪ ([0.45, 0.75]

∩ [0.40, 0.65]) ∪ ([0.35, 0.55] ∩ [0.40, 0.65]))

+y3/ ([0.45, 0.75] ∩ [0.35, 0.55] ∩ [0.40, 0.65]))

= (0.33/ [0.35, 0.75] + 0.5/ [0.40, 0.65]

+1/ [0.45, 0.55])
(27)

B. Step 2: Interval Type-2 FSs to General Type-2 FSs

Z̃1 = 0.25/ (y1/ ([0.25, 0.85] ∪ [0.35, 1] ∪ [0.15, 0.90]

∪ [0.20, 0.80])

+ y2/ ([0.30, 0.75] ∪ [0.40, 0.90] ∪ [0.20, 0.85]

∪ [0.25, 0.80])

+ y3/ ([0.35, 0.65] ∪ [0.45, 0.85] ∪ [0.25, 0.80]

∪ [0.30, 0.75]))

= 0.25/ (0.33/ [0.15, 1] + 0.66/ [0.20, 0.90]

+1/ [0.25, 0.85])

Z̃1 = 0.25/ (y1/ ([0.35, 0.75] ∪ [0.45, 0.90] ∪ [0.25, 0.80]

∪ [0.30, 0.70])

+ y2/ ([0.40, 0.65] ∪ [0.50, 0.80] ∪ [0.30, 0.75]

∪ [0.35, 0.70])

+ y3/ ([0.45, 0.55] ∪ [0.55, 0.75] ∪ [0.35, 0.70]

∪ [0.40, 0.65]))

= 0.25/ (0.33/ [0.25, 0.90] + 0.66/ [0.30, 0.80]

+1/ [0.35, 0.75])
(28)

Z̃2 = 0.5/ (y1/ (([0.25, 0.85] ∩ [0.35, 1]) ∪ ([0.25, 0.85]

∩ [0.15, 0.90]) ∪ ([0.25, 0.85] ∩ [0.20, 0.80]) ∪ ([0.35, 1]

∩ [0.15, 0.90]) ∪ ([0.35, 1] ∩ [0.20, 0.80]) ∪ ([0.15, 0.90]

∩ [0.20, 0.80]))

+ y2/ (([0.30, 0.75] ∩ [0.40, 0.90]) ∪ ([0.30, 0.75]

∩ [0.20, 0.85]) ∪ ([0.30, 0.75] ∩ [0.25, 0.80]) ∪ ([0.40, 0.90]

∩ [0.20, 0.85]) ∪ ([0.40, 0.90] ∩ [0.25, 0.80]) ∪ ([0.20, 0.85]

∩ [0.25, 0.80]))

+ y3/ (([0.35, 0.65] ∩ [0.45, 0.85]) ∪ ([0.35, 0.65]

∩ [0.25, 0.80]) ∪ ([0.35, 0.65] ∩ [0.30, 0.75]) ∪ ([0.45, 0.85]

∩ [0.25, 0.80]) ∪ ([0.45, 0.85] ∩ [0.30, 0.75]) ∪ ([0.25, 0.80]

∩ [0.30, 0.75])))

= 0.5/ (0.33/ [0.20, 0.90] + 0.66/ [0.25, 0.85]

+1/ [0.30, 0.80])

Z̃2 = 0.5/ (y1/ (([0.35, 0.75] ∩ [0.45, 0.90]) ∪ ([0.35, 0.75]

∩ [0.25, 0.80]) ∪ ([0.35, 0.75] ∩ [0.30, 0.70]) ∪ ([0.45, 0.90]

∩ [0.25, 0.80]) ∪ ([0.45, 0.90] ∩ [0.30, 0.70]) ∪ ([0.25, 0.80]

+ y2/ (([0.40, 0.65] ∩ [0.50, 0.80]) ∪ ([0.40, 0.65]

∩ [0.30, 0.75]) ∪ ([0.40, 0.65] ∩ [0.35, 0.70]) ∪ ([0.50, 0.80]

∩ [0.30, 0.75]) ∪ ([0.50, 0.80] ∩ [0.35, 0.70]) ∪ ([0.30, 0.75]

∩ [0.35, 0.70]))

+ y3/ (([0.45, 0.55] ∩ [0.55, 0.75]) ∪ ([0.45, 0.55]

∩ [0.35, 0.70]) ∪ ([0.45, 0.55] ∩ [0.40, 0.65]) ∪ ([0.55, 0.75]

∩ [0.35, 0.70]) ∪ ([0.55, 0.75] ∩ [0.40, 0.65]) ∪ ([0.35, 0.70]

∩ [0.40, 0.65])))

= 0.5/ (0.33/ [0.30, 0.80] + 0.66/ [0.35, 0.75]

+1/ [0.40, 0.70])
(29)
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Z̃3 = 0.75/ (y1/ (([0.25, 0.85] ∩ [0.35, 1] ∩ [0.15, 0.90])

∪ ([0.25, 0.85] ∩ [0.35, 1] ∩ [0.20, 0.80])

∪ ([0.25, 0.85] ∩ [0.15, 0.90] ∩ [0.20, 0.80])

∪ ([0.35, 1] ∩ [0.15, 0.90] ∩ [0.20, 0.80]))

+ y2/ (([0.30, 0.75] ∩ [0.40, 0.90] ∩ [0.20, 0.85])

∪ ([0.30, 0.75] ∩ [0.40, 0.90] ∩ [0.25, 0.80])

∪ ([0.30, 0.75] ∩ [0.20, 0.85] ∩ [0.25, 0.80])

∪ ([0.40, 0.90] ∩ [0.20, 0.85] ∩ [0.25, 0.80]))

+ y3/ (([0.35, 0.65] ∩ [0.45, 0.85] ∩ [0.25, 0.80])

∪ ([0.35, 0.65] ∩ [0.45, 0.85] ∩ [0.30, 0.75])

∪ ([0.35, 0.65] ∩ [0.25, 0.80] ∩ [30.0, 0.75])

∪ ([0.45, 0.85] ∩ [0.25, 0.80] ∩ [0.30, 0.75])))

= 0.75/ (0.33/ [0.25, 0.85] + 0.25/ [0.30, 0.80]

+1/ [0.35, 0.75])

Z̃3 = 0.75/ (y1/ (([0.35, 0.75] ∩ [0.45, 0.90] ∩ [0.25, 0.80])

∪ ([0.35, 0.75] ∩ [0.45, 0.90] ∩ [0.30, 0.70])

∪ ([0.35, 0.75] ∩ [0.25, 0.80] ∩ [0.30, 0.70])

∪ ([0.45, 0.90] ∩ [0.25, 0.80] ∩ [0.30, 0.70]))

+ y2/ (([0.40, 0.65] ∩ [0.50, 0.80] ∩ [0.30, 0.75])

∪ ([0.40, 0.65] ∩ [0.50, 0.80] ∩ [0.35, 0.70])

∪ ([0.40, 0.65] ∩ [0.30, 0.75] ∩ [0.35, 0.70])

∪ ([0.50, 0.80] ∩ [0.30, 0.75] ∩ [0.35, 0.70]))

+ y3/ (([0.45, 0.55] ∩ [0.55, 0.75] ∩ [0.35, 0.70])

∪ ([0.45, 0.55] ∩ [0.55, 0.75] ∩ [0.40, 0.65])

∪ ([0.45, 0.55] ∩ [0.35, 0.70] ∩ [0.40, 0.65])

∪ ([0.55, 0.75] ∩ [0.35, 0.70] ∩ [0.40, 0.65])))

= 0.75/ (0.33/ [0.35, 0.75] + 0.66/ [0.40, 0.70]

+1/ [0.45, 0.65])
(30)

Z̃4 = 1/ (y1/ ([0.25, 0.85] ∩ [0.35, 1] ∩ [0.15, 0.90]

∩ [0.20, 0.80])

y2/ ([0.30, 0.75] ∩ [0.40, 0.90] ∩ [0.20, 0.85] ∩ [0.25, 0.80])

y3/ ([0.35, 0.65] ∩ [0.45, 0.85] ∩ [0.25, 0.80] ∩ [0.30, 0.75]))

= 1/ (0.33/ [0.35, 0.80] + 0.66/ [0.40, 0.75]

+1/ [0.45, 0.65])

Z̃4 = 1/ (y1/ ([0.35, 0.75] ∩ [0.45, 0.90] ∩ [0.25, 0.80]

∩ [0.30, 0.70])

y2/ ([0.40, 0.65] ∩ [0.50, 0.80] ∩ [0.30, 0.75] ∩ [0.35, 0.70])

y3/ ([0.45, 0.55] ∩ [0.55, 0.75] ∩ [0.35, 0.70] ∩ [0.40, 0.65]))

= 1/ (0.33/ [0.45, 0.70] + 0.66/ [0.50, 0.65]

+1/ [0.55, 0.55])
(31)

Z̃ = Z̃1 ∪ Z̃2 ∪ Z̃3 ∪ Z̃4 (32)

APPENDIX B
EIA/IA EXISTING CODE AND DATA

In order to carry out a comparison with IA/EIA we used the
code made available by the authors of the papers ( [1], [5]). We

believe by doing this we are able to apply the methods as the
authors intended, and prevent the possibility of inadvertently
misrepresenting them. However, there are some limitations in
the code provided which needed to be overcome in order to
apply the software supplied to our data set. To maintain the
integrity of the code, we did not alter it, instead we modified
our dataset to work with the existing code. The following
changes were made:

A. Example 1

The existing IA code requires a minimum of 3 left and 3
right values to be entered in order to create a FS. To achieve
this with a single survey response we repeated the left and
right hand values 3 times, the equivalent of entering 3 identical
intervals. The EIA code requires 4 left and 4 right values to
be entered, and so we repeated the left and right hand values
4 times.

B. Example 2

For both the IA and EIA code we repeated the left and right
hand values twice, giving 4 values for each. Though only 3
are required for the IA code, it is necessary to repeat both
intervals so that they carry equal weighting in the result.
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