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Supplementary Methods 1 

1. Participants 2 

1.1 CHIMGEN 3 

1.1.1 Introduction 4 

The Chinese Imaging Genetics (CHIMGEN) project was approved by the ethics 5 

committee of each center, and written informed consent was obtained from each 6 

participant. This project was initiated in 2015 and included 31 centers from 21 cities in 7 

Chinese mainland1. Genomic, transcriptomic, environmental, neuroimaging and 8 

behavioral data were collected from 7306 healthy Chinese Han participants (by the 9 

time of November 2020) of 18-30 years of ages to investigate genetic and 10 

environmental effects on brain and behavior. At the time of data analysis of this study 11 

(January 2018), data were available for 5425 participants. 12 

1.1.2 Sample selection  13 

The sample selection for the different statistical analyses of the CHIMGEN data is 14 

shown in Supplementary Fig.1. 15 

(1) Excluding participants without lifetime residential information 16 

Among the 5425 participants, 3336 participants had provided lifetime residential 17 

geographies. The remaining 2089 participants were excluded because they only 18 

provided their residential addresses at the time point of recruitment but they refused to 19 

provide their residential addresses at any other time points since birth. From the 3336 20 
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participants, we successfully extracted satellite-based measures of urbanicity of 3306 1 

participants. The other 30 participants were excluded because extracting satellite 2 

measures failed in more than three years during their lifetime. 3 

(2) Excluding participants without confounding covariates 4 

Potentially confounding covariates including age, gender, education, site, body 5 

mass index (BMI), genetic population stratification, socioeconomic status (SES), total 6 

intracranial volume (TIV), mean cortical thickness (MCT) and total surface area (TSA) 7 

were corrected in the correlation analyses of satellite based-measure of urbanicity with 8 

brain and behavior. Complete information of confounders was available in 2176 9 

participants, with 1130 participants being excluded from the 3306 participants with 10 

lifetime geopositioned data. 11 

(3) Excluding participants without qualified neuroimaging data 12 

For each neuroimaging measure, we had to exclude participants with unqualified 13 

raw imaging data and participants failed to pass the quality control (QC) during 14 

imaging data preprocessing. In the 2176 participants, 2176 participants were included 15 

in the voxel-based morphometry (VBM) analysis of gray matter volume (GMV) and 16 

2164 participants in the surface-based morphometry (SBM) analysis of cortical 17 

thickness (CT) and surface area (SA) based on T1-weighted neuroimaging data ; 2158 18 

participants in the Tract-based Spatial Statistics (TBSS) analysis of fractional 19 

anisotropy (FA) based on diffusion tensor imaging (DTI) data; and 2156 participants in 20 

the within-network (WNFC) and between-network (BNFC) functional connectivity 21 

analyses based on resting-state functional MRI (rsfMRI) data. 22 
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(4) Excluding participants without qualified behavioral assessments 1 

For each behavioral measure analysis, we had to exclude participants without 2 

qualified behavioral assessment. In the 2176 participants with at least one type of the 3 

qualified MRI data, 2173 participants were finally included in the analysis of verbal 4 

learning memory, 2063 in working memory, 2139 in information processing speed, 5 

2148 in social cognition, 2024 in cognitive control, and 2170 in mental health.  6 

1.2 IMAGEN 7 

1.2.1 Introduction 8 

IMAGEN is the first European multisite and prospective project aiming to 9 

integrate different levels of environmental and biological mechanisms to identify 10 

biomarkers for developmental psychiatric disorders2. Comprehensive environmental 11 

factors, genetics, transcriptome, epigenetics, structural and functional neuroimaging, 12 

neurocognitive measure and mental health outcome are collected from more than 2000 13 

14-year-old adolescents in 2009. Brain imaging measures were longitudinally assessed 14 

at age 14 years (baseline, BL) and 19 years (second follow-up, FU2). Most of 15 

neurocognitive and mental health outcome longitudinally assessed at BL, FU1 (16 16 

years) and FU2. This project was approved by the institutional ethics committee of each 17 

center, and written informed consent was obtained from all participants. 18 

1.2.2 Sample selection 19 
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The sample selection and loss of follow up in IMAGEN is shown in 1 

Supplementary Fig.2. 2 

(1) Excluding participants without lifetime residential information 3 

Among the 1411 participants of IMAGEN-FU2, 561 participants provided 4 

lifetime residential geographies. All participants’s satellite-based measures of 5 

urbanicity at each year have been extracted successfully. 6 

(2) Excluding participants without confounding assessments  7 

From these 561 participants, we excluded 79 participants without the confounding 8 

assessments (SES, parental history of mental illness and genetic population 9 

stratification) and the remaining 482 participants were included in the further analysis.  10 

(3) Excluding participants without qualified neuroimaging data 11 

Among the remaining 482 participants (FU2), 415 participants were included in 12 

VBM analysis after passing QC; 420 participants in SBM analysis; 436 participants in 13 

TBSS analysis; and 351 participants in WNFC and BNFC analyses. Participants with 14 

both BL (age 14) and FU2 (age 19) imaging data after QC were used in brain 15 

development analyses, including 340 participants in VBM analysis, 325 participants in 16 

SBM analysis, 396 participants in TBSS analysis, and 83 participants in WNFC and 17 

BNFC analyses. It is notable that during IMAGEN baseline assessment in the year of 18 

2009, resting state MRI was only carried out in 156 participants. 19 

(4) Excluding participants without qualified behavioral assessments 20 

Among the 482 participants (FU2), complete data of perspective taking was 21 

available in 342 participants, Ruminating Scale Questionnaire (RSQ) in 346 22 
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participants, Generalized Anxiety Scale from The Development and Well-Being 1 

Assessment Interview (DAWBA-GA) in 447 participants and Anxiety Screening for 2 

Composite International Diagnostic Interview (CIDI-DIA) in 391 participants.  3 

2. Data collection 4 

2.1 Residential geographies 5 

2.1.1 CHIMGEN 6 

In each CHIMGEN participant who had consented to provide residential 7 

information, we recorded the precise residential addresses in each year from his/her 8 

birth to recruitment and the category of each place (1=rural, 2=town, 3=city) that was 9 

determined according to the National Bureau of Statistics of China 10 

(http://www.stats.gov.cn/tjsj/ndsj/renkoupucha/2000pucha/html/append7.htm). If 11 

participants moved several times in a year (rare cases), the address where they lived 12 

more than six months was recorded. To minimize recall bias, the residential addresses 13 

of each participant were confirmed in two separate visits. In the first visit, we asked the 14 

participant to write down his/her residential addresses in paper-based assessments. In 15 

the second visit, we asked the participant to mark each residential address on an 16 

electronic map with a web-based program designed by the consortium. If the address 17 

could not be found on the map, the participant was asked to mark the nearest road or 18 

landmark on the map. Thereafter, a researcher checked the consistency of addresses 19 

provided by the participant at the two visits. When inconsistencies occurred (which was 20 

very rarely the case), the researcher asked the participant to clarify which is correct. All 21 

http://www.stats.gov.cn/tjsj/ndsj/renkoupucha/2000pucha/html/append7.htm
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participants who provided residential addresses claimed that they had correctly recalled 1 

the residential addresses at all time points in their lifetime. Finally, 3336 participants 2 

who provided their lifetime residential geographies were included in the further 3 

analysis.  4 

2.1.2 IMAGEN 5 

At the time of the second follow up, 561 IMAGEN participants provided their 6 

precise residential addresses of each year from their birth to recruitment and the 7 

category of each place (1=rural, 2=town, 3=city). Rural is defined as places with less 8 

than 10,000 inhabitants, town is defined as places with more than 10,000 inhabitants 9 

and less than 100,000 inhabitants and city is defined as places with more than 100,000 10 

inhabitants. To maintain the anonymity of participants, these addresses have been 11 

obfuscated to 1km scaled longitude and latitude based on Google Earth Engine (GEE) 12 

coordinate system using code (https://github.com/crickfan/geo-anonymization) 13 

according to privacy regulation from European Commission’s Article 29 Working 14 

Party (http://www.privacy-regulation.eu/en/article-4-definitions-GDPR.htm).  15 

2.2 Remote sensing satellite data 16 

GEE is an open access platform that makes hundreds of earth-observational 17 

satellite imagery and geospatial datasets with planetary-scale analysis available for 18 

researchers (https://earthengine.google.com/). Global human settlement layer 19 

(GHSL)3, night-time lights (NL)4, normalized difference vegetation index (NDVI)5, 20 

normalized difference built-up index (NDBI)6, normalized difference water index 21 

http://www.privacy-regulation.eu/en/article-4-definitions-GDPR.htm)
https://earthengine.google.com/
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(NDWI)7 and global land cover mapping (GLCM)8 were extracted from GEE and 1 

European Space Agency (ESA) platform to measure different urban characteristics 2 

based on the acquired individual lifetime geographies from CHIMGEN and 3 

IMAGEN-FU2. We successfully extracted satellite-based measures of urbanicity for 4 

3306 participants from CHIMGEN and for 561 participants from IMAGEN-FU2. 5 

2.2.1 Global Human Settlement Layer (GHSL)  6 

GHSL produces global spatial information about the human presence on the planet 7 

over time, which is rendered in the form of built up maps, population density maps and 8 

settlement maps3. GHSL-POP (2016) (https://ghsl.jrc.ec.europa.eu/index.php) from the 9 

GEE platform provides population density data of 1975, 1990, 2000 and 2015 at a 10 

spatial resolution of 250m×250m (Supplementary Table 7). Based on the lifespans of 11 

participants, we used population density data of 1990, 2000 and 2015 in CHIMGEN 12 

and those of 2000 and 2015 in IMAGEN-FU2. 13 

2.2.2 Night Light (NL)  14 

NL reflects visible and near-infrared emission sources at night, which has been 15 

applied to measure the prosperity or urbanicity of the neighborhood surroundings4,9-11. 16 

NL data provide valuable insights on the distribution and magnitude of human activity 17 

on Earth. The amount of light emitted from Earth at night corresponds with electricity 18 

consumption and gross domestic product (GDP)12,13, and is seen as a good proxy for 19 

true income growth14 and for the distribution of economic activity15 at different scales. 20 

Moreover, because nighttime lights are associated with human activity, they also 21 

https://ghsl.jrc.ec.europa.eu/index.php
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provide a good proxy for population counts and density16,17 as well as can capture the 1 

distribution and patterns of human settlements18,19, urban growth and expansion20-23, 2 

which has been shown correlated with mental disorders24. The NL data of each 3 

participant were extracted from Defense Meteorological Program (DMSP) Operational 4 

Line-Scan System (OLS) Nighttime Lights Time Series Version 4 product 5 

(https://developers.google.com/earth-engine/datasets/catalog/NOAA_DMSP-OLS_NI6 

GHTTIME_LIGHTS). The NL data (ranged from 0 to 63) had a spatial resolution of 7 

1km ×1km and were available from 1992 to 2013 (Supplementary Table 7).  8 

2.2.3 Normalized Difference Vegetation Index (NDVI) 9 

Traditionally, NDVI has been used in the literature as a proxy for vegetation 10 

“greenness”, live green plant canopies, vegetation seasonality, biophysical properties 11 

of vegetation canopy and productivity25-28, as well as a proxy for the ecological effects 12 

of environmental changes on ecosystems29. However, because of its ability to capture 13 

the amount, type and distribution of green (“live”) vegetation, NDVI is also used 14 

extensively to measure the distribution of green spaces in urban settings, as well as to 15 

estimate the exposure of different population groups to green spaces in cities30-33. With 16 

the increased availability of satellite imagery and the improvement in methods for 17 

analysis and interpretation, there is an ongoing increase in the research domain that 18 

links remotely-sensed derived information on green spaces (NDVI) with human 19 

cognition34-36 and mental health37-41. Since NDVI varies with the seasons at least in 20 

some areas (i.e., north China and Europe), it can be used to estimate residential 21 

https://developers.google.com/earth-engine/datasets/catalog/NOAA_DMSP-OLS_NIGHTTIME_LIGHTS
https://developers.google.com/earth-engine/datasets/catalog/NOAA_DMSP-OLS_NIGHTTIME_LIGHTS
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greenness30-33 rather than the coverage of vegetation. In the present study, NDVI was 1 

derived from the product of NOAA Climate Data Record (CDR) of Advanced Very 2 

High-Resolution Radiometer (AVHRR) NDVI 3 

(https://developers.google.com/earth-engine/datasets/catalog/NOAA_CDR_AVHRR_4 

NDVI_V4). The NDVI data had a resolution of 5km×5km and were available from 5 

1981 to 2017 (Supplementary Table 7).  6 

2.2.4 Normalized Difference Built-up and Water Index (NDBI and NDWI) 7 

NDBI was used to assess built-up and NDWI was used to assess water content of 8 

neighborhood surroundings, which have been applied to map urban environment6,42. 9 

These two measures were calculated based on band 1-7 from Landsat 7 Collection 1 10 

Tier 1 11 

(https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LE07_C01_12 

T1) (Supplementary Table 7 and 25). NDBI was calculated as (B5-B4)/(B5+B4)6 and 13 

NDWI was calculated as (B2-B4)/(B2+B4)7. NDBI and NDWI data were ranged from 14 

-1 to 1 and were available from 1999 to 2017 at a spatial resolution of 30 meters. 15 

2.2.5 Global land cover mapping (GLCM) 16 

While NDVI, NDBI and NDWI are related to vegetation, building and water, 17 

respectively, they cannot provide information for a particular land cover type. For 18 

example, high NDVI value may indicate better vegetation cover/condition, but this 19 

measure cannot distinguish between forest, cropland and grassland etc. We therefore 20 

enhanced this information with GLCM data, which has been extensively used to 21 
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characterize environmental changes and neighborhood surrounding resources8,43,44. 1 

Here Climate Change Initiative Land Cover dataset (CCI-LC) from ESA platform was 2 

used to extract land cover classes from 1992 to 2015 3 

(http://maps.elie.ucl.ac.be/CCI/viewer/). Briefly, CCL-LC aimed to make the best use 4 

of available satellite data to provide an accurate percentage of land cover classes using 5 

supervised machine learning classification algorithm. The percentage here was defined 6 

as the number of pixels classified into a specific class divided by the total number of 7 

pixels within 1km radius centered at the anonymized home locations. There are 22 8 

indicators in GLCM, which belong to 9 land cover types including cropland%, forest%, 9 

grassland%, shrubland%, bareland%, snow%, ice%, water body% and built-up%44,45. 10 

In the present study, only land cover types with mean percentage before 18 years of 11 

participants from CHIMGEN (n=3306) and IMAGEN-FU2 (n=561) above 1% were 12 

included in the further analysis, including the land cover types of the cropland 13 

(CHIMGEN: 64.21%; IMAGEN: 13.65%), forest (CHIMGEN: 5.00%; IMAGEN: 14 

7.31%), grassland (CHIMGEN: 3.01%; IMAGEN: 7.54%), water body (CHIMGEN: 15 

3.81%; IMAGEN: 1.37%) and built-up (CHIMGEN: 29.14%; IMAGEN: 67.03%).  16 

2.2.6 Satellite-based measures of urbanicity  17 

Finally, nine satellite-based measures of urbanicity including NL, NDVI, NDBI, 18 

NDWI, cropland%, forest%, grassland%, water body% and built-up% from 19 

CHIMGEN and IMAGEN-FU2 were included in the further analysis.  20 

2.3 Confounding covariates data 21 
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In CHIMGEN and IMAGEN, we controlled for age, gender, education, site, BMI, 1 

genetic population stratification, TIV, MCT, TSA and SES in the correlation of 2 

satellite-based measure of urbanicity with brain and behavior. Parental history of 3 

mental illness was an exclusion criterion for CHIMGEN, but not in IMAGEN, where 4 

this variable was controlled for in IMAGEN data analysis. 5 

2.3.1 CHIMGEN 6 

The top four components from principle component analysis (PCA) of the 7 

genomic data were used to measure genetic population stratification using Plink 8 

v1.90b4.1046. The SES data collected for the CHIMGEN participants are provided in 9 

Supplementary Table 10. The objective SES information included parental education 10 

and occupation, and the subjective SES information included household financial 11 

difficulties, household and neighborhood adequacy. To balance the weights of 12 

different items, we calculated the z-score for each item of each participant, and then 13 

used the sum of the z-scores of all items to represent the normalized SES score of this 14 

participant. Of 3306 participants, we excluded 1130 participants due to incomplete 15 

confounder data (SES and genetic population stratification). The remaining 2176 16 

participants were included in the further analysis. 17 

2.3.2 IMAGEN 18 

A Genetic Screening and Family History of Psychiatric Disorders Interview 19 

(GEN) for the participants was administered by the researcher at the day of the 20 

institute assessment at BL. Parents will be asked for place of birth and the ethnicity of 21 
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the adolescent’s parents and grandparents as well as a history of psychopathology in 1 

the first- and second-degree relatives. The top four components from PCA of the 2 

genomic data were applied to measure genetic population stratification46. Parental 3 

educational category from the European School Survey Project on Alcohol and Other 4 

Drug (ESPAD) and socioeconomic/housing score from the Development and 5 

Well-Being Assessment (DAWBA) were included in IMAGEN. The 6 

socioeconomic/housing score included parental employment, household financial 7 

difficulties, and household and neighborhood adequacy, as applied in a previous 8 

IMAGEN study47. Details are provided in the Supplementary Table 11, The same 9 

method as in the CHIMGEN study was used to calculate a normalized SES score for 10 

each participant. Of 561 participants, we excluded 79 participants due to incomplete 11 

confounder data (SES, GEN and genetic population stratification). The remaining 482 12 

participants were included in the further analysis. 13 

2.4 Neuroimaging data 14 

2.4.1 CHIMGEN 15 

In this study, brain MRI data were acquired by 3.0-Tesla scanners from General 16 

Electrics®, Siemens® and Philips® from 28 sites of CHIMGEN. The standard 17 

parameters of the T1 weighted, DTI and resting-state fMRI sequences for different MR 18 

scanners are shown in Supplementary Tables 19-21, respectively. In order to pool the 19 

data across sites, a phantom was scanned at each site to homogenize geometric 20 
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distortions and signal uniformity. Moreover, two healthy volunteers were scanned at all 1 

sites to assess heterogeneity which was not captured by the phantom1. 2 

2.4.2 IMAGEN 3 

In this study, brain MRI data were acquired from six 3.0-Tesla scanners from 4 

Siemens®, Philips®, General Electric® and Bruker®. The standard parameters of the 5 

T1 weighted, DTI and resting-state fMRI sequences for different MR scanners are 6 

shown in https://imagen-europe.com/resources/standard-operating-procedures. In 7 

order to pool the data across sites, a phantom was scanned at each site to homogenize 8 

geometric distortions and signal uniformity. Moreover, healthy volunteers were 9 

scanned periodically at all sites to assess heterogeneity which was not captured by the 10 

phantom2.  11 

2.5 Neuroimaging measures calculation 12 

2.5.1 Gray matter volume (GMV) 13 

The gay matter volume (GMV) calculation in voxel-based morphometry (VBM) 14 

analysis was conducted using Computational Anatomy Toolbox (CAT12 v1364) 15 

(http://dbm.neuro.uni-jena.de/cat) implemented in Statistical Parametric Mapping 16 

(SPM12) software package (http://www.fil.ion.ucl.ac.uk/spm) in the following steps: 17 

To exclude heterogeneity, the same steps were applied to preprocess structural 18 

neuroimaging data from CHIMGEN and IMAGEN.  19 

(1) Bias correction 20 

http://www.fil.ion.ucl.ac.uk/spm
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Image inhomogeneity caused by B1-field bias was corrected to accurately 1 

segment the brain tissues. The bias corrected images would have more uniform 2 

intensities within each type of the brain tissues. 3 

(2) Segmentation 4 

The bias-corrected structural images are segmented into gray matter (GM), white 5 

matter (WM) and cerebrospinal fluid (CSF) using a reliable segmentation model. The 6 

segmentation model is based on an adaptive Maximum A Posterior (MAP)48 and a 7 

Partial Volume Estimation49 technique which were used to estimate the fraction of each 8 

pure tissue type present in every voxel and thus allows for more precise segmentation 9 

without the need for a priori information about tissue probabilities.  10 

(3) Creating population-specific tissue templates 11 

To improve the quality of registration, population-specific tissue probability 12 

templates in Montreal Neurological Institute (MNI) space are derived from all qualified 13 

CHIMGEN participants by the DARTEL toolbox implemented in SPM12. 14 

(4) Spatial normalization 15 

The segmented images were spatially normalized to the population-specific 16 

templates using a two-step DARTEL algorithm and resampled into a cubic voxel of 1.5 17 

mm. Modulation was performed on the normalized grey matter images to preserve the 18 

absolute volume of the GM tissue. For detailed information, please refer to “Features” 19 

part of the website: http://dbm.neuro.uni-jena.de/cat/index.html#VBM. 20 

(5) Smoothing 21 

http://dbm.neuro.uni-jena.de/cat/index.html#VBM
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The GMV images were smoothed with a kernel of 8 × 8 × 8 mm3 full width at half 1 

maximum. Then, the spatial preprocessed GMV maps were used for further analysis. 2 

The total intracranial volumes (TIV) of each participant was also obtained. In 3 

CHIMGEN (n=2176) and IMAGEN-FU2 (n=482) with satellite-based measures of 4 

urbanicity and confounding data, 2176 participants from CHIMGEN and 415 5 

participants from IMAGEN-FU2 were finally included in the VBM analysis.  6 

2.5.2 Cortical thickness (CT) and surface area (SA) 7 

The T1-weighted images were preprocessed and analyzed using FreeSurfer v6.0.0 8 

(http://surfer.nmr.mgh.harvard) with following steps:  9 

(1) Skull stripping  10 

The automated skull-stripping was performed to separate the brain from non-brain 11 

tissues in structural MR images.  12 

(2) Intensity normalization 13 

Intensity non-uniformity due to variations in the sensitivity of the reception coil 14 

and gradient-driven eddy currents were corrected, and intensity-normalized images 15 

were generated. 16 

(3) Tissue segmentation  17 

The skull-stripped and intensity-normalized images were processed by a series of 18 

tissue segmentation procedures based on intensity and neighbor constraints. This step 19 

generates the boundary between GM and WM. The segmentation of subcortical white 20 

and gray matter structures was then performed.  21 

http://surfer.nmr.mgh.harvard/
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(4) Surface reconstruction 1 

A two-dimensional tessellated mesh was constructed based on the boundary 2 

between WM and GM to generate the WM surface in each hemisphere, and the WM 3 

surface was extended outwards by tracking the gray matter intensity gradient to 4 

generate the pial surface. Topology correction was performed to repair topological 5 

defects.  6 

(5) Metric reconstruction 7 

Surface-based metrics of the cortical thickness (CT) and surface area (SA) were 8 

calculated based on the pial and white matter surfaces.  9 

(6) Spherical normalization 10 

Individual surfaces were then inflated into a spherical space and registered to a 11 

spherical atlas in MNI152 space (the fsaverage atlas). Surface-based metrics for each 12 

cortical area were extracted based on the predefined surface atlas after registrating them 13 

to individual spaces using the spherical registration parameters.  14 

(7) Smoothing  15 

To reduce noise and the effect of misalignment during the surface-based 16 

transformation to the average template, the surface-based metrics were smoothed with a 17 

Gaussian kernel of 20 mm width. The mean cortical thickness (MCT) and the total 18 

surface area (TSA) of each participant were calculated and considered as confounding 19 

covariates in the CT and SA related analyses.  20 

Due to the difficulties of identifying the real boundary and controversial 21 

preprocessing method of the cerebellar cortex, especially for the regions near the 22 
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midline cerebellar vermis50, only the CT and SA of the cerebral cortex were calculated 1 

and used in the correlation of UrbanSat with brain. In CHIMGEN (n=2176) and 2 

IMAGEN-FU2 (n=482), 2164 participants from CHIMGEN and 420 participants from 3 

IMAGEN-FU2 were included in the CT and SA analyses. 4 

2.5.3 Fractional anisotropy (FA) 5 

The DTI images were preprocessed and analyzed using FMRIB’s Software 6 

Library (FSL v5.0.10) toolbox (www.fmrib.ox.ac.uk/fsl)51 in the following steps:  7 

(1) Brain extraction (BET) 8 

The non-brain tissues of the b=0 images were removed by applying the brain 9 

extraction tool (BET) implemented in FSL. 10 

(2) Motion and distortion correction (EDDY) 11 

A “EDDY_OPENMP” program implemented in the FSL v5.0.10 was used to 12 

evaluate and repair the image displacement and signal dropout caused by head motion, 13 

and image distortion caused by eddy current. 14 

(3) Tensor metric calculation (DTIFIT) 15 

The linear least square algorithm was used estimate the diffusion tensor and its 16 

derived metrics using the DTIFIT program implemented in FSL. In this step, diffusion 17 

metrics, such as three eigenvalues, fractional anisotropy (FA) and mean diffusivity 18 

(MD) were generated. 19 

(4) Spatial normalization estimation (BBR+DARTEL) 20 

http://www.fmrib.ox.ac.uk/fsl)
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A two-step procedure was used to estimate the co-registration parameters between 1 

individual diffusion space and MNI standard space. 2 

(a) Individual b = 0 images were aligned to the corresponding structural images 3 

using the Boundary-Based Registration (BBR) algorithm implemented in FSL. 4 

(b) The BBR parameters were concatenated with the DARTEL deformation field 5 

(from individual space to MNI space) generated in VBM analyses. 6 

(c) The merged deformation field was used to register the individual diffusion data 7 

into the MNI space, or vice versa. 8 

(5) Metric normalization 9 

The diffusion metrics were normalized into the MNI space using the merged 10 

deformation field (BBR+DARTEL) that generated in step 4 and resampled into a cubic 11 

voxel of 2-mm. 12 

(6) Generation of white matter skeleton 13 

In this step, we used a revised TBSS pipeline to create the white matter skeleton. 14 

Rather than the standard TBSS pipeline52 that directly nonlinearly align the individual 15 

FA images to the averaged FA template (FMRIB-58) in MNI space using the FNIRT 16 

program in FSL, we co-registered the individual FA images using the merged 17 

deformation field (BBR+DARTEL) that generated in step 4. Then a mean FA image 18 

was created and a mean FA skeleton of the white matter was generated using the 19 

center-of-gravity method. Each subject's aligned FA images were then projected onto 20 

the mean FA skeleton by filling the mean FA skeleton with FA values from the nearest 21 
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relevant tract center, which was achieved by searching perpendicular to the local 1 

skeleton structure for maximum value. 2 

Finally, 2158 participants from CHIMGEN and 436 participants from 3 

IMAGEN-FU2 with qualified skeletonized maps were included the TBSS analysis. 4 

2.5.4 Resting-state fMRI preprocessing 5 

2.5.4.1 CHIMGEN  6 

The resting-state fMRI data of 2176 CHIMGEN participants were preprocessed 7 

by pipeline based on SPM12 and Data Processing Assistant for Resting-State fMRI 8 

(DPARSFA v4.4)53 with the following steps:  9 

(1) Discarding unstable volumes 10 

The first five functional volumes were discarded to allow signal to reach 11 

equilibrium and ensure the participants to adapt to scanning noise. After deletion, all 12 

the subjects have 175 volumes. 13 

(2) Slice timing correction 14 

The remaining volumes were corrected for intra-volume temporal differences 15 

using sinc-interpolation. 16 

(3) Head motion correction 17 

Inter-volume head motion correction is performed via a six-parameter rigid-body 18 

transformation. Specifically, each volume was first realigned to the first volume and 19 

then realigned to the mean of these volumes after the first correction. Rigid realignment 20 

was then performed to estimate and correct the motion displacement, and 19 21 

participants were excluded from further analysis because their fMRI data had a 22 
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maximum displacement in one or more of the orthogonal directions (x, y, z) of > 2 mm 1 

or a maximum rotation (x, y, z) > 2.0° 2 

(4) Spatial normalization 3 

To improve coregistration, the non-brain tissue of the mean corrected functional 4 

images and structural images were first removed. Then, the mean corrected functional 5 

images were coregistered to the corresponding structural images using the BBR method. 6 

Finally, all motion-corrected functional volumes were spatially normalized to the 7 

standard MNI space using deformation fields derived from aforementioned VBM 8 

analysis and resampled to 3-mm isotropic voxels. 9 

(5) Smoothing 10 

For the further independent component analysis (ICA), the normalized fMRI data 11 

were smoothed with a FWHM of 8 mm.  12 

Finally, a total of 2156 CHIMGEN participants were finally included in the further 13 

analyses. 14 

2.5.4.2 IMAGEN  15 

The resting-state fMRI data of 366 IMAGEN-FU2 participants were preprocessed 16 

using FSL v5.0.9 and Advanced Normalization Tools (ANTs v1.9.2). Fifteen 17 

participants were excluded either because over 5% of scans in that subject exhibited 18 

artifacts of some kind, or if over 5% of volumes showed a frame displacement of over 19 

0.5mm. Thus, 351 participants were finally included in the further analyses. Motion 20 

correction was carried out, applying a rigid body registration of each volume to the 21 

middle volume (FSL MCFLIRT), non-brain tissue was removed (FSL BET), and 22 

spatial smoothing was applied using a Gaussian kernel of 4 × 4 × 4 mm3. Independent 23 

component analysis (ICA) (FSL MELODIC) was run for each dataset. Artifact 24 

components were identified using an automatic classification algorithm, and 25 
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subsequently regressed from the data (ICA-AROMA v0.3). The resulting cleaned 1 

dataset was de-trended (up to a third-degree polynomial), and then co-registration to a 2 

high-resolution T1 image (FSL FLIRT using the BBR algorithm) and normalization to 3 

2-mm isotropic MNI standard space (ANTs) were carried out. To further clean the data 4 

of physiological noise using CompCorr procedure, we created white matter (WM) and 5 

cerebrospinal fluid (CSF) masks by taking the mean of the WM and CSF segmentations 6 

from the VBM analysis, and thresholding them at 0.95, we then resliced these maps into 7 

the same space as the fMRI data. We then extracted timecourses from voxels within 8 

these regions and took the first three principal components of this signal for both WM 9 

and CSF maps. These six principal component signals should represent non-neuronal 10 

signal. We then regressed this non-neuronal signal from voxel timecourses across the 11 

rest of the brain. Lastly, preprocessed and normalized resting-state fMRI data were 12 

resliced to 3mm isotropic voxels. 13 

2.5.5 Identification of resting state network 14 

In CHIMGEN (n=2156) and IMAGEN-FU2 (n=351), group ICA (GICA) was 15 

used to decompose the resting-state fMRI data into independent components (ICs) to 16 

construct brain functional network using the Group ICA Of fMRI Toolbox (GIFT) 17 

software (http://mialab.mrn.org/software/gift/index.html, version 4.0b)54, which 18 

included data reduction, ICA and back reconstruction. Data reduction was used to 19 

reduce the size of the participants’ fMRI data using the principal components analysis. 20 

Two data reduction steps were carried out. After each participant’s fMRI data was 21 

reduced, the participants were concatenated into one group and put through another 22 

data reduction step. ICA algorithm was then applied to the reduced data to identify ICs. 23 

The number (n=30) of ICs was automatically estimated using the minimum description 24 

http://mialab.mrn.org/software/gift/index.html
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length (MDL) criterion55. ICASSO toolbox was used to determine the reliability of ICA 1 

algorithm. Specifically, ICA was run 100 times to obtain the final integrated output. 2 

The participant-specific time courses and spatial maps were back-reconstructed by a 3 

dual-regression method. A linear spatial regression was applied to the group-level 4 

spatial maps and participants’ fMRI datasets to calculate matrix describing time 5 

courses for each component of each participant54. A linear temporal regression was 6 

then applied to these time-course matrices and participants’ fMRI datasets to estimate 7 

participant-specific spatial maps56. To improve the normality of the data, we scaled the 8 

spatial component maps to z-scores54,56. Using GICA with the estimated 30 ICs, we 9 

identified 17 resting-state networks (RSNs) related to various cognitive and 10 

sensory-motor processes57 that were shared in CHIMGEN and IMAGEN-FU2 11 

(Supplementary Fig.16). For each participant-specific spatial component, the value of a 12 

voxel represents the relation of the time courses between this voxel and the 13 

participant-specific component, which was defined as within-network functional 14 

connectivity (WNFC). The correlation of the time courses between any two of the 15 

participant-specific components were defined as between-network functional 16 

connectivity (BNFC). 17 

2.5.6 Brain structural and functional changes during adolescent development  18 

We investigated the relation of urbanicity with adolescent brain development by 19 

calculating change rate for each imaging measure between BL and FU2 in IMAGEN, 20 

as we did before58. In the 340 participants with qualified structural imaging data both at 21 

BL (14 years) and FU2 (19 years), structural imaging data were pre-processed with the 22 

pairwise longitudinal tool implemented in SPM12 for longitudinal VBM analysis59. 23 

Finally, we obtained year-averaged GMV change maps of 340 participants, 24 
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year-averaged CT and SA change maps of 325 participants. In 83 participants with 1 

qualified fMRI data both at BL (14 years) and FU2 (19 years), we calculated WNFC 2 

and BNFC for each participant at each stage, and then we obtained the WNFC and 3 

BNFC change maps of the 83 participants. 4 

2.6 Neuropsychological assessment 5 

To test the overall exposure effect of urbanicity on behavior, we included different 6 

dimensions of neuropsychological and mental health assessments. In CHIMGEN 7 

(n=2176), complete quality-controlled data were available in 2173 participants for 8 

verbal learning memory, 2063 for working memory, 2139 for information processing 9 

speed, 2148 for social cognition, 2024 for cognitive control, and 2170 for mental 10 

health.  11 

2.6.1 Verbal learning memory 12 

The California Verbal Learning Test (CVLT) was used to test episodic verbal 13 

learning and memory, which have demonstrated sensitivity to a range of clinical 14 

conditions60. Briefly, the experimenter read a list of 16 nouns words loudly every 15 

second for five sessions in a fixed order. After each session, the subjects were asked to 16 

try their best to recall the words in free order. Then the experimenter recorded the 17 

numbers of correct words in immediate free memory recall within five sessions (imFM 18 

1-5), short-term free memory recall (stFM), short-term clue memory recall (stCM), 19 

long-term free memory recall (ltFM) and long-term clue memory recall (ltCM), total 20 

numbers of insertion (TI), total numbers of repetition (TR) and long-term recognition 21 

(ltR). 22 

2.6.2 Working memory 23 
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The classic letter N-back test (1-back and 3-back) were applied to measure 1 

working memory61. In the letter 1-back task, the subjects were required to match the 2 

current stimulus by the previous one in the sequence of stimuli. In the letter 3-back task, 3 

the subjects were required to match the current stimulus by the one from 2 steps earlier 4 

in the sequence of stimuli. Both 1-back and 3-back tasks have only one block including 5 

60 trails. Each stimulus was presented for 200ms and the stimulation interval is 1800ms. 6 

The participants were instructed to respond as fast and accurately as possible after the 7 

presentation of each stimulus. Before the experiment, the subjects were given one 8 

practice test of the 1-back task. Only the subjects with accuracy more than 75% were 9 

allowed to perform the formal task. If not, they have to do the test task again. E-Prime 10 

2.0 software (Psychology Software Tools) was used to present the stimuli and collect 11 

the results. We recorded the numbers of correct rejection stimuli (cr), hits stimuli (h), 12 

miss stimuli, false alarms stimuli, and no response stimuli, and finally calculated the 13 

accuracy ((cr+h)/60) in 1-back (ACC1-back) and 3-back (ACC3-back), respectively.  14 

2.6.3 Information processing speed 15 

The Symbols Digit Modality Test (SDMT) was applied to test attention and speed 16 

of processing ability62. Using a reference key, the subjects were required to pair specific 17 

numbers with given nine geometric figures after testing the first 10 items as fast and 18 

accurately as they can. Finally, we recorded the numbers of correctly and incorrectly 19 

filled digits in the 90 seconds. The total number of SDMT test is 110 score.  20 

2.6.4 Social cognition 21 

In CHIMGEN, a ball tossing game with a 2 2 factorial design was applied to test 22 

perspective taking (first-person vs. third-person perspective) and agency (active vs. 23 
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passive) of social cognition63. The subjects were required to perform active and passive 1 

tasks from two different perspectives. From the third-person perspective (3PP), three 2 

virtual characters (red, green, and blue) appeared on the screen to perform a ball tossing 3 

game. They have to perform the two tasks from the blue character’s perspective instead 4 

of from their own. In the active task, subjects (blue character) were instructed to throw 5 

the ball to the red character when they were in possession of the ball. The subjects have 6 

to judge the red character’s position from blue character’s perspective (left or right side) 7 

by pressing the corresponding key “F” or “J”. In the passive task, one of the red or 8 

green character was in possession of the ball, and subjects have to judge the ball’s 9 

position from the blue character’s perspective (left or right side) with a button press “F” 10 

or “J”; From the first-person perspective (1PP), the visional field of the subject was 11 

consistent with the forward vision of the blue character. Only one hand of the blue 12 

character was displayed on the screen without the body. They were also asked to 13 

perform the active and passive tasks. The whole task includes four blocks in the order 14 

of 1PP, 3PP, 3PP and 1PP block. Each block contains 18 trails including 6 active tasks 15 

and 12 passive tasks. The location of the subject, the character in possession of the ball 16 

and the relative position of the red character are all pseudo-random. The schematic 17 

representation of the ball tossing task design was shown in Supplementary Fig.21. The 18 

participants were instructed to respond as fast and accurately as possible after the 19 

presentation of each trail. Before the experiment, the participants were given 2 practice 20 

runs of the task. E-Prime 2.0 software was also used to present the stimuli and collect 21 

the results. We recorded active reaction time (1PP_ACT_RT and 3PP_ACT_RT) and 22 

accuracy (1PP ACT_ACC and 3PP_ACT_ACC) in the 1PP and 3PP, as well as passive 23 

reaction time (1PP_PAS_RT and 3PP_PAS_RT) and accuracy (1PP PAS_ACC and 24 

3PP_PAS_ACC) in the 1PP and 3PP. The perspective taking and agency performance 25 
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were evaluated by: (a) accuracy in perspective taking (ACCpt): (3PP ACT_ACC + 3PP 1 

PAS_ACC) - (1PP ACT_ACC+1PP PAS_ACC); (b) accuracy in agency (ACCag): 2 

(3PP PAS_ACC + 1PP PAS_ACC) - (3PP ACT_ACC+1PP ACT_ACC); (c) reaction 3 

time in perspective taking (RTpt): (3PP ACT_RT + 3PP PAS_RT) - (1PP ACT_RT+1PP 4 

PAS_RT); and reaction time in agency (RTag): (3PP PAS_RT + 1PP PAS_RT) - (3PP 5 

ACT_RT+1PP ACT_RT).  6 

In IMAGEN, perspective taking was assessed by interpersonal reactivity index (IRI) 7 

questionnaire acquired at FU2, that was used to test dispositional empathy comprising 8 

four separate but related conducts: perspective taking, fantasy, empathic concern and 9 

personal distress64.  10 

2.6.5 Executive control 11 

The go/no-go test was used to measure participant’s capacity for sustained 12 

attention and response control. The subjects were required to perform an action when 13 

the current stimulus was different from the previous one (e.g., press a button - Go trail) 14 

and inhibit that action when they were match (e.g., not press the same button - No-Go 15 

trail) in the sequence of stimuli. The whole task included two blocks with 21 Go trails 16 

and 189 No-Go trails in each block. The participants were instructed to respond as fast 17 

and accurately as possible after the presentation of each trail. Before the experiment, 18 

the participants were given 1 practice run of the task. E-Prime 2.0 software was used to 19 

present the stimuli and collect the results. We recorded accuracy in Go trial (ACCgo) 20 

and No-Go trails (ACCno-go), respectively.  21 

2.6.6 Mental health 22 
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In CHIMGEN, Beck Depressive Inventory (BDI) was used to measure severity of 1 

depression, and State-Trait Anxiety Inventory (STAI）was used to measure state 2 

anxiety (anxiety about an event) and trait anxiety (anxiety level as a personal 3 

characteristic). In IMAGEN-FU2, RSQ was used to measure the frequency of 4 

cognitions and behaviors of subjects during periods of depressed mood, which was only 5 

available in IMAGEN-FU2. Ruminative responding is highly associated with 6 

depression and one of its main cognitive symptoms65,66. Thus, in a mechanistic 7 

approach, ruminative responding can be viewed as a core variable of depressive 8 

behavior67. The findings of depressive symptoms in CHIMGEN that were ascertained 9 

using the BDI were supported in the RSQ findings of IMAGEN, where the BDI was not 10 

applied. CIDI-DIA and DAWBA-GA were applied to measure their anxiety state, 11 

which was available in IMAGEN-FU2.   12 

2.6.7. Quality control for behavioral measures 13 

We have carried our stringent quality control for each behavioral variable in the 14 

CHIMGEN sample (n=3306): 15 

(1) We confirmed the consistency between input data and raw data to ensure the 16 

input data to be free of any input errors. 17 

(2) We excluded participants with unreliable scores in these assessments.  18 

(a) SDMT 19 

The total number of the SDMT test is 110, thus the sum of the correct and 20 

incorrect numbers should be no more than 110. Then we excluded a few participants 21 

whose sum score is greater than 110. Finally, 2139 participants were included in the 22 

analysis of SDMT test. 23 
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(b) N-back task 1 

In the practice, the correct rate of the 1-back task is used to assess the compliance 2 

of participants and only ones with the correct rate above 75% can perform the formal 3 

test. However, in the formal test, 90 participants had the correct rate of the 1-back task 4 

less than 75%, and thus we excluded these participants since we cannot ensure that they 5 

have completed the test seriously. Finally, 2063 participants were included in the 6 

analysis of N-back task.  7 

(c) Go/No-go task 8 

Go trials are relatively easy and theoretically have a high correct rate. However, 9 

102 participants had less than 75% correct rate of Go trials, indicating that they did not 10 

complete the test seriously. Therefore, these participants were excluded from analysis. 11 

Here, the threshold of 75% was used to agree with the threshold of 1-back test. Finally, 12 

2024 participants were included in the analysis of Go/No-go task. 13 

3. Statistical analysis  14 

3.1 Demographic statistics  15 

We compared demographic characteristics between the final analytical sample 16 

(n=2176 for CHIMGEN; n=415 for IMAGEN-FU2) and total sample (n=5425 for 17 

CHIMGEN; n=1411 for IMAGEN-FU2) using bias-corrected bootstrapping. For each 18 

variable in CHIMGEN, after 10,000 bias-corrected bootstrapping, we estimated the 19 

distribution of the mean or frequency and calculate its 95% confidence intervals (CI). If 20 

the mean or frequency of a given variable from our final analytical sample was outside 21 

the 95% CI of the total sample, we confirmed the existence of a significant difference 22 
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between the final analytical sample and total sample in this variable (P<0.05). The same 1 

procedure was applied for IMAGEN. 2 

3.2 Correlation analyses of mean UrbanSat with brain imaging measures 3 

3.2.1 Gray matter volume, cortical thickness and surface area (GMV, CT and SA) 4 

The voxel-wise multiple regression of mean UrbanSat before 18 years with brain 5 

GMV was performed in CHIMGEN (n=2176) using Statistical Parametric Mapping 6 

(SPM12) implemented in Matlab R2018a (http://www.fil.ion.ucl.ac.uk/spm) using the 7 

following formula: 8 

Y=β0+β1X1+β2X2+...+βnXn+e  9 

The dependent variable (Y) is GMV of each voxel of brain, the independent 10 

variable (X1) is mean UrbanSat before 18 years, the independent variables X2 to Xn are 11 

the confounding factors, namely gender, education, site, BMI, genetic 12 

population-stratification, SES and TIV, e are the residuals. Statistical significance of 13 

the voxel-wise multiple regression models in the relation of mean UrbanSat with 14 

neuroimaging data was assessed by family-wise error (FWE) correction, where we 15 

corrected for voxel numbers, six imaging features (GMV, CT, SA, FA, WNFC and 16 

BNFC) and two data type (neuroimaging and behavioral data). We therefore set a 17 

significance threshold of FWE-corrected Pc<0.05 (equal to an uncorrected 18 

P<(1.25×10-6/6/2)=1.01×10-7) in brain structure analysis in CHIMGEN. To investigate 19 

the correlation of UrbanSat with brain GMV was driven by cortical thickness (CT) or 20 

surface area (SA) or both, we used the significant cluster from correlation of UrbanSat 21 

with brain GMV in CHIMGEN as spatial masks to create regions of interest (ROI) 22 

(Supplementary Fig.9), from which we extracted the mean brain metrics of all vertexes 23 

http://www.fil.ion.ucl.ac.uk/spm
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for each participant. The results of P<0.05 in CT and SA analysis were set as 1 

significant.  2 

3.2.2 Fractional anisotropy (FA) 3 

For TBSS analysis of the white matter FA in CHIMGEN and IMAGEN-FU2, the 4 

threshold-free cluster enhancement (TFCE) option in the permutation-testing tool 5 

(permutations=5,000) in the FSL software was used to test statistical significance68. 6 

Multiple comparisons were corrected using a voxel-level family-wise error (FWE) 7 

method (TFCE FWE Pc<0.05).  8 

3.2.3 Within-network functional connectivity (WNFC) 9 

The WNFC of each voxel reflects temporal correlation between the time-course of 10 

BOLD signals of this voxel within a given functional network and the characteristic 11 

time-course of BOLD signals of the functional network derived from the ICA analysis. 12 

Each of the identified 17 RSNs was entered into a random-effect one-sample t-test to 13 

generate a sample-specific spatial map for the RSN (FWE correction, Pc<0.05) in 14 

CHIMGEN and IMAGEN, respectively. Then a voxel-wise multiple regression was 15 

applied to test the correlation between UrbanSat and WFNC in the mask of this RSN in 16 

CHIMGEN. For the voxel-wise WNFC analyses, we additionally corrected for the 17 

number of the functional networks (n=17), resulting in a FWE-corrected Pc<0.05 18 

(uncorrected P<(1.25×10-6/6/17/2)=6.13×10-9). For each RSN, brain clusters where 19 

WNFC showed significant correlation with UrbanSat in CHIMGEN were extracted for 20 

the ROI-wise validation in IMAGEN. Additionally, voxel-wise multiple regression 21 

was also applied to test the correlation between UrbanSat and WFNC in IMAGEN.  22 

3.2.4 Between-network functional connectivity (BNFC)  23 
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The BNFC represents temporal correlations of the characteristic time-courses of 1 

BOLD signals between any two RSNs derived from the ICA analysis. Pearson 2 

correlation was applied to calculate temporal correlations of the characteristic 3 

time-courses of BOLD signals between any pair of 17 RSNs for each participant and 4 

then converted r value to z value to improve normality. Each z value represents the 5 

BNFC of a given pair of RSNs of each participant. Spearman correlation was applied 6 

between UrbanSat and BNFC while controlling the confounding covariates in 7 

CHIMEGN and IMAGEN-FU2, respectively. For the pairwise BNFC analyses, 8 

statistical significance of the correlation between UrbanSat and BNFC was assessed by 9 

permutation testing in reference to a prior study69. A maximum correlation coefficient 10 

null distribution was generated from the permuted correlation coefficient created by 11 

randomly assigning the UrbanSat values across participants (10,000 permutations). 12 

Based on the null distribution of the maximum correlation coefficient derived from 13 

permutation testing, the statistical significance (Pc<0.05) was estimated for each 14 

correlation testing between UrbanSat and BNFC.  15 

3.2.5 Meta-analysis 16 

Although all the CHIMGEN and IMAGEN sites used 3.0 tesla MRI scanners to 17 

acquire neuroimaging data, different MRI scanners were used in different sites, which 18 

may bias our findings. To reduce the possibility, we repeated the ROI-based 19 

correlation analyses of UrbanSat with neuroimaging measures in each site (both 20 

CHIMGEN and IMAGEN) and performed meta-analysis to integrate the results. The 21 

meta-analyses pooled each center’s effect size of correlation coefficient between 22 

UrbanSat and neuroimaging measure of each ROI, using an inverse 23 

variance-weighted random-effects model as implemented in the R package metafor 24 
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(version v2.1-0)70. Random effects models, compared to fixed effect models, do not 1 

make the assumption of the same effect size for each center. They estimate the mean 2 

of a distribution of effect sizes, allowing effect sizes to vary across centers due to 3 

center-specific differences (e.g., mean age). Random effects models therefore weigh 4 

within-center as well as between-center variance in the pooled effect size estimates 5 

and protect against dominating effects of the largest samples in the meta-analysis71. 6 

The random-effects models were fit using the restricted maximum likelihood 7 

method72. The Fish’s z transformed correlation coefficient was used in meta-analysis. 8 

In addition to Fish’s z transformed correlation coefficient estimates, the standard 9 

errors (SE), z-values, p-values, confidence intervals (CIs) and measure of 10 

heterogeneity (I2 statistics) were also computed in the meta-analysis. The statistics, I2, 11 

(100%  (Cochran’s Q-df)/Cochran’s Q) indicates the percentage of variance in a 12 

meta-analysis that is attributable to study heterogeneity, which is independent of i) the 13 

size of the meta-analysis, ii) the types of studies included in the meta-analysis, and iii) 14 

the outcome data used in the meta-analysis and hence can readily be compared across 15 

meta-analyses studies73. I2 values of 0%, 25%, 50%, and 75% are considered 16 

reflective of no, low, moderate and high heterogeneity in effect size estimates across 17 

studies73. 18 

3.3 Correlation of brain imaging measures with age of migration 19 

In each CHIMGEN participant who had agreed to provide the residential 20 

information, we recorded the precise residential addresses of this participant in each 21 

year from his/her birth to recruitment and the category of each place (1=rural, 2=town, 22 

3=city) that was determined according to the National Bureau of Statistics of China 23 
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(http://www.stats.gov.cn/tjsj/ndsj/renkoupucha/2000pucha/html/append7.htm). To 1 

measure the relation between age of migration and brain, we split the 2176 CHIMGEN 2 

participants into who migrated to the city before age 14 years (n=229, mean age at 3 

migration=8.24±4.86 years old), after age 14 (n=1385, mean age at 4 

migration=17.17±2.68 years old), and life-long city-dwellers (n=562). The significant 5 

cluster (mPFC and cerebellum) from correlation of UrbanSat with brain GMV in 6 

CHIMGEN was used as a spatial mask to extract the mean brain GMV, CT and SA of 7 

all voxels/vertexes within this cluster for each participant. Then Kruskal-Wallis test is 8 

used to compare the differences of brain features among the three groups and Dunn’s 9 

pairwise tests was used for post-hoc comparisons. 10 

3.4 Correlation analyses of mean UrbanSat with behavioral measures 11 

In CHIMGEN, Spearman correlation was applied to test the correlation between 12 

mean UrbanSat and each neuropsychological domain and mental health while 13 

controlling for confounding covariates. For the behavioral analysis, Bonferroni 14 

correction for the 2 data types and 21 items (Table 1 and Supplementary Table 15) was 15 

applied in the relation of UrbanSat with behavioral assessments in CHIMGEN. We 16 

therefore set a significance threshold of Bonferroni corrected Pc<0.05 (equal to an 17 

uncorrected P<(0.05/2/21)=1.19×10-4) in CHIMGEN. All the significant results were 18 

validated in IMAGEN at Bonferroni corrected Pc<0.05 (equal to an uncorrected 19 

P<(0.05/5)=0.01). 20 

3.5 Multiple mediation analysis 21 

To formally test whether UrbanSat-behavior relationship can be mediated by brain 22 

structure and function, we performed multiple mediation analysis, an extension of 23 

http://www.stats.gov.cn/tjsj/ndsj/renkoupucha/2000pucha/html/append7.htm
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mediation analysis74,75. Mediation analysis is a path analytic approach based on 1 

regression coefficients. Taking the relation between UrbanSat (X) and depressive 2 

symptoms (Y) as an example, the central idea is that the total effect (c) of UrbanSat on 3 

depressive symptoms can be divided into direct (c’) and indirect effects (a×b): The 4 

direct effect of UrbanSat is the effect of UrbanSat on depressive symptoms when the 5 

effects of potential mediators (brain structure and function) (M) have been controlled 6 

for; The indirect effect through a mediator is defined as the product of (1) the effect of 7 

UrbanSat on the mediator and (2) the effect of the mediator on depressive symptoms. 8 

Therefore, the indirect effect of UrbanSat on depressive symptoms equals the amount 9 

by which the total effect of UrbanSat on depressive symptoms drops when the 10 

mediators are taken into account (a×b=c-c’). 11 

In multiple mediation analysis, all indirect effects are estimated in one multiple 12 

regression analysis with independent variable and all mediators as predictor variables. 13 

This means that the indirect effect of one mediator was estimated when the other 14 

mediators are taken into account. We used bootstrapping to assess the significance of 15 

the mediation effect. After 5,000 bias-corrected bootstrapping, we estimated the 16 

distribution of the indirect effect and calculate its 95% confidence intervals (CI). If zero 17 

does not fall between the resulting 95% confidence interval of the bootstrapping 18 

method, we confirmed the existence of a significant mediation effect (P<0.05). It 19 

should be emphasized that in the multiple mediation analysis of this study, mediators 20 

and dependent variables were measured contemporaneously, thus not allowing 21 

establishment of any causal directionality.  22 

 23 

24 
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Supplementary Results 1 

1. CFA model optimization  2 

Firstly, we tested a CFA model including all nine satellite-based measures of 3 

urbanicity in each 90% spatiotemporal points. This model showed only moderate fit in 4 

each fold data (e.g., CFI=0.62, TLI=0.50, RMSEA=0.18, SRMR=0.09 in the first 5 

training dataset). Based on the factor loadings of the nine satellite-based measures, we 6 

removed the measure with the smallest factor loading and repeated the CFA modelling. 7 

These steps were iterated until the resulting CFA model satisfied our criteria for good 8 

model fit. The goodness of fit for each CFA modelling is shown in Supplementary 9 

Table 9 in CHIMGEN. The inclusion of the four satellite-based measures (NL, NDVI, 10 

cropland% and built-up%) achieved the best goodness of fit in all folds of training data. 11 

And even the orders of factor loadings (NL > cropland%> build-up%> NDVI) were 12 

extremely consistent. Therefore, the UrbanSat score was predicted in the test dataset 13 

when fixing the loadings from the training dataset. This process was iterated 10 times 14 

to predict out-of sample UrbanSat scores of all 3306 participants (Supplementary 15 

Fig.3). The same CFA process was performed to construct UrbanSat in IMAGEN-FU2 16 

(n=561).  17 

2. Bias assessments  18 

2.1 Selection bias 19 

Although nearly two-thirds of the variables (15/26 for CHIMGEN and 7/10 for 20 

IMAGEN) did not show significant differences between the included sample and the 21 
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excluded sample in both CHIMGEN and IMAGEN, there are differences in about 1 

one-third of the variables (11/26 for CHIMGEN and 3/10 for IMAGEN). The effect 2 

sizes of these differences are rather small and demographic variables were adjusted in 3 

our main analyses. Significant differences were observed in verbal learning memory, 4 

cognitive control and anxiety. These differences did not affect the main outcome 5 

variables of the study, depressive symptoms or perspective taking. 6 

2.2 Sensitivity analysis  7 

The statistical comparisons of voxel-wise multiple regression analysis of each 8 

imputed UrbanSat with whole brain GMV adjusted for all confounding covariates in 9 

2176 participants are shown in Supplementary Fig. 6 (FWE Pc<0.05). We found that 10 

each imputed UrbanSat dataset was significantly correlated with the identical areas in 11 

the left mPFC and bilateral cerebellum, similar to the combined UrbanSat score 12 

following Rubin’s rule. For the estimation of brain ROI level analyses, where the 13 

statistical estimate between multiple imputed UrbanSat and brain ROI was pooled in a 14 

statistically principled fashion using mice R package, we still replicated the results 15 

deriving from combined UrbanSat score and voxel-wise brain analysis in the main text. 16 

The estimated fractions of missing information (FMI) of UrbanSat were low for the 17 

GMVs of left mPFC (FMI=1.01%) and cerebellum (FMI=1.19%) based on mice R 18 

package. UrbanSat was still correlated with GMVs of the left mPFC (P<0.001) and 19 

cerebellum (P<0.001) after pooling in CHIMGEN. 20 

To test the potential bias caused by the imputation of satellite data, sensitivity 21 

analysis was additionally performed in 1460 participants where complete brain imaging 22 
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data as well as nine complete satellite measures from birth to the age of recruitment 1 

were available without any missing data. In the 1460 participants, sensitivity analysis 2 

was performed to identify voxel-wise correlations between GMV and UrbanSat 3 

adjusted for all confounding covariates (FWE Pc<0.05). We achieved the same results 4 

as we have in the analysis of the 2176 participants, albeit with a slight reduction in 5 

significance, as would be expected because of the reduced sample size (Supplementary 6 

Fig.7). 7 

With respect to UrbanSat with behaviors, FMI of UrbanSat was also low for 8 

perspective taking (FMI=0.90%) and depression index (FMI=0.67%). We replicated 9 

the results of UrbanSat with reaction time for perspective taking (P<0.001) and 10 

depression index (P<0.001). 11 

2.3 Representativeness of sub-sample 12 

To test whether UrbanSat based on the full sample (n=3306) is representative for 13 

the MRI sub-sample (n=2176), we re-performed the ten-fold cross validation of CFA 14 

models on the urbanicity variables in the 2176 participants. The UrbanSat constructed 15 

from the sub sample (n=2176) was practically identical to that derived from the full 16 

sample (n=3306) (r=0.99, P<0.001).  17 

3. Voxel-wise multiple regression analysis under nonparametric testing 18 

The voxel-wise general linear model of UrbanSat with brain GMV adjusting for 19 

confounders was performed using permutation-based nonparametric testing with 20 

threshold-free cluster enhancement (TFCE) for correcting for family-wise error 21 

(TFCE-FWE, Pc<0.05) as implemented in randomise for FMRIB Software Library 22 
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(FSL) v5.0.10 (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Randomise/UserGuide). Under the 1 

non-parametric permutation testing, the UrbanSat was positively correlated with 2 

bilateral cerebellar volume and negatively correlated with bilateral mPFC, insular, 3 

middle and inferior temporal cortex and angular cortex volume (TFCE-FWE, Pc<0.05, 4 

Supplementary Fig.5). 5 

4. Correlation of UrbanSat with behaviors   6 

We found a correlation of UrbanSat with the numbers of correct words in 7 

immediate free memory recall within five sessions (imFM 1-5) of the verbal learning 8 

memory (rho=0.08, Pc<0.05) and the accuracy of go-trail of cognitive control 9 

(rho=0.10, Pc<0.05) (Supplementary Table 15), but they cannot be replicated in 10 

IMAGEN-FU2 due to the lack of the assessment. 11 

5. Correlation of WNFCs and BNFCs with age of migration   12 

To measure the relation between age of migration with WNFCs and BNFCs, we 13 

split the CHIMGEN participants into who migrated to the city before age 14 years 14 

(n=222, mean age at migration=8.24±4.86 years), after age 14 (n=1375, mean age at 15 

migration=17.17±2.68 years), and life-long city-dwellers (n=559) (Fig.3d). We found 16 

that participants who were born in the city or migrated to an urban environment at an 17 

earlier age showed greater WNFCs in the CN (P<0.001), mVN (P=0.032) and lVN 18 

(P<0.001) as well as greater BNFCs in aDMN-CN (P<0.001), aDMN-ECN (P<0.001), 19 

aDMN-rFPN (P<0.001) and rFPN-lFPN (P<0.001) but smaller WNFC in the aDMN 20 

(P<0.001) than later migrants (Fig.4 and Supplementary Table 14). 21 

6. Correlation of UrbanSat with WNFC and BNFC changes  22 
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Mean UrbanSat was significantly correlated with WNFC changes in the aDMN 1 

(rho=0.31, P=0.009), CN (rho=0.37, P=0.002), mVN (rho=0.28, P=0.022) and lVN 2 

(rho=0.25, P=0.032), as well as with BNFC changes in the aDMN-CN (rho=0.45, 3 

P<0.001), aDMN-ECN (rho=0.25, P=0.036), aDMN-rFPN (rho=0.25, P=0.036) and 4 

rFPN-lFPN (rho=0.23, P=0.046) in the longitudinal IMAGEN BL-FU2 sample (n=83) 5 

(Supplementary Table 12). 6 

7 
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Supplementary Tables 1 

Supplementary Table 1. Inclusion and exclusion criteria in CHIMGEN1 2 

Categories Items Actions  

A. Demographics 1. Age of 18-30 years Inclusion 

 2. Chinese Han without other ethnic ancestors in recent three generations Inclusion 

 3. Right-handedness confirmed by the handedness questionnaire Inclusion 

 4. Relatives have not participated in this study Inclusion 

B. Medical histories 1. Neuropsychiatric diseases (schizophrenia, anxiety, depression, epilepsy, stroke, 

tumors, and multiple sclerosis, etc.) 

Exclusion 

 2. Consciousness loss for more than 5 minutes Exclusion 

 3. Brain injury or neurosurgery Exclusion 

 4. Major physical illnesses (heart disease, hypertension, nephritis, diabetes, 

malignant tumors, hereditary diseases, etc.) 

Exclusion 

 5. Visible brain abnormalities on previous MRI examinations Exclusion 

C. Conditions 1. Alcohol or drug abuse or dependence Exclusion 

 2. The total number of cigarettes so far is more than 20 Exclusion 

 3. Currently with any medication (including contraceptives)  Exclusion 

 4. Taking drugs (antipsychotics, mood stabilizers, isoniazid, glucocorticoids, 

stimulants, etc.) that might affect the brain  

Exclusion 

 5. Using sedative hypnotics (benzodiazepines, barbiturates) within one month Exclusion 

 6. Neuropsychiatric disorders (three generation relatives) Exclusion 

 7. Color blindness or difficulty in color discrimination Exclusion 

 8. Women in pregnancy or in the menstrual period on the day of the experiment Exclusion 

 9. Strenuous exercise or consumption of strong tea, caffeine or alcoholic beverages 

on the day of the experiment 

Exclusion 

 10. Without enough sleep (< 7 hours) at the night before the experiment Exclusion 

D. MR contraindications 1. Metal implants Exclusion 

 2. Electronic implants (e.g. pacemakers) Exclusion 

 3. Severe claustrophobia Exclusion 

 3 

 4 

 5 

 6 
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Supplementary Table 2. Inclusion and exclusion criteria in IMAGEN2 1 

Categories Items Actions 

A. Demographics 1. Child in target age (14 years) Inclusion 

B. Pregnancy and birth 1. Use of alcohol by the mother during pregnancy (>210 ml alcohol/week 

[e.g. 14 bottles of beer, 9 glasses of wine, 7 glasses of hard liquor]) 

Exclusion  

2. Diabetes of the mother during pregnancy (onset before pregnancy, treated 

by insulin) 

Exclusion 

 

3. Premature birth (< 35 weeks) and/or detached placenta Exclusion 

4. Hyperbilirubinemia requiring transfusion Exclusion 

C. Child’s medical history 1. Type 1 diabetes Exclusion 

2. Systemic rheumatologic disorders (e.g. strep throat, glomerulonephritis or 

endocarditis) 

Exclusion 

3. Malignant tumours requiring chemotherapy (e.g. leukaemia) Exclusion 

4. Congenital heart defects or heart surgery Exclusion 

5. Aneurism Exclusion 

D. Neurological conditions 1. Epilepsy Exclusion 

2. Bacterial Infection of CNS Exclusion 

3. Brain tumour Exclusion 

4. Head trauma with loss of consciousness >30 minutes  Exclusion 

5. Muscular dystrophy, myotonic dystrophy Exclusion 

E. Developmental conditions 1. Nutritional and metabolic diseases (e.g. failure to thrive, phenylketonuria) Exclusion 

2. Major neuro-developmental disorders (e.g. autism) Exclusion 

3. Hearing deficit (requiring hearing aid) Exclusion 

4. Vision problems (strabismus, visual deficit not correctible) Exclusion 

F. Mental health and abilities 1. Treatment for schizophrenia, bipolar disorder Exclusion 

2. IQ < 70 Exclusion  

G. MR contraindications 1. Metal implants Exclusion 

2. Electronic implants (e.g. pacemakers) Exclusion 

3. Severe claustrophobia Exclusion 

 2 

3 
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Supplementary Table 3. Demographics of the samples used in specific statistical 1 

analysis. 2 

Measures 

Sample size (n) Age (years)* Gender (Male/Female) 

CHIMGEN IMAGEN CHIMGEN IMAGEN CHIMGEN IMAGEN 

UrbanSat 3306 561 24.00 (3.00) 18.74 (0.97) 1213/2093 254/307 

GMV  2176 415 24.00 (3.00) 18.71 (0.77) 769/1407 187/228 

CT and SA 2164 420 24.00 (3.00) 18.71 (0.77) 766/1398 190/230 

TBSS 2158 436 24.00 (3.00) 18.71 (0.77) 762/1396 192/244 

WNFC and BNFC 2156 351 24.00 (3.00) 18.64 (0.71) 761/1395 158/193 

CVLT-II 2173 - 24.00 (3.00) - 768/1405 - 

N-back 2063 - 24.00 (3.00) - 728/1335 - 

SDMT 2139 - 24.00 (3.00) - 758/1381 - 

PTa 2148 342 24.00 (3.00) 18.68 (0.82) 758/1390 143/199 

Go/no-go 2024 - 24.00 (3.00) - 716/1308 - 

Depressionb 2170 346 24.00 (3.00) 18.68 (0.82) 768/1402 144/202 

Anxietyc 2170 447 24.00 (3.00) 18.73 (0.85) 768/1402 197/250 

  391  18.70 (0.84)  176/215 

BNFC, between-network functional connectivity; CT, cortical thickness; CVLT-II, the second edition of 3 

California verbal learning test; GMV, gray matter volume; PT, perspective taking; SA, surface area; 4 

SDMT, symbol digit modalities test; TBSS, Tract-based Spatial Statistics; WNFC, within-network 5 

functional connectivity. aPT is measured by ball tossing game in CHIMGEN and by Interpersonal 6 

Reactivity Index in IMAGEN-FU2; bDepression is measured by the second edition of Beck depression 7 

inventory in CHIMGEN and by Ruminating Scale Questionnaire in IMAGEN-FU2; cAnxiety is measured 8 

by State Trait Anxiety Test in CHIMGEN and by Development and Well-Being Assessment Interview 9 

(upper row) and Anxiety Screening from the Composite International Diagnostic Interview (lower row) 10 

in IMAGEN-FU2.*Statistics are shown as median (quantile interval) in age variables.  11 

 12 
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Supplementary Table 4. Comparisons of demographic variables between the 1 

final analytical sample and total sample in CHIMGEN and IMAGEN. 2 

Variables 

Total sample Final analytical sample 

P* 

n Statistics# n Statistics# 

CHIMGEN      

Age (years) 5425 24.00 (3.00) 2176 24.00 (3.00) 0.112 

Gender (Male/Female) 5425 2094/3331 2176 769/1407 <0.001 

Education (years) 5425 17.00 (3.00) 2176 17.00 (3.00) 0.183 

BMI 5425 20.76 (3.21) 2176 20.76 (3.01) 0.641 

SES scorea 4846 -0.22 (7.87) 2176 -0.22 (7.86) 0.987 

IMAGEN      

Age (years) 1411 18.87 (1.02) 415 18.71 (0.77) <0.001 

Gender (Male/Female) 1411 678/733 415 187/228 0.286 

BMI 1310 20.05 (3.79) 415 20.26 (3.96) 0.362 

SES scorea 1202 0.11 (2.93) 415 0.11 (2.78) 0.734 

GEN (Y/N) 1354 714/640 415 183/232 0.367 

BMI, body mass index; ES, effect size; SES, socioeconomic status; #Median (quantile interval) are 3 

used to describe variables. *P value is estimated by the bias-corrected bootstrapping method; aSES 4 

score is the sum score of normalized parental education and occupation, family unemployment 5 

stress, family financial difficulties and crisis, home inadequacy and neighborhood stress. A total of 6 

4846 participants provide their SES information, in which 2176 are included in the study. 7 

8 



                  

 53 / 96 

 

Supplementary Table 5. Comparisons of demographic and behavioral variables 1 

between the included sample and the excluded sample in CHIMGEN. 2 

Variables 

Included sample Excluded sample 

P* ES 

n Statistics# n Statistics# 

emographics       

Age (years) 3306 24.00 (3.00) 2119 24.00 (4.00) 0.003 -0.04 

Gender (Male/Female)  3306 1213/2093 2119 881/1238 <0.001 0.05 

Education (years) 3306 17.00 (3.00) 2119 17.00 (3.00) <0.001 -0.06 

BMI 3306 20.76 (3.03)  2119 20.76 (3.41) 0.682 -0.01 

SES scorea 2176 -0.22 (7.86) 2670 -1.02 (8.07) 0.007 -0.04 

Behaviors       

PT and agency       

ACCpt 2148 0.21 (0.38) 3197 0.21 (0.35) 0.152 -0.02 

ACCagency 2148 1.00×10-9 (0.21) 3197 1.00×10-9 (0.21) 0.221 -0.02 

RT pt (ms) 2148 1160.67 (740.39) 3197 1162.83 (730.32) 0.863 -0.002 

RTagency (ms) 2148 -7.44 (363.22) 3197 4.37 (369.46) 0.162 -0.02 

Verbal learning memory       

imFM 1-5  2173 56.00 (12.00) 3244 55.00 (12.00) <0.001 -0.05 

stFM 2173 13.00 (3.00) 3244 13.00 (3.00) 0.003 -0.04 

stCM 2173 13.00 (4.00) 3244 13.00 (4.00) 0.003 -0.04 

ltFM 2173 13.00 (3.00) 3244 13.00 (3.00) <0.001 -0.05 

ltCM 2173 14.00 (3.00) 3244 14.00 (3.00) <0.001 -0.05 

TI 2173 4.00 (7.00) 3244 4.00 (7.00) 0.121 -0.02 

TR 2173 4.00 (6.00) 3244 4.00 (6.00) 0.642 -0.01 

ltR 2173 1.00 (0.00) 3244 1.00 (0.00) 0.052 -0.03 

Working memory       

ACC 1-back  2063 0.92 (0.05) 3113 0.93 (0.05) 0.012 -0.04 

ACC 3-back 2063 0.75 (0.20) 3113 0.75 (0.20) 0.938 -0.001 
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Information processing speed       

Correct numbers 2139 70.00 (14.00) 3230 69.00 (14.00) 0.162 -0.02 

Error numbers 2139 0.00 (0.00) 3230 0.00 (0.00) 0.834 -0.003 

Cognitive control       

ACCgo 2024 0.99 (0.02) 3032 0.99 (0.03) 0.642 -0.01 

ACCno-go 2024 0.57 (0.26) 3032 0.55 (0.26) 0.004 -0.04 

Mental health       

BDI 2170 2.00 (5.00) 3238 2.00 (5.00) 0.356 -0.01 

SA 2170 30.00 (9.00) 3238 30.00 (10.00) 0.421 -0.01 

TA 2170 33.00 (9.00) 3238 33.00 (10.00) 0.080 -0.02 

ACC, accuracy; BDI, Beck Depression Index; BMI , body mass index; ES, effect size; imFM 1-5, 1 

total numbers of correct words for test 1-5 in immediate free memory; ltCM, numbers of correct 2 

words in long-term clue memory; ltFM, numbers of correct words in long-term free memory; ltR, 3 

numbers of correct words in long-term recognition accuracy; PT, perspective taking; RT, reaction 4 

time; SA, state anxiety; SD, standard deviation; SES, socioeconomic status; stCM, numbers of 5 

correct words in short-term clue memory; stFM, numbers of correct words in short-term free 6 

memory; TA, trait anxiety; TI, total numbers of insert words; TR, total numbers of repeat words. 7 

#Statistics are shown as median (quantile interval). *Gender is compared using Chi-square test and 8 

effect size (ES) is described as Phi coefficient (Small:<0.1; Medium:0.1-0.3: Large:>0.5)77; 9 

Quantitative variables are compared using Wilcoxon rank sum test and ES is described as r 10 

coefficient (r=Z/√n) (Small: <0.1; Medium: 0.1-0.3; Large:>0.5)78. aSES score is the sum score of 11 

normalized parental education and occupation, family unemployment stress, family financial 12 

difficulties and crisis, home inadequacy and neighborhood stress. A total of 4846 participants 13 

provide their SES information, in which 2176 included in the study. 14 

15 
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1 

Supplementary Table 6. Comparisons of demographic and behavioral variables 2 

between the included sample and the excluded sample in IMAGEN-FU2. 3 

Variables 

Included sample Excluded sample 

P* ES 

n Statistics# n Statistics# 

Demographics       

Age 561 18.74 (0.97) 850 18.94 (1.03) <0.001 -0.09 

Gender (Male/Female) 561 254/307 850 409/441 0.301 0.03 

BMI 502 20.26 (3.96) 808 19.89 (3.83) 0.042 -0.06 

SES scorea 482 0.11 (2.78) 720 0.06 (3.27)  0.545 -0.002 

GEN (Y/N) 543 289/254 811 425/386 0.767 0.01 

Behaviors       

PT       

IRI 342 19.00 (5.00) 613  19.00 (5.00) 0.489 -0.02 

Mental-health       

RSQ 346 35.00 (15.00)  610 36.00 (16.00)  0.678 -0.01 

DAWBA-GA (Y/N) 447 355/92 806 586/220 0.011 0.07 

CIDI-AS 391 6.00 (10.00) 727 5.00 (10.00) 0.320 -0.03 

BMI, body mass index; CIDI-AS, Anxiety Screening from the Composite International Diagnostic 4 

Interview; DAWBA-GA, Generalized Anxiety Scale from The Development and Well-Being Assessment 5 

Interview; FU1, IMAGEN first follow up assessment acquired at 16 years; FU2, IMAGEN second follow 6 

up assessment acquired at 19 years; GEN, Genetic Screening and Family History of Psychiatric 7 

Disorders Interview; IRI, Interpersonal Reactivity Index; PT, perspective taking; RSQ, Ruminating Scale 8 

Questionnaire; SES, socioeconomic status. #Statistics are shown as median (quantile interval); *Gender, 9 

GEN and DAWBA-GA are compared using Chi-square test and ES is shown as Phi coefficient 10 

(Small:<0.1; Medium:0.1-0.3: Large:>0.5) 76; Quantitative variables are compared using Wilcoxon 11 

rank sum test and ES is described as r coefficient (r=Z/√n) (Small: <0.1; Medium: 0.1-0.3; 12 

Large:>0.5)77. aSES score is the sum score of normalized parental education and occupation, family 13 

unemployment stress, family financial difficulties and crisis, home inadequacy and neighborhood stress.14 
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1 

Supplementary Table 7. Detailed information of remote sensing satellite-based measures of urbanicity. 2 

Satellite measure Platform Data sets Band Time span Temporal resolution Spatial resolution 

Population density GEE JRC/GHSL/P2016/POP_GPW_GLOBE_V1 Population_count 1975, 1990, 2000, 2015 10-15 years 250 meters 

NL GEE DMSP-OLS Nighttime Lights Time Series 

Version 4 

Stable_lights 1992-2013 Yearly 1 kilometer 

NDVI GEE NOAA CDR AVHRR Normalized Difference 

Vegetation Index Version 4 

NDVI 1981-2017 Daily 5 kilometers 

NDWI GEE USGS Landsat 7 Collection 1 Tier 1 Raw 

Scenes 

Band 2 and 4 1999-2017 16 days 30 meters 

NDBI GEE The same as above Band 4 and 5 1999-2017 16 days 30 meters 

Land cover mapping       

Built-up%  ESA Climate Change Initiative Land Cover datasets  - 1992-2015 Yearly 30 meters 

Cropland% ESA The same as above - 1992-2015 Yearly 30 meters 

Forest% ESA The same as above - 1992-2015 Yearly 30 meters 

Grassland% ESA The same as above - 1992-2015 Yearly 30 meters 

Water body% ESA The same as above - 1992-2015 Yearly 30 meters 

ESA, European Space Agency; GEE, google earth engine; NDBI, normalized difference buildup index; NDVI, normalized difference vegetation index; NDWI, 3 

normalized difference water index; NL, night-time light 4 
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Supplementary Table 8. Numbers of imputed years of each satellite-based 1 

measure of urbanicity in 3306 participants from CHIMGEN. 2 

Ybirth Yrecruitment  n 

NL (1992-2013) GLCM (1992-2015) NDVI (1981-2017) 

Nbefore Nafter Nbefore Nafter Nbefore Nafter 

1986 2016-2018 27 6 3-5 6 1-3 0 0-2 

1987 2016-2018 45 5 3-5 5 1-3 0 0-2 

1988 2016-2018 91 4 3-5 4 1-3 0 0-2 

1989 2016-2018 186 3 3-5 3 1-3 0 0-2 

1990 2016-2018 344 2 3-5 2 1-3 0 0-2 

1991 2016-2018 447 1 3-5 1 1-3 0 0-2 

1992 2016-2018 495 0 3-5 0 1-3 0 0-2 

1993 2016-2018 503 0 3-5 0 1-3 0 0-2 

1994 2016-2018 444 0 3-5 0 1-3 0 0-2 

1995 2016-2018 367 0 3-5 0 1-3 0 0-2 

1996 2016-2018 193 0 3-5 0 1-3 0 0-2 

1997 2016-2018 108 0 3-5 0 1-3 0 0-2 

1998 2016-2018 30 0 3-5 0 1-3 0 0-2 

1999 2016-2018 12 0 3-5 0 1-3 0 0-2 

2000 2016-2018 7 0 3-5 0 1-3 0 0-2 

2001 2018 7 0 5 0 1-3 0 0-2 

GLCM, global land cover mapping; N, numbers of participants at each birth year; NDVI, 3 

normalized difference vegetation index; NL, nighttime light; Nbefore, numbers of imputed years 4 

before the earliest year of satellite data; Nafter, numbers of imputed years after latest year of satellite 5 

date; Ybirth, birth year of participants; Yrecruitment, recruitment year of participants. 6 
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Supplementary Table 9. Performance of CFA models constructed by different combinations of satellite-based measures of urbanicity in 1 

the first training datasets of CHIMGEN. 2 

Included variables N Excluded variables CFI TLI RMSEA SRMR χ2 AIC BIC Factor loadings 

NL, NDBI, NDVI, NDWI, forest%, built-up%, water body%, 

grassland% and cropland% 
9 - 0.623 0.497 0.178 0.092 56422.97 1575499.21 1575662.272 

0.796, 0.371, 0.521, 0.543, 0.130, 0.623, 0.048, 

0.061, 0.748 

NL, NDBI, NDVI, NDWI, forest%, built-up%, grassland% 

and cropland% 

8 Water body% 0.655 0.517 0.194 0.098 49071.43 1390195.72 1390341.10 
0.799, 0.370, 0.520, 0.543, 0.131, 0.622, 0.063, 

0.746 

NL, NDBI, NDVI, NDWI, forest%, built-up% and cropland% 7 Grassland% 0.711 0.566 0.203 0.099 37885.51 1204976.22 1205103.51 0.796, 0.369, 0.521, 0.540, 0.129, 0.622, 0.751 

NL, NDBI, NDVI, NDWI, built-up% and cropland%  6 Forest% 0.784 0.641 0.207 0.097 25237.75 1020415.20 1020524.34 0.791, 0.367, 0.517, 0.537, 0.619, 0.763 

NL, NDVI, NDWI, built-up% and cropland% 5 NDBI 0.985 0.970 0.062 0.023 1280.07 842185.12 842275.94 0.810, 0.518, 0.484, 0.610, 0.778 

NL, NDVI, built-up% and cropland%  4 NDWI 0.999 0.996 0.026 0.008 92.47 670559.72 670632.43 0.807, 0.511, 0.597, 0.793 

AIC, Akaike’s information criterion; BIC, Schwarz’s Bayesian information criterion; CFA, confirmatory factor analysis; CFI, comparative fit index; NDBI, normalized 3 

difference buildup index; NDWI, normalized difference water index; NDVI, normalized difference vegetation index; NL, nighttime light; RMSEA, root mean square 4 

error of approximation; SRMR, standard root mean square residual; TLI, Tucker-Lewis index.5 
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1 

Supplementary Table 10. Items included in socioeconomic status (SES) in 2 

CHIMGEN. 3 

Item Coding and response scale 

Maternal education 0=Primary school or below 

1=Middle school 

2=High school or vocational diploma 

3=Three-year college diploma 

4= Bachelor degree 

5= PhD, MD, Master’s degree 

Paternal education The same as above 

Maternal occupation 0=Temporary work or unemployed 

1=Manual worker or self-employed 

2=Production or transportation equipment operators 

3=Farmers, forestry, animal husbandry, fishery, water production personnel 

4=Business and service personnel 

5=Civil servant or company employee 

6=Professional and technical personnel 

7=Government or public institute management personnel 

Paternal occupation The same as above 

Family unemployment stress a  0 = a lot; 1 = a little; 2 = not at all 

Financial difficulties a The same as above 

Home inadequacy for the family’s 

need a 

The same as above 

Neighborhood stress a The same as above 

Family financial crisis a The same as above 

aThe items are from SES measures of Development and Well-Being Assessment 4 
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 1 

Supplementary Table 11. Items included in socioeconomic status (SES) in 2 

IMAGEN. 3 

Item (n) Coding and response scale 

ESPAD  

Maternal education  0=Primary school or below 

1=O levels, GCSEs or CSEs 

2=NVQ or GNVQ  

3=A levels or a BTEC national diploma 

4=Advanced diploma 

5=Bachelor degree 

6=PhD, MD, Master’s degree 

Paternal education  The same as above 

DAWBA   

Family unemployment stress  0=a lot; 1=a little; 2=no or not applicable 

Financial difficulties The same as above 

Home inadequacy for the family’s need The same as above 

Neighborhood stress The same as above 

Family financial crisis 0=yes; 1=no 

Maternal employment 0=unemployed or unknown; 1=part-time; 2=full-time 

Paternal employment The same as above 

ESPAD, European School Survey Project on Alcohol and Other Drug; DAWBA, Development and 4 

Well-Being Assessment; SES, socioeconomic status. 5 

6 
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Supplementary Table 12. Correlations of UrbanSat with brain structure and 1 

function. 2 

Brain metrics 

CHIMGEN IMAGEN-FU2 IMAGEN BL-FU2* 

n Statistics# n Statistics# n Statistics# 

GMV       

mPFC 2176 <0.001 (-0.12) 415 0.003 (-0.15) 340 <0.001 (0.24) 

cerebellum 2176 <0.001 (0.14) 415 0.009 (0.13) 340 0.456 (-0.04) 

CT and SA       

mPFC CT 2164 0.381 (-0.02) 420 0.589 (-0.03) 325 0.967 (0.002) 

mPFC SA 2164 0.002 (-0.07) 420 <0.001 (-0.19) 325 <0.001 (0.23) 

WNFC       

aDMN 2156 <0.001 (-0.09) 351 <0.001 (-0.18) 83 0.009 (0.31) 

CN 2156 <0.001 (0.11) 351 <0.001 (0.26) 83 0.002 (0.37) 

mVN 2156 <0.001 (0.07) 351 <0.001 (0.24) 83 0.022 (0.28) 

lVN 2156 <0.001 (0.10) 351 <0.001 (0.24) 83 0.032 (0.25) 

BNFC       

aDMN-CN 2156 <0.001 (0.12) 351 <0.001 (0.18) 83 <0.001 (0.45) 

aDMN-ECN 2156 <0.001 (0.09) 351 0.008 (0.14) 83 0.036 (0.25) 

aDMN-rFPN 2156 <0.001 (0.09) 351 <0.001 (0.19) 83 0.036 (0.25) 

rFPN-lFPN 2156 <0.001 (0.10) 351 <0.001 (0.20) 83 0.046 (0.23) 

aDMN, anterior default mode network; BNFC, between-network functional connectivity; CN, 3 

cerebellar network; CT, cortical thickness; ECN, executive control network; GMV, gray matter 4 

volume; lVN, lateral visual network; lFPN, left frontoparietal network; mPFC, medial prefrontal 5 

cortex; mVN, medial visual network; rFPN, right frontoparietal network; SA, surface area; WNFC, 6 

within-network functional connectivity; #Spearman correlations are used to test the correlations 7 

between UrbanSat and brain measures controlling for confounding covariates, which are shown as 8 

correlation P value (ρ value). The significant results are in bold and italic; *IMAGEN BL-FU2 9 

measures brain structural and functional changes rate between BL of 14 years and FU2 of 19 years. 10 

 11 

 12 
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Supplementary Table 13. Meta-analysis of UrbanSat-brain correlations from all 1 

CHIMGEN and IMAGEN-FU2 sites. 2 

Brain metrics r value SE z value P value 95% CI LB 95% CI UB I2 

GMV        

mPFC  -0.12 0.02 -5.76 <0.001 -0.15 -0.07 0.05% 

cerebellum 0.13 0.04 3.70 <0.001 0.06 0.19 60.21% 

CT and SA        

mPFC CT -0.03 0.02 -1.23 0.223 -0.07 0.02 7.31% 

mPFC SA -0.08 0.03 -2.67 0.007 -0.14 -0.02 43.44% 

WNFC        

aDMN -0.09 0.03 -2.94 0.003 -0.15 -0.03 41.05% 

CN 0.13 0.02 5.92 <0.001 0.09 0.17 3.94% 

mVN 0.06 0.03 1.66 0.092 -0.01 0.12 53.10% 

lVN 0.06 0.03 2.22 0.032 0.007 0.12 35.36% 

BNFC        

aDMN-CN 0.03 0.04 0.69 0.489 -0.06 0.12 74.46% 

aDMN-ECN 0.08 0.04 2.10 0.042 0.005  0.16 65.29% 

aDMN-rFPN 0.05 0.04 1.22 0.220 -0.03 0.12 63.21% 

rFPN-lFPN 0.08 0.03 2.55 0.012 0.02 0.15 49.68% 

aDMN, anterior default mode network; BNFC, between-network functional connectivity; CN, 3 

cerebellar network; CT, cortical thickness; GMV, gray matter volume; lVN, lateral visual network; 4 

mPFC, medial prefrontal cortex; mVN, medial visual network; SA, surface area; WNFC, 5 

within-network functional connectivity; 95% CI LB and UB, 95% confidence interval lower and 6 

upper bound; The significant results are in bold and italic; Note: We exclude SUCWH center from 7 

CHIMGEN for all meta-analysis and Dublin center from IMAGEN for the meta-analysis of brain 8 

functional features, because there are only 8 and 10 participants from each site, which more than 9 

the numbers of covariates while performing Spearman correlation analysis.10 

 11 

 12 
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Supplementary Table 14. Differences of brain features among migrated groups. 1 

Brain metrics n Statistics# P value 

GMV    

mPFC 2176 6.74 0.032 

cerebellum 2176 24.27 <0.001 

CT and SA    

mPFC CT 2164 5.75 0.064 

mPFC SA 2164 37.48 <0.001 

WNFC    

aDMN 2156 21.99 <0.001 

CN 2156 19.53 <0.001 

mVN 2156 6.73 0.032 

lVN 2156 21.74 <0.001 

BNFC    

aDMN-CN 2156 19.21 <0.001 

aDMN-ECN 2156 15.32 <0.001 

aDMN-rFPN 2156 16.29 <0.001 

rFPN-lFPN 2156 26.55 <0.001 

#Statistics are shown as H value using Kruskal-Wallis nonparametric test to compare the 2 

differences of brain features among the groups migrated before 14 years, after 14 years and lifelong 3 

city dwellers.  4 
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1 

Supplementary Table 15. Correlations of UrbanSat with behaviors in 2 

CHIMGEN. 3 

ACC, accuracy; imFM 1-5, total numbers of correct words for test 1-5 in immediate free memory; ltCM, 4 

numbers of correct words in long-term clue memory; ltFM, numbers of correct words in long-term free 5 

memory; ltR, numbers of correct words in long-term recognition accuracy; stCM, numbers of correct 6 

words in short-term clue memory; stFM, numbers of correct words in short-term free memory; TI, total 7 

numbers of insert words; TR, total numbers of repeat words. #Statistics are shown as median (quantile 8 

interval). *Spearman correlations are used to test the correlations between UrbanSat and behaviors 9 

controlling for confounding covariates, which are shown as correlation P value (rho value). 10 

The significant results (Bonferroni Pc<0.05; uncorrected P<0.05/2/21=1.19×10-3) are 11 

in bold and italic. 12 

Variables N Statistics# P value (rho value)* 

Verbal learning memory    

imFM 1-5  2173 56.00 (12.00) <0.001 (0.08) 

stFM 2173 13.00 (3.00) 0.360 (0.02) 

stCM 2173 13.00 (4.00) 0.900 (0.01) 

ltFM 2173 13.00 (3.00) 0.904 (0.01) 

ltCM 2173 14.00 (3.00) 0.995 (-0.01) 

TI 2173 4.00 (7.00) 0.167 (0.03) 

TR 2173 4.00 (6.00) 0.010 (-0.06) 

ltR 2173 1.00 (0.00) 0.147 (0.03) 

Working memory    

ACC 1-back  2063 0.92 (0.05) 0.054 (0.04) 

ACC 3-back 2063 0.75 (0.20) 0.013 (0.05) 

Information processing speed    

Correct numbers 2139 70.00 (14.00) 0.918 (-0.01) 

Error numbers 2139 0.00 (0.00) 0.715 (0.01) 

Cognitive control    

ACCgo 2024 0.99 (0.03) <0.001 (0.10) 

ACCno-go 2024 0.57 (0.26) 0.282 (-0.02) 
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Supplementary Table 16. Sex-specific correlations of UrbanSat with brain structure and function. 1 

Brain measures 

CHIMEGN IMAGEN-FU2 IMAGEN BL-FU2* 

Male Female Male Female Male Female 

n Statistics# n Statistics# n Statistics# n Statistics# n Statistics# n Statistics# 

GMV             

mPFC 769 <0.001 (-0.15) 1407 <0.001 (-0.10) 187 0.142 (-0.11) 228 0.021 (-0.16) 147 <0.001 (0.31) 193 0.005 (0.21) 

cerebellum 769 <0.001 (0.19) 1407 <0.001 (0.10) 187 0.005 (0.21) 228 0.862 (0.01) 147 0.778 (0.02) 193 0.372 (-0.07) 

CT and SA             

mPFC CT 766 0.139 (-0.05) 1398 0.978 (<0.001) 190 0.556 (-0.04) 230 0.978 (0.002) 141 0.243 (-0.10) 184 0.402 (0.06) 

mPFC SA 766 0.112 (-0.06) 1398 0.010 (-0.07) 190 0.142 (-0.11) 230 <0.001 (-0.26) 141 0.002 (0.27) 184 0.004 (0.22) 

WNFC             

aDMN 761 0.343 (-0.04) 1395 <0.001 (-0.11) 158 0.062 (-0.16) 193 0.019 (-0.18) 35 0.282 (0.22) 48 0.022 (0.37) 

CN 761 <0.001 (0.14) 1395 <0.001 (0.10) 158 0.006 (0.23) 193 <0.001 (0.27) 35 0.012 (0.49) 48 0.133 (0.25) 

mVN 761 0.069 (0.07) 1395 0.006 (0.07) 158 0.001 (0.27) 193 <0.001 (0.25) 35 0.952 (-0.01) 48 0.004 (0.45) 

lVN 761 <0.001 (0.15) 1395 0.004 (0.08) 158 0.001 (0.26) 193 0.004 (0.14) 35 0.267 (0.22) 48 0.192 (0.22) 

BNFC             

aDMN-CN 761 0.001 (0.12) 1395 <0.001 (0.13) 158 0.008 (0.22) 193 0.066 (0.06) 35 0.002 (0.58) 48 0.012 (0.41) 

aDMN-ECN 761 0.110 (0.06) 1395 <0.001 (0.12) 158 0.007 (0.22) 193 0.389 (0.19) 35 0.789 (-0.06) 48 0.020 (0.39) 

aDMN-rFPN 761 0.006 (0.10) 1395 0.004 (0.08) 158 0.020 (0.20) 193 0.019 (0.19) 35 0.802 (-0.05) 48 0.020 (0.38) 
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rFPN-lFPN 761 0.042 (0.08) 1395 <0.001 (0.11) 158 0.052 (0.16) 193 0.001 (0.24) 35 0.543 (-0.13) 48 0.032 (0.36) 

aDMN, anterior default mode network; BNFC, between-network functional connectivity; CN, cerebellar network; CT, cortical thickness; GMV, 1 

gray matter volume; lVN, lateral visual network; lFPN, left frontoparietal network; mPFC, medial prefrontal cortex; mVN, medial visual network; 2 

rFPN, right frontoparietal network; SA, surface area; WNFC, within-network functional connectivity. #Spearman correlations are used to test the 3 

correlations between UrbanSat and brain measures controlling for confounding covariates, which are shown as correlation P value (rho value). 4 

The significant results are in bold and italic; *IMAGEN BL-FU2 measures brain structural and functional changes rate from 14 years to 19 years. 5 

6 
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Supplementary Table 17. Sex-specific correlations of UrbanSat with behaviors in CHIMGEN and IMAGEN-FU2.  1 

Item 
Male Female 

n Statistics# P value (rho value)* n Statistics# P value (rho value)* 

CHIMGEN       

PT and agency        

ACCpt 758 0.17 (0.42) 0.087 (-0.06) 1390 0.21 (0.46) 0.195 (-0.04) 

ACCagency 758 0.00 (0.21) 0.134 (0.06) 1390 0.00 (0.21) 0.133 (-0.04) 

RT pt 758 1182.28 (768.78) <0.001 (-0.21) 1390 1150.38 (732.36) <0.001 (-0.14) 

RTagency 758 -34.65 (355.19) 0.502 (0.02) 1390 8.50 (365.73) 0.882 (0.004) 

Mental health       

BDI 768 1.50 (5.00) <0.001 (0.14) 1402 2.00 (5.00) <0.001 (0.15) 

SA 768 29.00 (10.00) 0.101 (-0.06) 1402 30.00 (9.00) 0.070 (0.05) 

TA 768 33.00 (10.50) 0.239 (-0.04) 1402 34.00 (10.00) 0.038 (0.06) 

IMAGEN-FU2       

PT       

IRI  143 17.00 (5.00) 0.004 (0.26) 199 20.00 (5.00) 0.362 (0.07) 

Mental health       

RSQ  144 34.00 (12.50) 0.003 (0.27) 202 37.00 (17.00) 0.350 (0.07) 

DAWBA-GA (Y/N) a 197 136/61 0.831 (0.04) 250 219/31 0.561 (0.09) 
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CIDI-AS  176 5.00 (8.00) 0.442 (0.06) 215 7.00 (9.00) 0.041 (0.15) 

ACC, accuracy; BDI, Beck Depression Index; CIDI-AS, Anxiety Screening from the Composite International Diagnostic Interview; DAWBA-GA, Generalized Anxiety 1 

Scale from The Development and Well-Being Assessment Interview; FU2, IMAGEN second follow up assessment acquired at 19 years; IRI, Interpersonal Reactivity 2 

Index; PT, perspective taking; RSQ, Ruminating Scale Questionnaire; RT, reaction time; SA, state anxiety; SD, standard deviation; TA, trait anxiety. #Statistics are 3 

shown as median (quantile interval). *Spearman correlations are used to test the correlations between UrbanSat and behaviors (except for DAWBA-GA) controlling for 4 

confounding covariates. aIn the DAWBA-GA, logistic regression is used to test the correlations between UrbanSat and anxiety, which is shown as P value (OR value). 5 

In CHIMGEN, the significant results (Bonferroni Pc<0.05; uncorrected P<0.05/2/21=1.19×10-3) are in bold and italic. In IMAGEN, the significant results after 6 

Bonferroni Pc<0.05 (uncorrected P<0.05/5=0.01) are in bold and italic.  7 

8 
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Supplementary Table 18. Multiple mediation results of UrbanSat on behavior.  1 

Items 

Perspective taking Depression 

CHIMGEN IMAGEN-FU2 CHIMGEN IMAGEN-FU2 

Effects 95% BCI Effects 95% BCI Effects 95% BCI Effects 95% BCI 

Total effect of UrbanSat on behavior (c path) -0.372 - 0.116 - 0.424 - 0.159 - 

Direct effect of UrbanSat on behavior (c’ path) -0.280 - 0.093 - 0.327 - 0.123 - 

Total indirect effect (ab path) -0.092 -0.132, -0.057 0.023 0.010, 0.032 0.097 0.056, 0.143 0.036 0.012, 0.056 

Individual indirect effect         

GMV and SA         

mPFC GMV -0.012 -0.028, -0.001 0.015 0.001, 0.046 0.022 0.008,0.040 0.019 0.001, 0.066 

cerebellar GMV -0.015 -0.031, -0.004 -0.0001 -0.010, 0.007 0.034 0.019, 0.056 0.002 -0.003, 0.018 

mPFC SA 0.004 -0.001, 0.015 -0.013 -0.014, 0.012 -0.008 -0.021, -0.001 -0.013 -0.056, 0.002 

WNFC       
  

aDMN -0.013 -0.030, -0.005 0.020 0.003, 0.052 0.012 0.004, 0.024 0.010 0.002, 0.056 

CN -0.015 -0.030, -0.006 0.009 0.002, 0.046 0.0024 -0.008, 0.013 0.001 -0.003, 0.026 

mVN -0.002 -0.014, 0.008 -0.005 -0.006, 0.018 0.0103 0.001, 0.024 0.006 -0.004,0.0462 

lVN 0.005 -0.007, 0.019 -0.008 -0.022, 0.053 -0.0111 -0.027, 0.001 -0.008 -0.012, 0.002 

BNFC      
   

aDMN-CN -0.011 -0.025, -0.002 0.016 0.003, 0.046 0.008 -0.004, 0.020 -0.0003 -0.018, 0.002 

aDMN-ECN -0.022 -0.041, -0.009 -0.013 -0.001, 0.052 0.019 0.006, 0.037 0.013 0.003, 0.068 
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aDMN-rFPN -0.020 -0.037, -0.006 0.012 0.004, 0.026 0.010 -0.003, 0.025 0.003 -0.002, 0.026 

rFPN-lFPN 0.008 -0.003, 0.023 -0.011 -0.016, 0.115 -0.001 -0.013, 0.011 0.005 -0.024, 0.006 

aDMN, anterior default mode network; BCI, Bootstrapped confidence interval; BNFC, between-network functional connectivity; CN, cerebellar network; CT, cortical 1 

thickness; GMV, gray matter volume; lVN, lateral visual network; lFPN, left frontoparietal network; mPFC, medial prefrontal cortex; mVN, medial visual network; 2 

rFPN, right frontoparietal network; SA, surface area; WNFC, within-network functional connectivity; The variable with significant indirect effect is in bold and italic.  3 

 4 

 5 

6 
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Supplementary Table 19. MRI parameters of T1 weighted structural MRI for different MR scanners in CHIMGEN. 1 

Scanners Sequences Matrix Slices FOV (mm) ST (mm) Resolution (mm) Gap (mm) TR (ms) TE (ms) TI (ms) FA (º) PAT (AF) 

GE Discovery MR750 BRAVO Sagittal 256×256 188 256×256 1 1.0×1.0×1.0 0 8.16 3.18 450 12 2 

GE Discovery MR750w BRAVO Sagittal 256×256 188 256×256 1 1.0×1.0×1.0 0 6.93 2.53 450 12 2 

GE Signa HDx BRAVO Sagittal 256×256 188 256×256 1 1.0×1.0×1.0 0 8.85 3.49 450 12 2 

GE Signa HDxt BRAVO Sagittal 256×256 188 256×256 1 1.0×1.0×1.0 0 7.79 2.98 450 12 2 

Philips Achieva TFE Sagittal 256×256 188 256×256 1 1.0×1.0×1.0 0 8.16 3.73 1100 12 2 

Philips Ingenia TFE Sagittal 256×256 188 256×256 1 1.0×1.0×1.0 0 7.27 3.33 900 12 2 

Siemens Skyra MPRAGE Sagittal 256×256 192 256×256 1 1.0×1.0×1.0 0 2000 2.98 900 9 2 

Siemens TrioTim MPRAGE Sagittal 256×256 192 256×256 1 1.0×1.0×1.0 0 2000 2.26 900 12 2 

Siemens Verio MPRAGE Sagittal 256×256 192 256×256 1 1.0×1.0×1.0 0 2000 2.34 900 9 2 

AF, acceleration factor; FA, flip angle; FOV, field of view; PAT, parallel acquisition technique; ST, slice thickness; TE, echo time; TI, inversion time; TR, repetition time. 2 

 3 

 4 

 5 

 6 

 7 

 8 
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Supplementary Table 20. MRI parameters of DTI for different MR scanners in CHIMGEN. 1 

Scanners Sequences Matrix* Slices FOV (mm) ST (mm) Gap (mm) Resolution (mm) TR (ms) TE (ms) FA (º) B=0  B=1000 PAT (AF) 

GE Discovery MR750 SE-EPI Axial 128×128 50 256×256 3 0 2.0×2.0×3.0 6000 65 90 5 64 2 

GE Discovery MR750w SE-EPI Axial 128×128 50 256×256 3 0 2.0×2.0×3.0 10000 74 90 5 64 2 

GE Signa HDx SE-EPI Axial 128×128 50 256×256 3 0 2.0×2.0×3.0 12500 72 90 5 64 2 

GE Signa HDxt SE-EPI Axial 128×128 50 256×256 3 0 2.0×2.0×3.0 11500 72 90 5 64 2 

Philips Ingenia SE-EPI Axial 128×128 50 256×256 3 0 2.0×2.0×3.0 7950 111 90 1 32 2 

Philips Achieva SE-EPI Axial 128×128 50 256×256 3 0 2.0×2.0×3.0 6800 91 90 1 32 2 

Siemens Skyra SE-EPI Axial 128×128 50 256×256 3 0 2.0×2.0×3.0 7900 84 90 1 64 2 

Siemens TrioTim SE-EPI Axial 128×128 50 256×256 3 0 2.0×2.0×3.0 6800 91 90 1 64 2 

Siemens Verio SE-EPI Axial 128×128 50 256×256 3 0 2.0×2.0×3.0 6400 98 90 1 64 2 

AF, acceleration factor; FA, flip angle; FOV, field of view; PAT, parallel acquisition technique; ST, slice thickness; TE, echo time; TI, inversion time; TR, repetition 2 

time.*For GE scanner, the default Recon matrix is the twice of scan matrix (256 × 256 Recon matrix) 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 
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Supplementary Table 21. MRI parameters of resting-state functional MRI for different MR scanners in CHIMGEN. 1 

Scanners Sequences Matrix Slices FOV (mm) ST (mm) Gap (mm) Resolution (mm) TR (ms) TE (ms) FA (º) Volumes PAT (AF)  

GE Discovery MR750 GRE-EPI Axial 64×64 36 220×220 3 1 3.4×3.4×4.0 2000 30 90 180 2 

GE Discovery MR750w GRE-EPI Axial 64×64 36 220×220 3 1 3.4×3.4×4.0 2000 30 90 180 2 

GE Signa HDx GRE-EPI Axial 64×64 36 220×220 3 1 3.4×3.4×4.0 2000 30 90 180 2 

GE Signa HDxt GRE-EPI Axial 64×64 36 220×220 3 1 3.4×3.4×4.0 2000 30 90 180 2 

Philips Ingenia GRE-EPI Axial 64×64 36 220×220 3 1 3.4×3.4×4.0 2000 30 90 180 2 

Philips Achieva GRE-EPI Axial 64×64 36 220×220 3 1 3.4×3.4×4.0 2000 30 90 180 2 

Siemens Skyra GRE-EPI Axial 64×64 36 220×220 3 1 3.4×3.4×4.0 2000 30 90 180 2 

Siemens TrioTim GRE-EPI Axial 64×64 36 220×220 3 1 3.4×3.4×4.0 2000 30 90 180 2 

Siemens Verio GRE-EPI Axial 64×64 36 220×220 3 1 3.4×3.4×4.0 2000 30 90 180 2 

AF, acceleration factor; FA, flip angle; FOV, field of view; PAT, parallel acquisition technique; ST, slice thickness; TE, echo time; TI, inversion time; TR, repetition 2 

time. 3 

 4 

 5 

 6 

7 
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Supplementary Table 22. Demographic data of each site in CHIMGEN. 1 

Center N Age# M/F BMI# Education# SES# PCA1# PCA2# PCA3# PCA4# 

TMUGH 463 24.00(3.00)  146/317 20.52(3.17)  17.00(2.00)  0.24(8.01)  0.005(0.008)  0.004(0.016)  0.002(0.011)  0.001(0.016)  

TMUCIH 320 24.00(3.00)  130/190 21.10(3.58)  17.00(2.00)  0.60(7.83)  0.004(0.008)  0.005(0.017)  0.002(0.012)   0.002(0.017)  

TFCH 43 24.00(2.00)  9/34 20.78(2.85)  17.00(2.00)  1.22(9.45)  0.003(0.011)  0.004(0.017)  0.001(0.011)   0.001(0.024)  

CPAPFLUPH 33 23.00(3.00)  19/14 21.51(2.79)  15.00(1.00)  -2.19(4.73)  -3.64×10-4(0.020)  -0.002(0.014)  0.003(0.016)   -0.004(0.015)  

THH 30 24.00(4.00)  13/17 20.90(4.43)  16.50(3.00)  1.74(9.43)  0.003(0.006)  0.004(0.009)  0.003(0.011)  0.002(0.015)  

HMUSH 48 21.00(1.00)  21/27 21.18(2.42)  14.00(0.50)  0.37(7.07)  0.005(0.005)  0.007(0.013)  -3.64×10-4(0.011) 0.001(0.014)  

SMUFH 50 24.00(2.00)  7/43 20.81(2.39)  16.50(1.00)  -0.79(8.53)  0.004(0.005)  0.010(0.009)  1.53×10-4(0.011) 0.001(0.015)  

DMUFAH 35 24.00(2.00)  12/23 20.76(3.51)  17.00(1.00)  -0.19(7.28)  0.004(0.006)  0.006(0.014)  0.001(0.010)  -0.001(0.017)  

NMUDTH 61 22.00(2.00)  19/42 20.31(2.68)  16.00(2.00)  4.45(8.69)  -0.002(0.012)  -0.003(0.022)  0.004(0.019)  -1.79×10-4(0.015) 

XMUAH 122 24.00(3.00)  40/82 20.75(2.55)  17.00(2.00)  -0.25(6.45)  0.003(0.011)  0.002(0.017)  1.53×10-4(0.014)  -2.41×10-4(0.016)  

ZUSAH 35 23.00(2.00)  12/23 20.40(1.44)  17.00(1.00)  -0.27(7.07)  -0.008(0.009)  0.002(0.009)  0.002(0.016)   -0.001(0.013)  

WMUFAH 33 23.00(3.00)  13/20 20.03(3.59)  16.00(2.00)  -0.81(6.05)  -0.010(0.007)  -0.002(0.012)  0.001(0.016)   0.005(0.025)  

WMUSAH 27 25.00(3.50)  9/18 20.52(2.72)  17.00(2.00)  -4.36(4.02)  -0.010(0.011)  -1.84×10-4(0.005) 0.002(0.013)   0.004(0.024)  

AMUFAH 44 23.00(3.00)  12/32 20.20(2.57)  16.00(2.50)  -1.85(6.33)  0.001(0.009)  0.002(0.017)  0.001(0.016)  0.001(0.020)  

USTC 32 21.00(3.50)  21/11 21.45(2.63)  15.00(2.00)  4.34(10.00)  -9.41×10-5(0.011)  0.001(0.015)  0.002(0.013)  0.002(0.017)  

SUQH 42 26.00(2.00)  15/27 21.70(3.77)  18.00(1.00)  1.95(8.47)  0.005(0.008)   0.007(0.010)  -0.001(0.013)  -0.002(0.014)  

YHH 72 20.00(1.00)  29/43 20.95(3.36)  14.00(0.50)  0.87(8.52)  0.006(0.006)   0.005(0.019)  0.001(0.010)  -0.001(0.018)  

HPPH 35 24.00(2.00)  10/25 20.31(3.52)  17.00(2.00)  -2.16(4.59)  0.003(0.004)   0.008(0.010)  0.001(0.010)  -4.83×10-4(0.016)  

ZUFAH 241 24.00(4.00)  98/143 21.09(2.66)  17.00(2.00)  -1.30(7.62)  0.004(0.007)   0.005(0.012)  1.31×10-4 (0.012)  -0.001(0.016)  

HUSTTH 68 24.00(2.50)  16/52 20.46(2.95)  17.00(2.00)  -0.02(8.20)  -0.010(0.016)   3.15×10-4(0.010)  0.002(0.009)  -0.001(0.021)  

CSUXH 45 24.00(3.00)  12/33 20.31(2.90)  18.00(2.00)  0.38(8.60)  -0.019(0.009)   -0.003(0.005)  0.006(0.009)   0.001(0.014)  

GUCMFAH 37 24.00(3.00)  13/24 19.83(2.79)  17.00(3.00)  -1.70(4.63)  -0.024(0.018)   -0.008(0.010)  0.005(0.008)   -0.002(0.023)  

HGH 29 23.00(4.00)  12/17 20.61(2.99)  16.00(2.00)  -2.03(7.59)  -0.026(0.026)   -0.011(0.013)  0.004(0.007)   -0.004(0.019)  

FMMUTH 30 21.00(1.00)  25/5 21.77(3.01)  15.00(0.00)  3.19(6.47)  0.003(0.007)   0.007(0.014)  0.002(0.008)   0.003(0.015)  
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LUSH 33 25.00(4.00)  8/25 20.57(2.90)  17.00(4.00)  -1.11(9.03)  0.004(0.006)   0.003(0.014)  3.87×10-4(0.014)  -0.001(0.021)  

SUWCH 8 25.50(4.00)  4/4 20.14(1.14)  16.00(3.50)  -2.86(7.00)  -0.002(0.012)   -0.011(0.019)  0.004(0.027)  -0.001(0.009)  

ZUPH 48 25.00(2.50)  12/36 20.51(3.96)  17.50(1.50)  -2.28(6.25)  0.004(0.006)   0.006(0.015)  -0.001(0.012)  -2.71×10-4(0.015)  

NMUJH 112 23.00(2.00)  32/80 20.86(3.03)  17.00(2.00)  0.36(7.37)  -0.001(0.010)   0.001(0.014)   0.002(0.016)  1.81×10-4(0.017)  

Total 2176 24.00(3.00) 769/1407 20.76(3.01) 17.00(3.00) -0.22(7.86) 0.003(0.011) 0.003(0.016) 0.001(0.012) 3.16×10-4(0.017)  

BMI, body mass index; SES, socioeconomic status; PCA, principle component analysis; TMUGH, Tianjin Medical University General Hospital; TMUCIH, Tianjin 1 

Medical University Cancer Institute and Hospital; TFCH, Tianjin First Center Hospital; CPAPFLUPH, Pingjin Hospital, Logistics University of Chinese People's 2 

Armed Police Forces; THH, Tianjin Huanhu Hospital; HMUSH, The Second Hospital of Hebei Medical University; SMUFH, The First Hospital of Shanxi Medical 3 

University; DMUFAH, The First Affiliated Hospital of Dalian Medical University; NMUDTH, Drum Tower Hospital, Medical School of Nanjing University; XMUAH, 4 

The Affiliated Hospital of Xuzhou Medical University; ZUSAH, The Second Affiliated Hospital of Zhejiang University; WMUFAH, The First Affiliated Hospital of 5 

Wenzhou Medical University; WMUSAH, The Second Affiliated Hospital of Wenzhou Medical University; AMUFAH, The First Affiliated Hospital of Anhui Medical 6 

University; USTC, University of Science and Technology of China; SUQH, Qilu Hospital of Shandong University; YYH, Yantai Yuhuangding Hospital; ZUPH/HPPH, 7 

Zhengzhou University People's Hospital and Henan Provincial People's Hospital; ZUFAH, The First Affiliated Hospital of Zhengzhou University; HUSTTH, Tongji 8 

Hospital, Tongji Medical College, Huazhong University of Science and Technology; CSUXH, Xiangya Hospital, Central South University; GUCMFAH, The First 9 

Affiliated Hospital of Guangzhou University of Chinese Medicine; HGH, Hainan General Hospital; FMMUTH, Tangdu Hospital, the Military Medical University of 10 

PLA Airforce (Fourth Military Medical University; LUSH, Lanzhou University Second Hospital; ZUPH, Zhengzhou University People's Hospital;NMUJH, Jinling 11 

Hospital, Medical School of Nanjing University. #Statistics are shown as median (quantile interval) since all variables are deviated from normal distribution in each 12 

center. 13 

 14 

 15 

 16 

 17 

 18 
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 1 

Supplementary Table 23. Demographic data of each site in IMAGEN.  2 

Center N Age# M/F BMI# SES# GEN(Y/N) PCA1# PCA2# PCA3# PCA4# 

Nottingham 87 18.63(0.49) 41/46 20.20(3.86) -0.06(3.22) 35/52 0.005(0.001) 0.007(0.005)  -0.005(0.008)  -0.017(0.006)  

Dresden 106 18.59(0.58) 51/55 19.88(2.92) 0.95(2.78) 46/60 0.004(0.001) 0.003(0.004)  -0.007(0.01)  0.024(0.01)  

Berlin 56 18.61(1.08) 18/38 19.72(4.13) 0.13(2.67) 26/26 0.005(0.002) 0.003(0.005)  -0.009(0.02)  0.020(0.01)  

London 93 18.83(0.63) 41/52 21.09(4.31) 0.11(2.51) 39/54 0.005(0.003) 0.006(0.006)  -0.003(0.009)  -0.017(0.01)  

Mannheim 52 18.90(1.16) 24/28 20.44(4.03) -0.54(2.33) 25/27 0.004(0.002) 0.003(0.004)  0.001(0.02)  0.012(0.02)  

Dublin 21 19.37(0.76) 12/9 21.05(3.28) 1.52(3.30) 12/13 0.006(0.002) 0.006(0.004)  -0.006(0.007)  -0.041(0.007)  

Total 415 18.71(0.77) 187/228 20.26(3.96) 0.11(2.78) 183/232 0.005(0.002) 0.004(0.006) -0.004(0.01) 0.002(0.04) 

BMI, body mass index; SES, socioeconomic status; PCA, principle component analysis; FU2, IMAGEN follow up 2 assessment acquired at 19 years; GEN, Genetic 3 

Screening and Family History of Psychiatric Disorders Interview; #Statistics are shown as median (quantile interval) in each center.  4 
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Supplementary Table 24. Detailed information of band 1-7 from Landsat 7.  1 

Name Wavelength Description (30m / pixel) 

Band 1 0.45-0.52 um Band 1 (blue) surface reflectance 

Band 2 0.52-0.60 um Band 2 (green) surface reflectance 

Band 3 0.63-0.69 um Band 3 (red) surface reflectance 

Band 4 0.77-0.90 um Band 4 (near infrared) surface reflectance 

Band 5 1.55-1.75 um Band 5 (shortwave infrared 1) surface reflectance 

Band 6 10.40-12.50 um Band 6 brightness temperature 

Band 7 2.08-2.35 um Band 7 (shortwave infrared 2) surface reflectance 

2 

3 
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Extended Data Figure Legends 1 

Extended Data Fig.1. A flow diagram of sample selection in CHIMGEN (a) and 2 

IMAGEN (b).  3 

BDI, Beck depression inventory; BTG, ball tossing games task; BL, IMAGEN baseline 4 

assessment acquired at 14 years; CIDI-AS, Anxiety Screening from the Composite 5 

International Diagnostic Interview; CVLT-II, the second edition of California verbal 6 

learning test; DAWBA-GA, Generalized Anxiety Scale from The Development and 7 

Well-Being Assessment Interview; FC, functional connectivity; FU2, IMAGEN 8 

second follow up assessment acquired at 19 years; FU2-BL, IMAGEN FU2-BL 9 

measures brain changes rate between BL of 14 years and FU2 of 19 years; GNG, 10 

go/no-go task; IRI, Interpersonal Reactivity Index; RSQ, Ruminating Scale 11 

Questionnaire; SA, state anxiety; SBM, surface-based morphometry; SDMT, symbol 12 

digit modalities test; TA, trait anxiety; TBSS, tract-based spatial statistics; VBM, 13 

voxel-based morphometry.  14 

 15 

Extended Data Fig.2. Schematic summary of multiple imputation and 16 

confirmatory factor analysis.  17 

a. A flow diagram for multiple imputation and confirmatory factor analysis. b-c. 18 

Sensitivity analysis results in voxel-wise correlations of ten imputed UrbanSat (b) and 19 

combined UrbanSat (c) with brain GMV in CHIMGEN (FWE Pc<0.05). Each imputed 20 

UrbanSat from MICE imputation before 18 years show a significant negative 21 

correlation with left mPFC volume and a significant positive correlation with cerebellar 22 

volume adjusting confounding covariates (FWE Pc<0.05) (b), similar to the results 23 

derived from combined UrbanSat score following Rubin’s rule (c). d. The estimated 24 
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fractions of missing information (FMI) of UrbanSat were low for the GMVs of 1 

left-mPFC-ROI (FMI=1.01%) and cerebellum-ROI (FMI=1.19%). UrbanSat was still 2 

correlated with mPFC-GMV (P<0.001) and cerebellum-GMV (P<0.001) after pooling 3 

using mice R package in CHIMGEN. e. Non-imputed mean UrbanSat before 18 years 4 

still show a significant negative correlation with mPFC-GMV and a significant positive 5 

correlation with cerebellar-GMV adjusting confounding covariates (FWE Pc<0.05) 6 

(n=1460). CFA, confirmatory factor analysis; FMI, fractions of missing information; 7 

GMV, gray matter volume; L, left; MICE, multivariate imputation by chained 8 

equations; mPFC, medial prefrontal cortex; R, right. S, satellite; Y, years.   9 

Extended Data Fig.3. Histograms of UrbanSat in each center of CHIMGEN (a) 10 

and IMAGEN (b).  11 

TMUGH, Tianjin Medical University General Hospital; TMUCIH, Tianjin Medical 12 

University Cancer Institute and Hospital; TFCH, Tianjin First Center Hospital; 13 

CPAPFLUPH, Pingjin Hospital, Logistics University of Chinese People's Armed 14 

Police Forces; THH, Tianjin Huanhu Hospital; HMUSH, The Second Hospital of 15 

Hebei Medical University; SMUFH, The First Hospital of Shanxi Medical University; 16 

DMUFAH, The First Affiliated Hospital of Dalian Medical University; NMUDTH, 17 

Drum Tower Hospital, Medical School of Nanjing University; XMUAH, The 18 

Affiliated Hospital of Xuzhou Medical University; ZUSAH, The Second Affiliated 19 

Hospital of Zhejiang University; WMUFAH, The First Affiliated Hospital of Wenzhou 20 

Medical University; WMUSAH, The Second Affiliated Hospital of Wenzhou Medical 21 

University; AMUFAH, The First Affiliated Hospital of Anhui Medical University; 22 

USTC, University of Science and Technology of China; SUQH, Qilu Hospital of 23 

Shandong University; YYH, Yantai Yuhuangding Hospital; ZUPH/HPPH, Zhengzhou 24 
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University People's Hospital and Henan Provincial People's Hospital; ZUFAH, The 1 

First Affiliated Hospital of Zhengzhou University; HUSTTH, Tongji Hospital, Tongji 2 

Medical College, Huazhong University of Science and Technology; CSUXH, Xiangya 3 

Hospital, Central South University; GUCMFAH, The First Affiliated Hospital of 4 

Guangzhou University of Chinese Medicine; HGH, Hainan General Hospital; 5 

FMMUTH, Tangdu Hospital, the Military Medical University of PLA Airforce (Fourth 6 

Military Medical University); LUSH, Lanzhou University Second Hospital; SUWCH, 7 

West China Hospital of Sichuan University; ZUPH, Zhengzhou University People's 8 

Hospital; NMUJH, Jinling Hospital, Medical School of Nanjing University. 9 

Extended Data Fig.4. Correlations of UrbanSat with brain GMV, SA and CT in 10 

CHIMGEN and IMAGEN.  11 

a. Uncorrected correlation statistical maps of UrbanSat with brain GMV in CHIMGEN 12 

under non-parametric permutation testing (n=2176). b. Correlations of UrbanSat with 13 

brain GMV in CHIMGEN under Pc<0.05 in TFCE-FWE using non-parametric 14 

permutation testing (n=2176). c-d. Uncorrected correlation statistical maps of UrbanSat 15 

with brain GMV in CHIMGEN (c) and IMAGEN-FU2 (d) under parametric testing. e. 16 

The overlap results (yellow) in the voxel-wise correlation of mean UrbanSat before 18 17 

years with brain GMV in CHIMGEN (red) and IMAGEN-FU2 (green) after controlling 18 

confounders (FWE Pc<0.05). f-g. Uncorrected vertex-wise correlation maps of 19 

UrbanSat with surface area (f) and cortical thickness (g) in CHIMGEN (n=2164). h-i. 20 

The mPFC-ROI projected onto the volumetric map (h) and fsaverage surface in 21 

Freesurfer (i). 22 

Extended Data Fig.5. Voxel-wise correlations of individual satellite measures with 23 

brain GMV in CHIMGEN (n=2176) (a-e) and IMAGEN (n=415) (f-j).  24 
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a-e. In CHIMGEN, there are significant negative correlations of mean night-time light 1 

(a) and population density (e) with mPFC GMV and positive correlations with 2 

cerebellar GMV after controlling confounders (FWE, Pc<0.05); There are significant 3 

negative correlations of mean built-up with mPFC GMV (b) and of mean cropland with 4 

cerebellar GMV (c); There are no correlations of mean NDVI with brain GMV (d). f-j. 5 

In IMAGEN, there are significant negative correlations of mean night-time light (f), 6 

mean built-up (g) and population density (j) with mPFC GMV and positive correlations 7 

with cerebellar GMV after controlling confounders (FWE, Pc<0.05); There are no 8 

correlations of mean cropland (h) and NDVI (i) with brain GMV. GMV, gray matter 9 

volume; L, left; mPFC, medial prefrontal cortex; NDVI, normalized difference 10 

vegetation index; R, right. 11 

Extended Data Fig.6. Forest plot of meta-analysis in CHIMGEN and 12 

IMAGEN-FU2.  13 

Effect size of correlations of UrbanSat with mPFC GMV (a), cerebellar GMV (b), 14 

mPFC CT (c), mPFC SA (d), WNFCs in aDMN (e), CN (f), mVN (g) and lVN (h), 15 

BNFCs of aDMN-CN (i), aDMN-ECN (j), aDMN-rFPN (k) and rFPN-lFPN (l) for 16 

meta-analysis in CHIMGEN and IMAGEN-FU2. We exclude SUWCH center from 17 

CHIMGEN for all meta-analysis and Dublin center from IMAGEN for the 18 

meta-analysis of brain functional features, because there are only 8 and 10 participants 19 

from each site, which more than the numbers of covariates while performing Spearman 20 

correlation analysis.   21 

 22 

Extended Data Fig.7. Susceptibility analysis of individual satellite measures with 23 

brain (a-d) and behaviors (e-h) using distributed lag models in CHIMGEN.  24 
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a. There are significant associations of lifetime night-time light with the mPFC-ROI 1 

GMV (ages of 4-14 years) and SA (5-12 years), WNFC in aDMN (3-11 years) during 2 

childhood and adolescence, with cerebellum-ROI GMV (3-7 years), WNFCs in CN 3 

(0-6 years), mVN (0-6 years), lVN (3-10 years), BNFCs in aDMN-CN (4-7 years), 4 

aDMN-ECN (4-6 years), aDMN-rFPN (4-6 years) and rFPN-lFPN (4-6 years) during 5 

childhood in CHIMGEN. b. There are significant associations of lifetime built-up% 6 

with the mPFC-ROI GMV (5-16 years) and WNFC in aDMN (4-14 years) during 7 

childhood and adolescence, with WNFCs in mVN and lVN (14-20 years) during 8 

adolescence, with mPFC-ROI SA (5-7 years), cerebellum-ROI GMV (1-10 years), 9 

WNFC in CN (1-10 years), BNFCs in aDMN-CN (4-10 years), aDMN-ECN (5-7 10 

years), aDMN-rFPN (4-10 years) and rFPN-lFPN (4-6 years) during childhood in 11 

CHIMGEN. c. There are significant associations of lifetime cropland% with the 12 

mPFC-ROI GMV (5-15 years) during childhood and adolescence, with mPFC-ROI SA 13 

(5-6 years), cerebellum-ROI GMV (4-6 years), WNFCs in aDMN (4-6 years), CN (4-6 14 

years) and lVN (4-10 years), BNFCs in aDMN-CN (0-9 years), aDMN-ECN (2-7 15 

years), aDMN-rFPN (4-10 years) and rFPN-lFPN (4-6 years) during childhood in 16 

CHIMGEN. d. We find significant associations of lifetime NDVI with the mPFC-ROI 17 

GMV (5-15 years) and BNFC in rFPN-lFPN (6-17 years) during childhood and 18 

adolescence, with WNFCs in aDMN (5 years old) and CN (5 years old), BNFCs in 19 

aDMN-CN (4-11 years) and aDMN-rFPN (4-10 years) during childhood in CHIMGEN. 20 

There are significant correlations of lifetime night-time light (e), built-up% (f), 21 

cropland % (g) and NDVI (h) with reaction time for perspective taking performance 22 

during adolescence (ages of 5-16 years for night-time light, 4-17 years for built-up %, 23 

5-19 years for cropland % and 4-17 years for NDVI) in CHIMGEN. Significant 24 

correlations of lifetime night-time light (e), built-up % (f), cropland % (g) and NDVI (h) 25 



                  

 83 / 96 

 

with increasing depression measured by BDI are also observed during childhood in 1 

CHIMGEN (0-6 years for night-time light, 2-9 years for built-up %, 0-9 years for 2 

cropland % and 3-11 years for NDVI). The y-axis represents the changes of brain 3 

behaviors associated with an increase of interquartile range of individual satellite 4 

measures; the x-axis is individual satellite measure lag in ages. Gray areas indicate 95% 5 

CIs. A susceptibility window is identified for the ages where the estimated pointwise 6 

95% CI (shaded area) does not include zero. The blue solid lines indicate negative 7 

correlations and red ones indicated positive correlations. aDMN, anterior default mode 8 

network; BDI, Beck depression index; BNFC, between-network functional 9 

connectivity; CN, cerebellar network; CT, cortical thickness; GMV, gray matter 10 

volume; lVN, lateral visual network; mPFC, medial prefrontal cortex; mVN, medial 11 

visual network; RTpt, reaction time for perspective taking; SA, surface area; WNFC, 12 

within-network functional connectivity.  13 

Extended Data Fig.8. Seventeen RSNs identified by independent component 14 

analysis in CHIMGEN.  15 

aDMN, anterior default mode network; AN, auditory network; aSN, anterior cingulate 16 

cortex part of salience network; CN, cerebellar network; dAN, dorsal attentional 17 

network; dSMN, dosal sensorimotor network; ECN, executive control network; inSN, 18 

insular part of salience network; lFPN, left frontal parietal network; LN, language 19 

network; lVN, lateral visual network; mVN, medial visual network; pDMN, posterior 20 

default mode network; PN, precuneus network; rFPN, right frontal parietal network; 21 

RSNs, resting-state networks; vAN, ventral attentional network; vSMN, ventral 22 

sensorimotor network. 23 
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Extended Data Fig.9. Voxel-wise correlations of individual satellite measures 1 

with WNFCs and BNFCs in CHIMGEN (n=2156) and IMAGEN (n=315).  2 

a-f. In CHIMGEN, there are negative correlations (blue) of mean UrbanSat (a) and 3 

mean night-time light before 18 years (b) with WNFC in the mPFC of the aDMN, 4 

positive correlations (red) with WNFCs in the left CV of the CN and left LG of the 5 

mVN and lVN (FWE Pc<0.05). c. There are negative correlations (blue) of mean 6 

built-up% before 18 years with WNFC in the mPFC of the aDMN and positive 7 

correlations (red) with WNFC in the left LG of the lVN (FWE Pc<0.05). d. There are 8 

negative correlations (blue) of mean cropland% before 18 years with WNFCs in the CV 9 

of the CN and the left LG of the lVN (FWE Pc<0.05). e. There is no correlation of mean 10 

NDVI with WNFC of any RSN surviving the multiple correction. f. There are negative 11 

correlations (blue) of mean population density from GHSL before 18 years with WNFC 12 

in the mPFC of the aDMN, positive correlations (red) with WNFCs in the left CV of the 13 

CN and the left LG of the mVN (FWE Pc<0.05). g-l. In IMAGEN, there are negative 14 

correlations (blue) of mean UrbanSat (g), night-time light (h), built-up% (i) before 18 15 

years with WNFC in the mPFC of the aDMN, positive correlations (red) with WNFC in 16 

the CV of the CN (FWE Pc<0.05). j. There are negative correlations (blue) of mean 17 

cropland before 18 years with WNFC in the CV of the CN (FWE Pc<0.05). k. There is 18 

no correlation of mean NDVI with WNFC of any RSN surviving the multiple 19 

correction. l. There are negative correlations (blue) of mean population density from 20 

GHSL before 18 years with WNFC in the mPFC of the aDMN, and positive correlation 21 

(red) with WNFC in the CV of the CN (FWE, Pc<0.05). m-p. The mean built-up% (m) 22 

(N=32), cropland% (n) (N= 41), NDVI (o) (N=1) and population density (p) (N=52) 23 

show correlations with BNFCs in CHIMGEN. The red line indicates positive 24 

correlations of UrbanSat with BNFCs and blue line indicated negative correlations. N 25 
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indicates the numbers of significant correlations of BNFCs. aDMN, anterior default 1 

mode network; CV, cerebellar vermis; CN, cerebellar network; GHSL, global human 2 

settlement layers; LG, lingual gyrus; lVN, lateral visual network; mPFC, medial 3 

prefrontal cortex; mVN, medial visual network; NDVI, normalized difference 4 

vegetation index; WNFC, within-network functional connectivity. 5 

Extended Data Fig.10. The schematic summary of ball tossing game task design, 6 

which measures perspective taking and agency performance.  7 

ACT, active agency; 1PP, first-person perspective; 3PP, third-person perspective; PAS, 8 

passive agency.  9 

10 



                  

 86 / 96 

 

 References 1 

1. Xu, Q., et al. CHIMGEN: a Chinese imaging genetics cohort to enhance 2 

cross-ethnic and cross-geographic brain research. Mol Psychiatry, 1-13 (2019). 3 

2. Schumann, G., et al. The IMAGEN study: reinforcement-related 4 

behaviour in normal brain function and psychopathology. Mol Psychiatry 15, 5 

1128-1139 (2010). 6 

3. Melchiorri, M., et al. Unveiling 25 Years of Planetary Urbanization with 7 

Remote Sensing: Perspectives from the Global Human Settlement Layer. 8 

Remote Sens 10, 768 (2018). 9 

4. Zhou, Y., et al. A global map of urban extent from nightlights. Environ Res 10 

Lett 10, 054011 (2015). 11 

5. Esau, I., et al. Trends in normalized difference vegetation index (NDVI) 12 

associated with urban development in northern West Siberia. Atmospheric 13 

Chem Phys 16, 9563-9577 (2016). 14 

6. Zha, Y., Gao, J. & Ni, S.J. Use of normalized difference built-up index in 15 

automatically mapping urban areas from TM imagery. Int J Remote Sens 4, 16 

583-594 (2003). 17 

7. McFeeters, S.K. The use of the Normalized Difference Water Index 18 

(NDWI) in the delineation of open water features. Int J Remote Sens 17, 19 

1425-1432 (1996). 20 

8. Foley, J.A., et al. Global consequences of land use. Science 309, 570-574 21 

(2005). 22 

9. Stathakis, D., Tselios, V., Faraslis, I.J. Urbanization in European regions 23 

based on night lights. Remote Sens Appl 2, 26-34 (2015). 24 

10. Small, C., Pozzi, F. & Elvidge, C.D Spatial analysis of global urban extent 25 

from DMSP-OLS night lights. Remote Sens Environ 96, 277-291 (2005). 26 

11. Liu, Y., et al. Correlations between urbanization and vegetation 27 

degradation across the world’s metropolises using DMSP/OLS nighttime light 28 

data. Remote Sens 7, 2067-2088 (2015). 29 

12. Doll, C.N., Muller, J.P. & Morley, J.G. Mapping regional economic 30 

activity from night-time light satellite imagery. Ecol Econ 57, 75-92 (2006). 31 

13. Elvidge, C.D., et al. National trends in satellite-observed 32 

lighting:1992-2009. (2011). 33 

14. Henderson, J.V., Storeygard, A. & Weil, D.N. Measuring economic 34 

growth from outer space. Work Paper 102, 994-1028 (2012). 35 

15. Ghosh, T., et al. Shedding light on the global distribution of economic 36 

activity. J Open Geogr 3(2010). 37 

16. Amaral, S., Monteiro, A.M., Câmara, G. & Quintanilha, J.J. DMSP/OLS 38 

night‐time light imagery for urban population estimates in the Brazilian 39 

Amazon. Int J Remote Sens 27, 855-870 (2006). 40 

17. Zhuo, L., et al. Modeling population density of China in 1998 based on 41 

DMSP/OLS nighttime light image. Int J Remote Sens 60, 266-276 (2005). 42 

18. Elvidge, C.D., et al. Radiance calibration of DMSP-OLS low-light 43 

imaging data of human settlements. Remote Sens Environ 68, 77-88 (1999). 44 

19. Imhoff, M.L., et al. Using nighttime DMSP/OLS images of city lights to 45 

estimate the impact of urban land use on soil resources in the United States. 46 

Remote Sens Environ 59, 105-117 (1997). 47 



                  

 87 / 96 

 

20. Liu, Z., et al. Extracting the dynamics of urban expansion in China using 1 

DMSP-OLS nighttime light data from 1992 to 2008. Landsc Urban Plan 106, 2 

62-72 (2012). 3 

21. Zhang, Q. & Seto, K.C. Mapping urbanization dynamics at regional and 4 

global scales using multi-temporal DMSP/OLS nighttime light data. Remote 5 

Sens Environ 115, 2320-2329 (2011). 6 

22. Ma, T., Zhou, C., Pei, T., Haynie, S. & Fan, J.J. Quantitative estimation of 7 

urbanization dynamics using time series of DMSP/OLS nighttime light data: A 8 

comparative case study from China's cities. Remote Sens Environ 124, 99-107 9 

(2012). 10 

23. Zhou, Y., et al. A cluster-based method to map urban area from 11 

DMSP/OLS nightlights. Remote Sens Environ 147, 173-185 (2014). 12 

24. Paksarian, D., et al. Association of outdoor artificial light at night with 13 

mental disorders and sleep patterns among US adolescents. JAMA Psychiatry 14 

(2020). 15 

25. Carlson, T.N. & Ripley, D.A. On the relation between NDVI, fractional 16 

vegetation cover, and leaf area index. Remote Sens Environ 62, 241-252 (1997). 17 

26. Eastman, J.R., Sangermano, F., Machado, E.A., Rogan, J. & Anyamba, 18 

A.J. Global trends in seasonality of normalized difference vegetation index 19 

(NDVI), 1982–2011. Remote Sens 5, 4799-4818 (2013). 20 

27. Jiang, Z., et al. Analysis of NDVI and scaled difference vegetation index 21 

retrievals of vegetation fraction. Remote Sens Environ 101, 366-378 (2006). 22 

28. Wang, J., Rich, P., Price, K. & Kettle, W.J. Relations between NDVI and 23 

tree productivity in the central Great Plains. Int J Remote Sens 25, 3127-3138 24 

(2004). 25 

29. Pettorelli, N., et al. Using the satellite-derived NDVI to assess ecological 26 

responses to environmental change. Trends Ecol Evol 20, 503-510 (2005). 27 

30. Helbich, M.J. Spatiotemporal contextual uncertainties in green space 28 

exposure measures: exploring a time series of the normalized difference 29 

vegetation indices. Int J Environ Res Public Health 16, 852 (2019). 30 

31. Li, W., Saphores, J., Gillespie, T.W. A comparison of the economic 31 

benefits of urban green spaces estimated with NDVI and with high-resolution 32 

land cover data. Landsc Urban Plan 133, 105-117 (2015). 33 

32. Liao, J., et al. Residential exposure to green space and early childhood 34 

neurodevelopment. Environ Int 128, 70-76 (2019). 35 

33. Sathyakumar, V., Ramsankaran, R., Bardhan, R. Linking remotely sensed 36 

Urban Green Space (UGS) distribution patterns and Socio-Economic Status 37 

(SES)-A multi-scale probabilistic analysis based in Mumbai, India. GIsci 38 

Remote Sens 56, 645-669 (2019). 39 

34. Orban, E., Sutcliffe, R., Dragano, N., Jöckel, K.H. & Moebus, S.J. 40 

Residential surrounding greenness, self-rated health and interrelations with 41 

aspects of neighborhood environment and social relations. J Urban Health 94, 42 

158-169 (2017). 43 

35. Dadvand, P., et al. Green spaces and cognitive development in primary 44 

schoolchildren. Proc Natl Acad Sci U S A 112, 7937-7942 (2015). 45 

36. Younan, D., et al. Environmental determinants of aggression in 46 

adolescents: role of urban neighborhood greenspace. J Am Acad Child Adolesc 47 

Psychiatry 55, 591-601 (2016). 48 



                  

 88 / 96 

 

37. Engemann, K., et al. Residential green space in childhood is associated 1 

with lower risk of psychiatric disorders from adolescence into adulthood. Proc 2 

Natl Acad Sci U S A 116, 5188-5193 (2019). 3 

38. Beyer, K.M., et al. Exposure to neighborhood green space and mental 4 

health: evidence from the survey of the health of Wisconsin. Int J Environ Res 5 

Public Health 11, 3453-3472 (2014). 6 

39. McEachan, R., et al. The association between green space and depressive 7 

symptoms in pregnant women: moderating roles of socioeconomic status and 8 

physical activity. J Epidemiol Community Health 70, 253-259 (2016). 9 

40. Pun, V.C., Manjourides, J. & Suh, H.H. Association of neighborhood 10 

greenness with self-perceived stress, depression and anxiety symptoms in older 11 

US adults. Environ Health 17, 1-11 (2018). 12 

41. Sarkar, C., Webster, C. & Gallacher, J.J. Residential greenness and 13 

prevalence of major depressive disorders: a cross-sectional, observational, 14 

associational study of 94 879 adult UK Biobank participants. Lancet Planet 15 

Health 2, e162-e173 (2018). 16 

42. Jiang, Y., Fu, P. & Weng, Q.J. Assessing the impacts of 17 

urbanization-associated land use/cover change on land surface temperature and 18 

surface moisture: a case study in the Midwestern United States. Remote Sens 7, 19 

4880-4898 (2015). 20 

43. Running, S.W. Climate change. Ecosystem disturbance, carbon, and 21 

climate. Science 321, 652-653 (2008). 22 

44. Gong, P., et al. Finer resolution observation and monitoring of global land 23 

cover: first mapping results with Landsat TM and ETM+ data. Int J Remote 24 

Sens 34, 2607-2654 (2013). 25 

45. Liu, X., et al. Identifying patterns and hotspots of global land cover 26 

transitions using the ESA CCI Land Cover dataset. Remote Sens Lett 9, 972-981 27 

(2018). 28 

46. Purcell, S., et al. PLINK: a tool set for whole-genome association and 29 

population-based linkage analyses. Am J Hum Genet 81, 559-575 (2007). 30 

47. Keith B.B., et al. Structural brain correlates of adolescent resilience. J 31 

Child Psychol Psychiatry 57, 1287-1296 (2016). 32 

48. Rajapakse, J.C., Giedd, J.N. & Rapoport, J.L. Statistical approach to 33 

segmentation of single-channel cerebral MR images. IEEE Trans Med Imaging 34 

16, 176-186 (1997). 35 

49. Tohka, J., Zijdenbos, A. & Evans, A. Fast and robust parameter estimation 36 

for statistical partial volume models in brain MRI. Neuroimage 23, 84-97 37 

(2004). 38 

50. Van Essen, D.C., Donahue, C.J. & Glasser, M.F. Development and 39 

evolution of cerebral and cerebellar cortex. Brain Behav Evol 91, 158-169 40 

(2018). 41 

51. Smith, S.M., et al. Advances in functional and structural MR image 42 

analysis and implementation as FSL. Neuroimage 23 Suppl 1, S208-219 43 

(2004). 44 

52. Smith, S.M., et al. Tract-based spatial statistics: voxelwise analysis of 45 

multi-subject diffusion data. Neuroimage 31, 1487-1505 (2006). 46 

53. Yan, C. & Zang, Y. DPARSF: a MATLAB toolbox for" pipeline" data 47 

analysis of resting-state fMRI. Front Syst Neurosci 4, 13 (2010). 48 



                  

 89 / 96 

 

54. Calhoun, V., Adali, T., Pearlson, G. & Pekar, J. A method for making 1 

group inferences from functional MRI data using independent component 2 

analysis. Hum Brain Mapp 14, 140-151 (2001). 3 

55. Li, Y.O., Adali, T. & Calhoun, V.D. Estimating the number of independent 4 

components for functional magnetic resonance imaging data. Hum Brain Mapp 5 

28, 1251-1266 (2007). 6 

56. Mantini, D., Perrucci, M.G., Del Gratta, C., Romani, G.L. & Corbetta, M. 7 

Electrophysiological signatures of resting state networks in the human brain. 8 

Proc Natl Acad Sci U S A 104, 13170-13175 (2007). 9 

57. Yeo, B.T., et al. The organization of the human cerebral cortex estimated 10 

by intrinsic functional connectivity. J. Neurophysiol 106, 1125-1165 (2011). 11 

58. Robert G.H., et al. Association of Gray Matter and Personality 12 

Development With Increased Drunkenness Frequency During Adolescence. 13 

JAMA Psychiatry 77, 409–419 (2020). 14 

59. Ashburner, J. & Ridgway, G.R. Symmetric diffeomorphic modeling of 15 

longitudinal structural MRI. Front Neurosci 6, 197 (2013). 16 

60. Delis, D.C., Kramer, J.H., Kaplan, E., Ober, B.A. California verbal 17 

learning test-Second Edition, Adult Version. (2000). 18 

61. Owen, A.M., McMillan, K.M., Laird, A.R. & Bullmore, E.J. N‐back 19 

working memory paradigm: A meta‐analysis of normative functional 20 

neuroimaging studies. Hum Brain Mapp 25, 46-59 (2005). 21 

62. Smith, A. Symbol digit modalities test (Western Psychological Services 22 

Los Angeles, 1973). 23 

63. David, N., et al. Neural representations of self versus other: visual-spatial 24 

perspective taking and agency in a virtual ball-tossing game. J Cogn Neurosci 25 

18, 898-910 (2006). 26 

64. Pulos, S., Elison, J., Lennon, R.J. The hierarchical structure of the 27 

Interpersonal Reactivity Index. Soc Behav Pers 32, 355-360 (2004). 28 

65. Morrow, J. & Nolen-Hoeksema, S. Effects of responses to depression on 29 

the remediation of depressive affect. J Pers Soc Psychol 58, 519 (1990). 30 

66. Kuehner, C. & Weber, I. Responses to depression in unipolar depressed 31 

patients: An investigation of Nolen-Hoeksema's response styles theory. Psychol 32 

Med  29, 1323-1333 (1999). 33 

67. Lyubomirsky, S., Tucker, K.L., Caldwell, N.D. & Berg, K. Why 34 

ruminators are poor problem solvers: Clues from the phenomenology of 35 

dysphoric rumination. J Pers Soc Psychol 77, 1041 (1999). 36 

68. Smith, S.M. & Nichols, T.E. Threshold-free cluster enhancement: 37 

addressing problems of smoothing, threshold dependence and localisation in 38 

cluster inference. Neuroimage 44, 83-98 (2009). 39 

69. Mollink, J., et al. The spatial correspondence and genetic influence of 40 

interhemispheric connectivity with white matter microstructure. Nat Neurosci 41 

22, 809 (2019). 42 

70. Viechtbauer, W. Conducting meta-analysis in R with the metafor package. 43 

J Stat Softw 36, 1-48 (2010). 44 

71. Borenstein, M., Hedges, L. & Rothstein, H. Meta-Analysis Fixed effect vs. 45 

random effects.  (2007). 46 

72. Harville, D.A. Maximum likelihood approaches to variance component 47 

estimation and to related problems. J Am Stat Assoc 72, 320-338 (1977). 48 

73. Higgins, J.P., Thompson, S.G., Deeks, J.J. & Altman, D.G. Measuring 49 

inconsistency in meta-analyses. BMJ 327, 557-560 (2003). 50 



                  

 90 / 96 

 

74. Preacher, K.J. & Hayes, A.F. Asymptotic and resampling strategies for 1 

assessing and comparing indirect effects in multiple mediator models. Behav 2 

Res Methods 40, 879-891 (2008). 3 

75. Hayes, A.F. Introduction to mediation, moderation, and conditional 4 

process analysis: A regression-based approach, (Guilford Press, 2013). 5 

76. Buuren, S.V. & Groothuis-Oudshoorn, K.J. mice: Multivariate imputation 6 

by chained equations in R. 1-68 (2010). 7 

77. Cohen, J. Statistical Power Analysis for the Behavioral. Sciences. 8 

Hillsdale (NJ): Lawrence Erlbaum Associates, 18-74 (1988). 9 

78. Rosenthal, R., Cooper, H. & Hedges, L. Parametric measures of effect size. 10 

The handbook of research synthesis 621, 231-244 (1994). 11 

12 



                  

 91 / 96 

 

The Full List of CHIMGEN Consortium Authors 1 

Department of Radiology and Tianjin Key Laboratory of Functional Imaging, 2 

Tianjin Medical University General Hospital 3 

Chunshui Yu; Quan Zhang; Wen Qin; Feng Liu; Junping Wang; Qiang Xu; Jiayuan Xu; 4 

Xue Zhang; Xinjun Suo; Jilian Fu; Congcong Yuan; Yuan Ji; Hui Xue; Tianying Gao; 5 

Junpeng Liu; Yanjun Li; Xi Guo; Lixue Xu; Jiajia Zhu; Huaigui Liu; Fangshi Zhao; Jie 6 

Sun; Yongjie Xu; Huanhuan Cai; Jie Tang; Yaodan Zhang; Yongqin Xiong; Xianting 7 

Sun; Nannan Pan; Xue Zhang (Junior); Jiayang Yang; Nana Liu; Ya Wen; Dan Zhu; 8 

Bingjie Wu; Wenshuang Zhu; Qingqing Diao; Yujuan Cao; Bingbing Yang; Lining 9 

Guo; Yingying Xie; Jiahui Lin; Zhimin Li; Yan Zhang; Kaizhong Xue; Zirui Wang; 10 

Junlin Shen 11 

Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key 12 

Laboratory of Medical Epigenetics, School of Basic Medical Sciences, Tianjin 13 

Medical University 14 

Mulin Jun Li; Shijie Zhang 15 

School of Medical Imaging, Tianjin Medical University 16 

Meng Liang; Xuejun Zhang; Hao Ding; Qian Su 17 

Department of Magnetic Resonance Imaging, The First Affiliated Hospital of 18 

Zhengzhou University 19 

Jingliang Cheng; Caihong Wang; Peifang Miao; Fuhong Duan; Yafei Guo; Weijian 20 

Wang 21 

Department of Radiology, Zhengzhou University People's Hospital and Henan 22 

Provincial People's Hospital 23 

Meiyun Wang; Dapeng Shi; Lun Ma; Yan Bai; Min Guan; Wei Wei 24 

Department of Medical Imaging, The Second Hospital of Hebei Medical 25 

University 26 

Zuojun Geng; Yuzhao Wang; Yaikai Wu; Xuran Feng; Ling Li; Duo Gao 27 

Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong 28 

University of Science and Technology 29 

Wenzhen Zhu; Tian Tian 30 

Department of Radiology, Drum Tower Hospital, Medical School of Nanjing 31 

University 32 



                  

 92 / 96 

 

Bing Zhang; Zhao Qing; Sichu Wu; Junxia Wang; Yi Sun; Yang He 1 

Department of Radiology, Xiangya Hospital, Central South University 2 

Weihua Liao; Shuai Yang; Youming Zhang 3 

Department of Medical Imaging, The First Affiliated Hospital of Guangzhou 4 

University of Chinese Medicine 5 

Shijun Qiu; Yi Liang; Yujie Liu; Hui Zeng; Jingxian Chen 6 

Department of Radiology, The First Hospital of Shanxi Medical University 7 

Hui Zhang; Xiaochun Wang; Ying Lei 8 

Department of Radiology, The Second Affiliated Hospital of Zhejiang University, 9 

School of Medicine 10 

Xiaojun Xu; Jingjing Xu; Xiaojun Guan 11 

Department of Radiology, The First Affiliated Hospital of Anhui Medical 12 

University 13 

Yongqiang Yu; Xiaohu Li; Xiaoshu Li 14 

Department of Radiology, The Affliated Hospital of Guizhou Medical University, 15 

No.28 of Guiyi Street, Guiyang 550004, Guizhou, China 16 

Bo Gao 17 

Department of Radiology, Yantai Yuhuangding Hospital 18 

Gang Zhang; Kang Yuan 19 

Department of Radiology, Tianjin Huanhu Hospital 20 

Tong Han; Jun Guo; Hao Lu 21 

Department of Radiology, Huashan Hosptial, Fudan University 22 

Zhenwei Yao; Yue Wu 23 

Functional and Molecular Imaging Key Lab of Shaanxi Province & Department 24 

of Radiology, Tangdu Hospital, the Military Medical University of PLA Airforce 25 

(Fourth Military Medical University) 26 

Guangbin Cui; Wen Wang; Linfeng Yan; Yang Yang; Jin Zhang 27 

Department of Radiology, Hainan General Hospital 28 

Feng Chen; Yuankai Lin; Hui Juan Chen 29 

Department of Radiology, Beijing Tongren Hospital, Capital Medical University 30 

Junfang Xian; Qian Wang; Xiaoxia Qu; Ying Wang 31 

Department of Radiology, The First Affiliated Hospital of Wenzhou Medical 32 

University 33 



                  

 93 / 96 

 

Jiance Li; Yunjun Yang; Nengzhi Xia 1 

Department of Magnetic Resonance, Lanzhou University Second Hospital 2 

Jing Zhang; Guangyao Liu; Laiyang Ma 3 

Department of Psychology, University of Chinese Academy of Sciences 4 

Xi-Nian Zuo; Zhe Zhang; Yin-Shan Wang; Quan Zhou 5 

Department of Radiology, Qilu Hospital of Shandong University 6 

Dawei Wang; Li Hu; Jizhen Li 7 

Department of Radiology, Tianjin First Center Hospital 8 

Wen Shen; Miaomiao Long; Lihua Liu 9 

Department of Radiology, The First Affiliated Hospital of Dalian Medical 10 

University 11 

Yanwei Miao; Weiwei Wang; Yujing Zhou 12 

Department of Radiology, Pingjin Hospital, Logistics University of Chinese 13 

People's Armed Police Forces 14 

Fei Yuan; Quan Zhang 15 

Department of Radiology, the Center for Medical Imaging, West China Hospital 16 

of Sichuan University; 17 

Su Lui 18 

Department of Radiology, The Second Affiliated Hospital and Yuying Children's 19 

Hospital of Wenzhou Medical University 20 

Zhihan Yan; Yuchuan Fu; Yi Lu 21 

CAS Key Laboratory of Brain Function and Disease, University of Science and 22 

Technology of China 23 

Xiaochu Zhang; Rujing Zha; Ying Li; Lizhuang Yang; Ying Chen; Ling Zuo 24 

Department of Radiology, The Affiliated Hospital of Xuzhou Medical University; 25 

Kai Xu; Haitao Ge; Peng Xu; Cailuan Lu; Chen Wu; Xiaoying Yang 26 

Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing 27 

University 28 

Long Jiang Zhang; Li Juan Zheng; Li Lin; Yun Fei Wang; Han Zhang; Xin Yuan Zhang 29 

Department of Radiology, Tianjin Medical University Cancer Institute and 30 

Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical 31 

Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy 32 

Zhaoxiang Ye; Peng Zhang; Wei Li33 



                  

 94 / 96 

 

The Full List of IMAGEN Consortium Authors 1 

Salutation Title First name Last name Institution Email address 

Mr Dr.  Eric Artiges INSERM eric.artiges@inserm.fr 

Ms  Semiha Aydin Physikalisch-Technische 

Bundesanstalt (PTB) 

semiha.aydin@ptb.de 

Mr Prof. Dr.  Tobias  Banaschewski Central Institute of Mental Health tobias.banaschewski@zi-mannheim.de  

Mr  Alexis Barbot Commissariat à l'Energie Atomique alexis.barbot@cea.fr 

Mr Prof. Dr.  Gareth Barker King’s College London gareth.barker@kcl.ac.uk 

Mr  Andreas  Becker Georg-August-Universität 

Göttingen 

abecker4@gwdg.de 

Ms  Pauline  Bezivin-Frere INSERM pabezivin@gmail.com 

Ms Dr. Francesca Biondo King’s College London francesca.biondo@kcl.ac.uk 

Mr Dr. Arun Bokde   Trinity College Dublin arun.bokde@tcd.ie 

Ms  Uli Bromberg University of Hamburg u.bromberg@uke.uni-hamburg.de 

Mr Dr. Ruediger Bruehl PTB ruediger.bruehl@ptb.de 

Mr Prof. Dr.  Christian Büchel University of Hamburg buechel@uke.de  

Mr  Dr Congying  Chu King’s College London congying.1.chu@kcl.ac.uk 

Mr. Dr Patricia Conrod King’s College London patricia.conrod@umontreal.ca 

Ms  Laura Daedelow Charité Universitätsmedizin Berlin laura.daedelow@charite.de 

Mr Dr Jeffrey Dalley Cambridge University jwd20@cam.ac.uk 

Mr Dr. Sylvane Desrivieres King’s College London sylvane.desrivieres@kcl.ac.uk 

Ms  Eoin Dooley Trinity College Dublin dooleyeo@tcd.ie 

Mrs.  Irina Filippi INSERM irinaIF@hotmail.com 

 Dr  Ariane Fillmer  Physikalisch-Technische 

Bundesanstalt (PTB) 

ariane.fillmer@ptb.de 

Mrs Prof. Dr. Herta Flor Central Institute of Mental Health herta.flor@zi-mannheim.de 

Ms  Juliane  Fröhner  Technische Universität Dresden  juliane.froehner@tu-dresden.de 



                  

 95 / 96 

 

Ms  Vincent Frouin Commissariat à l'Energie Atomique vincent.frouin@cea.fr  

Mr Dr Hugh Garavan University of Vermont hugh.garavan@uvm.edu 

Mr Prof. Penny Gowland University of Nottingham penny.gowland@nottingham.ac.uk 

Ms  Yvonne  Grimmer  Central Institute of Mental Health Yvonne.Grimmer@zi-mannheim.de 

Mr Prof. Dr.  Andreas Heinz Charité Universitätsmedizin Berlin andreas.heinz@charite.de 

Ms Dr Sarah   Hohmann Central Institute of Mental Health Sarah.Hohmann@zi-mannheim.de 

Mr  Albrecht Ihlenfeld Physikalisch-Technische 

Bundesanstalt (PTB) 

albrecht.ihlenfeld@ptb.de 

Mr.  Alex Ing King’s College London alex_ing@hotmail.com 

Ms  Corinna  Isensee University Medical Center 

Göttingen  

corinna.isensee@med.uni-goettingen.de 

Mr. Dr. Bernd Ittermann Physikalisch-Technische 

Bundesanstalt (PTB) 

bernd.ittermann@ptb.de 

Mr Dr Tianye Jia Fudan University tianyejia@fudan.edu.cn 

Mr Dr. Hervé Lemaitre INSERM herve.lemaitre@u-psud.fr 

Ms  Emma Lethbridge University of Nottingham Emma.Lethbridge@nottingham.ac.uk 

Mr Prof. Dr.  Jean-Luc Martinot INSERM jean-luc.martinot@inserm.fr 

Ms  Sabina  Millenet  Central Institute of Mental Health sabina.millenet@zi-mannheim.de 

Ms  Sarah  Miller Charité Universitätsmedizin Berlin sarah.miller@charite.de 

Mr  Ruben Miranda INSERM rbnmir@gmail.com 

Ms PD Dr. Frauke Nees Central Institute of Mental Health frauke.nees@zi-mannheim.de  

Mrs Dr. Marie-Laure Paillere INSERM ml.paillere@aphp.fr 

Mr  Dimitri  Papadopoulos INSERM dimitri.papadopoulos@cea.fr 

Mr Prof. Dr.  Tomáš Paus University of Montreal tpausresearch@gmail.com 

Mrs Dr Zdenka Pausova University of Toronto zdenka.pausova@sickkids.ca 

Mr Dr. Dr. Jani Pentilla INSERM Jani.P.Penttila@uta.fi 

Mr Dr. Jean-Baptiste Poline Commissariat à l'Energie Atomique jbpoline@berkeley.edu; jbpoline@gmail.com 

Mrs Prof. Dr. Luise Poustka University Medical Center 

Göttingen  

Luise.Poustka@med.uni-goettingen.de  

Mrs. Dr.  Erin Burke Quinlan King’s College London erin.quinlan@nih.gov 



                  

 96 / 96 

 

Mrs Dr Michael Rapp Charité Universitätsmedizin Berlin mrapp@uni-potsdam.de 

Mr Prof. Dr.  Trevor Robbins Cambridge University twr2@cam.ac.uk 

Mr.  Dr. Gabriel Robert King’s College London gabriel.hadrien.robert@gmail.com 

Mr  John Rogers Delosis john@delosis.com 

Ms.  Dr.  Barbara Ruggeri King’s College London barbara.ruggeri@kcl.ac.uk 

Mr Prof. Dr. Gunter Schumann King’s College London Gunter.schumann@kcl.ac.uk 

Mr Prof. Dr. Michael Smolka Technische Universität Dresden  michael.smolka@tu-dresden.de 

Mr  Argyris  Stringaris  National Institute of Mental Health argyris.stringaris@nih.gov 

Ms  Betteke  van Noort Charité Universitätsmedizin Berlin Betteke.Van-Noort@charite.de 

Mr.  Dr. Henrik Walter Charité Universitätsmedizin Berlin henrik.walter@charite.de  

Mr Dr. Robert Whelan Trinity College Dublin whelanrob@gmail.com;robert.whelan@tcd.ie 

Mr Prof. Dr.  Steve Williams King’s College London steven.williams@kcl.ac.uk 

 1 




