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Abstract

The multi-objective flexible job shop scheduling in a cellular manufacturing environment is a challenging real-
world problem. This recently introduced scheduling problem variant considers exceptional parts, intercellular
moves, intercellular transportation times, sequence-dependent family setup times, and recirculation requiring
minimization of makespan and total tardiness, simultaneously. A previous study shows that the exact solver
based on mixed-integer nonlinear programming model fails to find an optimal solution to each of the ‘medium’
to ‘large’ size instances considering even the simplified version of the problem. In this study, we present
evolutionary algorithms for solving that bi-objective problem and apply genetic and memetic algorithms that
use three different scalarization methods, including weighted sum, conic, and tchebycheff. The performance of
all evolutionary algorithms with various configurations is investigated across forty-three benchmark instances
from ‘small’ to ‘large’ size including a large real-world problem instance. The experimental results show that
the transgenerational memetic algorithm using weighted sum outperforms the rest producing the best-known
results for almost all bi-objective flexible job shop cell scheduling instances.

Keywords: Genetic algorithms; Memetic algorithms; Cell scheduling; Scalarization methods; Pareto frontier

1. Introduction

In a competitive world-wide market, the manufacturing companies should be more flexible and efficient
to be able to respond rapidly to technological innovations and changing customer demands. The system
flexibility along with the appropriate choice of planning and operational approaches becomes crucial providing
means for effective allocation and use of required resources. Cellular manufacturing has emerged as a complex
system that increases the productivity and flexibility of production by reducing the throughput times and
enables the manufacturing of a variety of products in small batches (Salmasi, 2005).

In a cellular manufacturing system, the machines are grouped into cells, and parts to be produced are
grouped into families. Each regular part is processed in one cell only. Hence, there is no need for the flow of
parts between different cells, apart from the exceptional parts. As a consequence, intercell moves caused by the
exceptional parts, intercellular transportation times, and material handling costs are reduced. In addition
since parts with similar processing requirements are processed in a cell, the setup time, work-in-process
inventory, flow time, and production lead time are reduced (Kamrani & Logendran, 1998). A major setup is
also required for switching from one part family to another one while processing jobs, although a negligible or
minor setup time is usually included within the processing time for each job. The time required for this part
family setup may or may not depend on the sequence in which various families are processed. Hence, the cell
scheduling problems involving setup times can be divided into two classes: sequence-independent family setup
times and sequence-dependent family setup times (SDFSTs) (Li et al., 2015). In cell scheduling problems,
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there are exceptional parts that require processing on machines in two or more cells and re-entrant parts that
are allowed to visit a (group of) machine(s) more than once.

The flexible job shop cell scheduling problem with SDFSTs and intercellular transportation times (FJCS-
SDFSTs-ITTs) is the focus of this study. FJCS-SDFSTs-ITTs require minimization of both makespan, i.e.,
the completion time of the last job leaving the system, and the total tardiness, i.e., a measure of the delay
in completing all jobs. A Pareto front represents a set of the ‘optimal’ trade-off solutions, for which one
of the objectives cannot be improved without sacrificing the other one. In an earlier study, Deliktas et al.
(2019) formulated the bi-objective FJCS-SDFSTs-ITTs as a nonconvex optimization problem and applied an
exact approach based on a mixed-integer nonlinear programming model. In their study, based on a sample
instance, they have illustrated that the Pareto front is not trivial, containing unsupported solutions that are
optimal but not on the convex hull of the Pareto front. This implies that the Pareto optimal solutions would
have been missed if solving FJCS-SDFSTs-ITTs optimally using linear combinations of the makespan and
total tardiness and applying the exact approach since any linear combination will not be able to access the
unsupported regions of the Pareto front. Hence, the authors used a conic scalarization method (Kasimbeyli,
2013). However, the exact approach was still unable to solve the ‘medium’ to ‘large’ problem instances. The
flexible job shop scheduling problem represents a simplified form of FJCS-SDFSTs-ITTs, which is a complex
combinatorial problem proven to be NP-hard (Garey et al., 1976). Moreover, Deliktas et al. (2019) applied
their exact approach to the ‘small’ to ‘medium’ size FJCS-SDFSTs-ITTs problem instances considering
minimization of makespan only. They were able to produce optimal results for the ‘small’ instances while
the majority of the ‘medium’ instances couldn’t be solved to optimality even after 24 hours. Metaheuristics
are commonly preferred approaches when the exact approaches fail to produce even feasible solutions to the
given problem instances (Sörensen & Glover, 2013). Population-based metaheuristics, such as evolutionary
algorithms using multiple interacting solutions during the search process, are known to be successful in solving
real-world problems, particularly that are multi-objective, being able to produce multiple trade-off solutions.

In this study, we present a variety of evolutionary algorithms with novel components for solving the
bi-objective FJCS-SDFSTs-ITTs combinatorial optimization problem. In particular, we have investigated
Genetic Algorithms (GAs) and Memetic Algorithms (MAs) hybridizing GAs with hill-climbing varying their
operators and considering three scalarization methods: weighted sum (WSM), conic (CSM) and Tchebycheff
(TSM) to detect the best algorithmic choices. We have also created a benchmark of fourty three bi-objective
FJCS-SDFSTs-ITTs problem instances 1 in various sizes ranging from small to large, each with a different
characteristic. The forty-two benchmark instances are adopted from the existing problem domains, including
the single objective FJCS-SDFSTs-ITTs cell formation and operations routing. The last instance is a real-
world problem instance from a locomotive and wagon production factory. The empirical results on the
benchmark are extremely encouraging since one of the proposed approaches, namely the memetic algorithm
obtained the best-known solutions to all benchmark problem instances, even including the large scale ones.

The structure of this paper is as follows. Section 2 introduces the problem formally and provides an
overview of the previous work on cell scheduling problems as well as multi-objective flexible job shop schedul-
ing problems. The proposed EAs are explained in Section 3. Section 4 provides a case study from Turkey
and benchmark instances from the literature with a comparison of the performance, and the experimental
results and analysis in this section. Finally, Section 5 concludes this study.

2. A flexible job shop cell scheduling problem

2.1. Problem description

Although the multi-objective scheduling problems have been widely studied in recent years, there is far
less research in the literature on the multi-objective FJCS problems (including SDFSTs and ITTs or not).
Hence, this study fills a gap by investigating different approaches to bi-objective FJCS-SDFSTs-ITTs. In
this section, we provide a description of the problem.

Let’s assume a flexible job shop environment in cellular manufacturing where c is the set of cells, l is the
set of part families, i is the set of jobs, and q is the set of machines. Each job i includes opi operations and

1This benchmark will be made publically accessible via ResearchGate (https://www.researchgate.net/profile/Derya_
Deliktas/publications)
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each operation has its route to follow through the shop. It could be completely or partially different from
the processing route of the other jobs. For each operation j of job i, there are identical parallel machines.
A job is completed when all of its operations are handled. A cellular manufacturing system includes several
manufacturing cells consisting of the different number of machines and allocated for the production of various
parts. Each type of machine can process different parts and there are some particular parts referred to as
exceptional parts that can move between cells. A work center indicates a production unit where a single
or a group of machines can be run at the same time. Identical parallel machines are also allowed. For the
reentrant parts, a job may visit a machine or work center more than once requiring the same or a different
processing time (Pinedo, 2000).

Each job has the processing time and a due date representing the desired completion time. Processing time
includes the intracellular move time. Those moves are considered as independent from the operation sequence
while intercellular transfer times are taken into account because of exceptional parts caused the intercellular
movements. Moreover, this study deals with the job shop cell scheduling problem with flexible machines and
sequence-dependent family setup times which indicate that the family setup times are determined by the
current part family as well as the direct previous part family processed on the same machine. Makespan and
the total tardiness time are the objectives of the problem, which are to be minimized simultaneously.

A more formal definition of the FJCS-SDFSTs-ITTs problem is provided as follows (Deliktas et al., 2019).
Firstly, we have the following assumptions:

(1) The cells, part families, and layout of cells are known.

(2) Machine failures and vehicle failures are ignored.

(3) Input and output buffers are unlimited.

(4) Each operation can be only assigned to one of the eligible parallel machines.

(5) The processing time for operations of each part type on a machine is known and fixed.

(6) The job release times and machine availability times are zero, which means all machines and jobs are
available at the beginning of the planning horizon or time zero.

(7) Intracellular transfer times are ignored.

(8) Once an operation is treated on a machine, it can’t be interrupted until it is finished (no preemption is
allowed).

(9) Intracellular setup times are included in the operation times.

(10) Each machine can process at most one operation at the same time.

(11) All jobs have equal priorities.

We use the following notation for defining FJCS-SDFSTs-ITTs.

q Machine index, q = 1, 2, . . . ,m

i Job index, i = 1, 2, . . . , n

c Cell index, c = 1, 2, . . . , C

l Part family index, l = 1, 2, . . . , L

j Operation index for the ith job, j = 1, 2, . . . , opi

opi The total number of operations of job i

top The total number of all operations (
∑
∀i opi)

m The total number of machines

n The total number of jobs

L The total number of part families

C The total number of cells

Oij The j th operation of job i
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pijq The processing time of j th operation of job i if it is processed by machine q

tcc′ Transportation time from cell c to cell c
′

sll′ Setup time for part family l
′

if processed immediately after part family l

xqc 1, if machine q is located in cell c and 0 otherwise

yil 1, if job i belongs to part family l and 0 otherwise

rijq 1, if operation j of job i is processed on machine q among eligible machines, and 0, otherwise

di The due date of job i

M A large positive number

Cijq The completion time of j th operation of job i on machine q

uijq 1, if operation j of job i is processed on machine q in a flexible environment, and 0, otherwise

ziji′ j′q 1, if j th operation of job i precedes j
′
th operation of job i

′
on machine q, and 0, otherwise

Cmax Makespan

Ti The tardiness of job i

The bi-objective problem of FJCS-SDFSTs-ITTs requires optimization of makespan (Equation (1)) and
total tardiness (Equation (2)) simultaneously subject to the following constraints.

min{ Cmax }, and (1)

min{
n∑

i=1

Ti }, (2)

subject to

m∑
q=1

uijq = 1, ∀i, j (3)

uijq ≤ rijq, ∀i, j, q (4)

m∑
q=1

uijq.Cijq >
m∑
q=1

m∑
q′=1

uijq.ui(j−1)q′ .(Ci(j−1)q′ + pijq +

C∑
c=1

C∑
c′=1

xqc.xq′c′ .tc′c), ∀i, j ≥ 2 (5)

Cijq > Ci′ j′q +

L∑
l=1

L∑
l′=1

yi′ l′ .yil.sl′ l −M.ziji′ j′q + pijq −M(2− uijq − ui′ j′q), ∀i ≥ 2, j, q, i
′
, j

′
, i 6= i

′
(6)

Ci′ j′q > Cijq +

L∑
l=1

L∑
l′=1

yil.yi′ l′ .sll′ −M.(1− ziji′ j′q) + pi′ j′q −M(2− uijq − ui′ j′q), ∀i ≥ 2, j, q, i
′
, j

′
, i 6= i

′

(7)

Cijq > pijq, ∀i, j, q (8)

Cmax > Cijq, ∀i, j, q (9)

Ti > Cijq − di, ∀i, j, q (10)

4



Cijq, Ci′ j′q, Ti > 0, ziji′ j′q, uijq ∈ {0, 1} , ∀i, j, q, i
′
, j

′
(11)

Equation (3) forces exactly one machine alternative to be selected for each operation j of job i. Equation
(4) determines the capable machines for each operation. rijq determines whether the operation j of job i is
processed on machine q or not. For example, if the jthoperation of job i does not get processed on machine
4, the rij4 parameter is set to 0 in Equation (4). The value of uijq depends on the value of rij4 and in this
case, uij4 also gets assigned to 0. Equation (5) ensures that each part is processed depending on the defined
precedence of its operations and intercellular transportation times. Equations (6) and (7) guarantee that
at most, one part is processed by each machine at a time considering the setup times for the part family.
Equation (8) imposes that the completion time of an operation cannot be less than its processing time.
Equations (9) and (10) calculate the makespan and the tardiness of each job, respectively. Equation (11)
defines the binary decision variables.

For illustration purposes, let’s use the FJCS-SDFSTs-ITTs problem instance#5 (see Table 5) as an
example, for further explanation of our problem. As characterized in Tables 1 and 2, there are 4 parts and 4
machines in instance#5. The parts are grouped into 2 part families, each containing 2 items. The machines
are also grouped into 2 cells, both containing 2 machines.

Table 1. Part-machine matrix, processing times, and routing

Cell 1 Cell 2
M1 M2(2)∗ M3(2) M4

Routing Due Dates

P1 4∗∗ 5 6 1-2-3-2 98
Part family 1

P2 3 4 2-1-2 77
P3 7 2 4 4-2-3 3

Part family 2
P4 6 2 3-4-3 75

∗ Value in parentheses shows that there are two identical parallel machines for machines 2

and 3 if the problem is in the flexible environment. There is no available identical machine

in the job shop environment.
∗∗ M1 is an eligible machine for the 1st operation of job 1, since this operation is processed

on machine 1. Thus, the r111 parameter is set to 1 in Equation (4). P : Part, M : Machine

As an example, Table 1 shows that P2 with the due date of 77 belongs to the first part family requiring a
processing time of 4 on M2. The machine M2 is in the first cell and there are two identical parallel machines.
The operations for manufacturing the part P2 should be routed through the machines M2, M1, and then M2

in that order. Although this is not relevant to P2, Table 2 contains the required transportation times for the
movement of operations between cells. For example, if an operation goes from the first cell to the second cell,
that would require 3 units of time. The machine setup times are also provided in the table. So, for example,
if a part P2 operation is scheduled to a machine that just completes the processing of operation for a part
belonging to the second part family, then a setup time of 4 units of time will be required by that machine.

Table 2. Family setup times for each part family and transportation times for each cell

Transportation times: from cell c to cell c
′

Setup times: from part family l to cell l
′

row c, column c
′

row l, column l
′

cc
′

Cell 1 Cell 2 ll
′

Part family1 Part family2
Cell 1 — 3 Part family1 — 3
Cell 2 4 — Part family2 4 —

Figure 1 provides a feasible solution to instance#5. In the figure, each operation for the jobs 1, 2, 3, and
4 are indicated as solid red, solid black, dashed red, and dashed black line, respectively. The arrows show
the direction of the routing sequence. The processing time of an operation is displayed above each line. The
transportation and setup times are also shown over the forklift and gear icons, respectively. Let’s illustrate
how we compute the objective values based on that solution starting with the partial fitness calculation for
part 1 (P1). Reading the data depicted in Figure 5 from left to right, it is observed that O11 is the second
job of M1 as shown in Fig. 2 (a). Since it is in the same part family with the first job (P2) of M1, part
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family setup time between them is zero. Therefore, P1 processes on M1 with just its processing time. For
the second process of this part, it is attained to M2

2 which is one of the identical parallel machines. This
part visits M2

2 after P2 completes. After that, it is transferred to M1
3 which is one of the identical parallel

machines in Cell 2 and the first part of M1
3 which will be processed. In addition to its processing time, there

is also transportation time between cells as shown in Fig. 2 (b). As the fourth process, P1 visits M1
2 in Cell 1

which P3 was processed before. In addition to its processing time, both transportation and part family setup
times are added to the objective value of makespan (see Eq. 1) because there is both intercellular movement
between cells and setup process between part families. According to this, makespan is obtained as 34 as
shown Fig. 2. The tardiness (see Eq. 2) of each job is computed considering the completion time of each job
and its due date. The tardiness of the third job (part) is computed as 17 because it is completed at 20 (see
Fig. 2 (b)) and its due date is 3 (see Table 1), while the other jobs do not have any tardiness. The total
tardiness objective value is obtained with the tardiness of all jobs which yields 17 for this problem instance.

Figure 1: Feasible solution for the illustrative example

2.2. Related work

The flexible job shop cell scheduling (FJCS) problem requires a search for the best sequence of part families
and individual parts within each cell for manufacturing. The bi-objective FJCS-SDFSTs-ITTs is a variant of
the FJCS problem that introduces additional problem complexities, including setup-dependent/independent
family times, intercellular transportation times, reentrant parts, and flexible routes. This multi-objective
problem is not investigated in sufficient depth yet in the field. However, there are many studies on various
solution methods considering multiple objectives for FJCS, as summarised in Table 4.

Table 3 shows that in almost all multi-objective flexible job shop scheduling problems makespan is the
main objective taken into account, except (Li & Huo, 2009; Piroozfard et al., 2018). The majority of
the studies in our sample survey present solution methods optimizing the objectives of makespan, the total
workload of machines, and critical machine workload simultaneously. As for the solution methods, a variety of
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(a)

(b)

Figure 2: The Gantt charts representing the solution (in Figure 1) for instance#5 based on (a) machine
and (b) parts.

evolutionary algorithms has been used for tackling each particular multi-objective flexible job shop scheduling
problem.

During the past two decades, there are only a few studies on the FJCS problem. As seen in Table 3,
four out of six studies belonging to the FJCS problem have a single objective. De Giovanni & Pezzella
(2010), Lu et al. (2018), Wu et al. (2017), and Chang & Liu (2017) proposed different variants of genetic
algorithm with minimization of the makespan for solving distributed and flexible job-shop scheduling (DFJS)
problems which involve three scheduling decisions such as job-to-cell assignment, operation sequencing, and
operation-to-machine assignment. Ziaee (2014) developed a heuristic algorithm for solving the DFJS problem
minimizing the makespan. Only one study considers two objectives with minimization the weighted makespan
and the total traveling distance (Kesen et al., 2010). Table 4 provides a brief overview of the previous work
on cell scheduling from the scientific literature. This overview shows that most of those previous studies focus
on the flow shop cell scheduling problem and only a few of them consider the multi-objective variant of those
problems. Metaheuristics, including genetic algorithms, simulated annealing, tabu search, and their hybrids
are commonly applied to those multi-objective cell scheduling problems as the solution methods. However,
none of the previous work performed an investigation as substantial as ours looking into the particular
bi-objective FJCS-SDFSTs-ITTs problem and comparing the performance of genetic as well as memetic
algorithms.

In this study, we have designed four evolutionary algorithms for the bi-objective FJCS-SDFSTs-ITTs
problem to minimize both makespan and the total tardiness times. In multi-criteria decision making, the
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weighted sum is a commonly used scalarization method mapping multiple objective values into a single ob-
jective value that guides the metaheuristic search process. Table 4 also shows that due to the lack of studies
on multi-objective variants of the cell scheduling problem, there are only a few studies considering different
scalarization methods in the area. None of those studies are on the flexible job shop scheduling problem
in a cellular manufacturing environment with consideration of exceptional parts, intercellular moves, inter-
cellular transportation times, sequence-dependent family setup times, and recirculation. As a disadvantage,
the weighted sum scalarization method might not obtain all of the Pareto-optimal points for a non-convex
optimization problem. A different scalarization method was considered reaching both supported and unsup-
ported efficient solutions based on non-convex multi-objective models solving small and some medium-scale
problem instances in Deliktas et al. (2019). However, to the best of our knowledge, none of the previously
proposed algorithms are applied even to the large-scale FJCS-SDFSTs-ITTs instances as we do in this study.

3. Evolutionary algorithms for solving the bi-objective FJCS-SDFSTs-ITTs

FJCS-SDFSTs-ITTs is an NP-hard problem even in its simplified form (Garey et al., 1976). It has been
observed that obtaining even a near-optimal solution could be extremely time-consuming and sometimes not
even possible using an exact approach, such as a mathematical model, especially to the large-scale problem
instances as shown in Deliktas et al. (2019) which considered minimization of makespan. Many researchers
and practitioners resort to (meta)heuristic optimization methods in such situations to obtain a solution to a
problem instance of reasonable quality in a reasonable amount of time. Evolutionary algorithms (EAs) are
nature-inspired population-based metaheuristics (Sörensen & Glover, 2013), designed based on the principles
of evolution and the concept of survival of the fittest. They have been successfully applied to a range of
combinatorial optimization problems (Sörensen & Sevaux, 2006; Beasley & Chu, 1996). In this study, we
investigate the performance of two classes of EAs, genetic and memetic algorithms for the bi-objective FJCS-
SDFSTs-ITTs (Holland et al., 1992; Moscato et al., 1989). The description of those algorithms and their
components are presented in the following sections.

3.1. Genetic and Memetic Algorithms

A generic genetic algorithm (GA) performs the search for the (near-)optimal solution(s) using a population
(set) of candidate solutions which are referred to as individuals (or chromosomes) as illustrated in Algorithm 1.
An initial randomly generated population of nPop solutions (Popinit) goes through a number of evolutionary
cycles (generations) until the termination criteria are satisfied with the hope that the best solution in the final
population is the (near-)optimal solution. The fitness function (objective function) evaluates the quality of a
candidate solution, providing means for the comparison of solutions and guidance for the search process. At
each cycle, a mating pool is formed using a mate selection method and then a pair of individuals (parents) from
that pool undergo the crossover operation which exchanges genetic material between two solutions creating
two new solutions, namely offspring (children). Then both offspring are perturbed using mutation and added
to the offspring pool. This pool forms the next generation of solutions and a replacement method is used
to choose which individuals from the offspring pool and current generation survive to the next generation.
A memetic algorithm (MA) is an extension to GA, hybridizing GA with hill-climbing. MA applies hill-
climbing to both children for exploitation after mutation (see line 11 of Algorithm 1). Those population-based
algorithms have been shown to be successful in solving many real-world discrete optimization problems (Wu
& Chow, 1994; Yang et al., 2008; Nalepa & Czech, 2013; Nalepa & Kawulok, 2014; Nalepa & Blocho, 2015;
Nalepa et al., 2015). Hence, we tested both approaches for solving the discrete optimization problem of
FJCS-SDFSTs-ITTs.

A variety of combinations of algorithmic components is studied to identify the best configuration for both
genetic and memetic algorithms. The following sections provide the details for the domain-specific design of
those components.

3.2. Representation

The first step in designing a metaheuristic is to represent a candidate solution for the problem. A
chromosome in our representation is composed of two parts: (i) operation sequence vector denoted as v1
indicating the sequence of operations for each job, and (ii) machine assignment vector denoted as v2 indicating
sequence of machine IDs selected to process the operations. Based on this information, we can generate the
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Algorithm 1 Pseudo-code of the Evolutionary Algorithm

1: Randomly generate an initial population Popinit of nPop individuals
2: Calculate the fitness of each individual (see Eqs (12, 13, 14))
3: Popcurrent ← Popinit
4: while termination criteria not satisfied do
5: while OffspringPool is not full do
6: Parent1 ← Select-Mate (Popcurrent)
7: Parent2 ← Select-Mate (Popcurrent)
8: Child1, Child2 ← Apply-Crossover (Parent1, Parent2)
9: Child′1 ← Apply-Mutation (Child1)

10: Child′2 ← Apply-Mutation (Child2)
11: Calculate the fitness of Child1 and Child2 (see Eqs (12, 13, 14))
12: OffspringPool ← Add(Child′1, Child′2)
13: end while
14: Popcurrent ← Apply-Replacement(Popcurrent, OffspringPool)
15: end while
16: Return the best solution from Popcurrent

part family vector denoted as v3 indicating part family belonging to the corresponding job, and cell assignment
vector denoted as v4 representing the cell belonging to the selected machine. From this point onward, when
we use the term gene, that will refer to the locus from a given vector and allele will refer to the assigned
value. As an example, for instance#5, let’s assume that the manufacturing of each part i (Pi) is the job that
is indicated as Ji and there are 13 operations to be scheduled. J1 has four operations O11, O12, O13, and
O14; J2 has three operations O21, O22, and O23; J3 has three operations O31, O32, and O33; J4 has three
operations O41, O42, and O43 (see 2.1 Problem description section).

3.2.1. Operation sequence vector

In this study, operation-based representation is used where an ordered array of integers indicates the
operation that will be processed next for the given job (Zhang et al., 2011). Hence, the length of the
chromosome equals to the total number of operations. Thus, the chromosome includes 13 genes encoding
the operation sequence. The index i of job Ji appears in the operation sequence vector (v1) ni times to
represent its ni ordered operations. For example, the first appearance of number 2 represents O21, the
second appearance of 2 means O22, and so on. Moreover, because of the existence of precedence constraints,
using such representation provides a means to avoid repair generating feasible solutions.

For the instance#5, one possible solution encoding the operation sequence vector is shown in Fig. 3.
Reading the data from left to right and increasing the operation index for each job, the operation sequence
depicted in Fig. 3 could be interpreted into a list of ordered operations as follows:

O21 � O41 � O22 � O31 � O11 � O32 � O23 � O12 � O42 � O13 � O33 � O43 � O14

Figure 3: An Illustration of a operation sequence vector as a part of the solution representation for the
problem instance#5

3.2.2. Machine assignment vector

To generate a feasible schedule, all machines are assigned for a job following the machine assignment
vector. Hence, the length of this vector also equals to the total number of operations. Each entry of the
machine assignment vector v2, v2(s) represents the selected machine for the corresponding operation indicated
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at position s in the operation sequence vector. In Fig. 4, for instance, position 2 represents the O41, and v2(s)
indicates the machine assigned for O41. For operation O41, two machines are eligible to assign: machines
M1

3 and M2
3 . These are duplicate machines to manufacture a product in the flexible environment. For

example, M1
3 indicates the first identical parallel machine for M3 while M2

3 represents the second identical
parallel machine for M3. The IDs 1 and 2 indicated in each machine assignment vector v2 show the array
of the identical parallel machine set for each operation. If there is no identical parallel machine available for
the corresponding machine, the allele for the corresponding machine should be 1 as given in Fig. 4. This
assignment representation supports recirculation as well.

Figure 4: An illustration of a machine assignment vector as a part of the solution representation for the
problem instance#5

3.2.3. Part family and cell assignment vectors

Two additional vectors v3 and v4 are used as a supporting data structure for the calculation of fitness.
Those vectors are provided as input to our approach defining a problem instance and do not change during
the search process. v3(t) contains the part family of each job at locus t in v1(t). v4(t) points to the cell
that the selected machine at locus t belongs to. In Fig. 5, for instance, v1(6) represents the operation O32

belonging to the job/part 3 assigned to M1
2 as indicated by v2(6). As for the supporting data structures

since P3 belongs to the part family 2, v3(6) which is set to 2 (Table 1). Also, M1
2 belongs to cell 1, hence

v4(6) is set to 1 (Table 1). After creating a new solution using any of the algorithmic components, if there is
any change to a machine assignment at a locus, the supporting data structure v4 gets updated at that locus,
accordingly.

Figure 5: An illustration of the solution representation (v1, v2) and supporting data structures (v3, v4) for
instance#5

3.3. Fitness function

After computing the objective values for makespan and the total tardiness time, the fitness values are
calculated using a scalarization method based on those values. We experimented with three different fitness
functions using weighted sum (WSM), conic (CSM), and Tchebycheff (TSM).

WSM (Miettinen, 2012; Ehrgott et al., 2014) is one of the well-known scalarization methods which can
be used to obtain Pareto efficient solutions to a multi-objective optimization problem. Based on a given
solution, multiple objective values are crashed into a single objective value by computing their weighted sum.

min { w1.Cmax + w2.

n∑
i=1

Ti } (12)

12



where w1 and w2 represent the importance weights for makespan (Equation 1) and tardiness (Equation 2),
respectively, and w1 + w2 = 1 assuming w1, w2 > 0, and Equations (3)-(11) are all satisfied.

CSM introduced by Gasimov (2001) is based on supporting the image set of the problem by using cones
instead of the hyperplanes used in weighted scalarization (Kasimbeyli, 2013). The scalarization of makespan
and total tardiness is computed using the following equation:

min { w1.(Cmax −Rf1) + w2.(

n∑
i=1

Ti −Rf2) + α.(|Cmax −Rf1|+ |
n∑

i=1

Ti −Rf2|)} (13)

subject to Equations (3)-(11), where w1, w2 > 0 are the importance degree of makespan and total tardiness,
respectively, α is used to change the apical angle of a supporting cone, 0 6 α < min {w1, w2}, and Rf1 and
Rf2 are arbitrarily fixed reference points/values from a certain interval for makespan and total tardiness,
respectively, in this study.

TSM was first presented in Steuer & Choo (1983) and Steuer & Steuer (1986), suggesting the use of a
Tchebycheff metric based on reference points for the scalarization of multiple objective values. The previous
work shows that if the reference points are feasible, the minimization of achievement function produces a
solution that maximizes the distance to the Pareto optimal set. Otherwise, the minimization of achievement
function produces a solution that minimizes the distance to the Pareto optimal set. The advantage of
achievement function is that any arbitrary weakly Pareto optimal or Pareto optimal solution can be obtained
by moving the reference points only. Wierzbicki (1986) discovered that the solution to the achievement
function depends on Lipschitz-continuity of the reference points. Although many achievement functions are
satisfying the imposed conditions (Miettinen, 2012), the one used in this study is as follows:

min { max { w1.(Cmax −Rf1), w2.(

n∑
i=1

Ti −Rf2) }+ ρ.( (Cmax −Rf1) + (

n∑
i=1

Ti −Rf2)) } (14)

subject to Equations (3)-(11), where w1, w2 > 0 are the importance degree of makespan and total tardiness,
respectively, ρ > 0 is a sufficiently small positive scalar, and Rf1 and Rf2 are arbitrarily fixed reference
points/values from a certain interval for makespan and total tardiness, respectively, in this study.

3.4. Operators

All algorithmic components/operators specific to the FJCS-SDFSTs-ITTs problem are briefly explained
in this section, including the parent selection, crossover, mutation, hill climbing, and replacement (Azadeh
et al., 2017).

3.4.1. Crossover

As a mate selection method, the generic tournament method with a tour size of two is used in all
evolutionary algorithms, and crossover is applied using the selected solutions, i.e., the crossover probability
is 1.0. The possibility of crossover creating an infeasible offspring is eliminated by using tailored crossover
operators. We implemented three different crossover operators: precedence preserving order-based crossover
operator, order-based uniform crossover operator, and order-based one-point crossover operator, which are
described below.

Precedence preserving order-based crossover (POX): We have used POX as one of the crossover operators
which was proposed by Lee et al. (1998). This operator has been used in many previous studies as well (Zhang
et al., 2011; Deng et al., 2017; Rahmati et al., 2013; Wang et al., 2012). Fig. 6 illustrates how POX works.
A subset of jobs is randomly selected for an offspring. The operations belonging to that subset of jobs
from the first parent (p1) are copied into the first offspring (o1) without changing their locations along with
the machine assignments. For example, in Fig. 6, for the first offspring J4 and J3 are selected. Then the
operations belonging to the selected jobs are deleted from the second parent (p2). Finally, all the remaining
operation and machine assignment pairs from the second parent (p2) are copied into the empty locations into
the first offspring in the same order. This process is repeated for the second offspring in the same manner.
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Fig. 6: An example application of POX

Fig. 7: An example application of OUX

Order-based uniform crossover (OUX): OUX has a parameter referred to as the mixing ratio which defines
the percentage of inherited genes from the first and second parents (Li et al., 2014b). In this study, the
mixing ratio is fixed as 0.5. Fig. 7 illustrates how OUX works. OUX randomly creates two partitions of jobs
based on the mixing ratio, where each partition is used to create a separate offspring. Then OUX uses the
same approach as POX for carrying out an exchange of the genetic material. Instead of a randomly selected
subset of jobs, the associated partition is used.

Fig. 8: An example application of OOX
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Order-based one-point crossover (OOX): We have tailored a one-point crossover for FJCS-SDFSTs-ITTs.
A random crossover point on the chromosome is selected first. Then all genetic material in parents to the
crossover point is copied into two offspring. The operations already assigned are deleted from the other
parents along with the associated machine assignments. Then the remaining genetic material from each
parent is copied into the offspring without changing their order (Ruiz et al., 2006). The OOX is illustrated
in Fig. 8.

3.4.2. Mutation

Mutation traverses all genes for each operation and perturbs the allele values at a locus with the stan-
dard probability of 1/(chromosome length). The mutation operator flips a coin and either applies a swap
(SPM) operation (Piroozfard et al., 2018) or randomly changes the machine assignment for the gene in ques-
tion without changing the operation. SPM exchanges two randomly selected operations and their machine
assignments keeping the routing of the operations over the machines unchanged.

3.4.3. Hill-climbing

The genetic algorithms (GAs) do not employ hill climbing. In this study, we tested memetic algorithms
(MAs) using two different hill-climbing methods, denoted as HC1 and HC2 for local search. The hill climbing
is applied to the offspring right after the mutation. HC1 is the same neighborhood structure as described
in Karimi et al. (2012) as LN1. We have built HC2 by integrating LN1 and LN3 in Karimi et al. (2012)
as illustrated in Algorithm 2. HC1 operates similarly as HC2, where the lines 5 and 7 of Algorithm 2 are
discarded.

Algorithm 2 Pseudo-code of the hill-climbing method HC2

1: procedure HillClimbing-2(Population, v1, v2, depth-of-search)
2: for each chromosome in population do
3: Detect operation set (S ) that have two and more identical parallel machine from v1
4: Determine a memory set (MS ) for the selected operations, MS= {∅}
5: Select two positions randomly as r1 and r2 between 1 and the length of chromosome (r1 6= r2)
6: for k ← 1 to depth-of-search do
7: Invert the values in substring located between r1 and r2
8: Select an operation Oij randomly from set (S ) (except operations in MS )
9: Detect machine Mq from v2 that is currently selected to process Oij

10: Detect a set of machines that can process Oij

11: Select a random machine from this set of machines (except Mq) to process Oij

12: Add Oij to MS
13: end for
14: Find the chromosome that has the lowest fitness function value out of the chromosome
15: end for
16: end procedure

3.4.4. Replacement

In this study, we have designed two types of evolutionary algorithms with (MA) and without using hill
climbing (GA), namely transgenerational (TMA and TGA) and steady-state (SSGA and SSMA) approaches.

The transgenerational evolutionary algorithms (TMA and TGA) create a ‘large’ pool of offspring, then a
replacement scheme is applied to choose the individuals surviving to the next generation. We have tested two
replacement schemes here. Assuming that the population size is N , the first replacement scheme (R1) creates
a pool of N − 1 offspring. Then the best solution in the current population survives to the next generation
along with the whole offspring pool. R1 is a generic replacement scheme that maintains the best solution
found so far through the generations. The second replacement scheme (R2) uses strong elitism merging the
current population with the offspring pool, sorting their fitness values (2N), and choosing the best half to
survive to the next generation.

The steady-state evolutionary algorithms (SSMA and SSGA), two selected parents generate two offspring.
Then, the replacement operator with strong elitism chooses the best two solutions from the offspring and
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the worst two individuals of the current population to survive to the next generation (R3). Those best two
solutions replace the worst two individuals in the current population.

4. Experimental results

We performed two main sets of experiments. In the first set of experiments, we tested all combinations of
algorithmic components and scalarization methods to detect the best configuration for each of the evolutionary
algorithms with different replacement strategies using arbitrarily selected small, medium, and large size
problem instances. Afterward, we have extended our experiments to compare the performances of those
tuned evolutionary algorithms on forty-three problem instances including the real-world case study. The
hypervolume (HV ) (Brockhoff et al., 2008) is used as the performance indicator in this study. HV measures
the quality of the trade-off solutions achieved by the algorithms at approximating the Pareto front (Zitzler
& Thiele, 1998a,b). The higher the HV value, the better the performance of an algorithm is.

In the following section, we discuss the details of the benchmark problem instances adopted in the ex-
periments. Then we cover the results obtained from the algorithm tuning experiments on selected instances
as well as the experimental results comparing the performance of the tuned evolutionary algorithms for the
bi-objective FJCS-SDFSTs-ITTs. All approaches are implemented using C# 2013 and the experiments are
run on a laptop with 2.1 GHz Core i7 CPU and 8.00 GB RAM. The population size is set to half of the
total number of operations (chromosome length) to be scheduled and the initial population is generated
randomly. An algorithm terminates when the maximum number of fitness evaluations (which is a factor of
the population size) is exceeded.

4.1. Benchmark problem instances

We have converted a set of forty-three problem instances from various relevant problem domains published
in the scientific literature (Won & Kim, 1997; Tang et al., 2010; Deliktas et al., 2019; Zeng et al., 2015; Halat
& Bashirzadeh, 2015; Tang et al., 2010; Harhalakis et al., 1990; Arkat et al., 2007) into FJCS-SDFSTs-ITTs
problem instances. We discuss the adaptation process briefly below for forming the new FJCS-SDFSTs-ITTs
benchmark. Table 5 provides the characteristics of each benchmark problem instance ranging from small
to large sizes. The cellular information of each problem instance is used as reported in the corresponding
papers as indicated in Table 5. Some of the instances already have cell formation, the processing time, routes,
and setup and transportation times, whereas we randomly generated the missing relevant information for
the others. For example, where missing, the processing times for each operation are randomly drawn as a
discrete value from a uniform distribution within the interval of [1, 10], while setup and transportation times
are obtained from the interval [1, 8]. The discrete due date for each job is generated randomly within the
interval of [1, 110]. The size of a problem is classified considering the total number of parts, operations,
machines, cells, and part families as summarized in Table 5.

The largest problem is our real-world case study, which has 58 parts, 41 machines, and 4 cells and part
families while the smallest one has 4 parts, 6 machines, and 2 cells and part families adopted from Won
& Kim (1997). This case study is based on a real industrial problem occurring at a large locomotive and
wagon production factory in Turkey. The actual production data from this factory was gathered to show
the performance and characteristics of the proposed EA algorithms in the paper. Also, parts or products
produced in this factory, which have a complex production process and long routing, and which are critical
for the factory, have been identified. It is seen that the locomotive and wagon factory is suitable for cellular
production because the plant has a functional plant layout, medium degree of product variety, and production
volume. The production is based on customer’s demand.

4.2. Tuning experiments

In this initial set of experiments, we have tuned two GA variants, and two MA variants embedding different
algorithmic components to detect their best configurations for FJCS-SDFSTs-ITTs. The combinations of
three different crossover operators {CO1, CO2, CO3}, two different local search heuristics used with the
memetic algorithms {HC1, HC2} and no hill-climbing for the genetic algorithms, three replacement schemes
{R1, R2, R3} under three different scalarization methods {WSM, CSM, and TSM} summing up to 81 different
EA configurations are considered. The experiments to detect the best configuration for each EA variant
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Table 5. The characteristics of the benchmark problem instances and the intervals for generating the
reference points Rf1 and Rf2 used in the fitness functions CSM and TSM for each instance.

Size Ref. Inst.# n/L/m/C/top IRf1 IRf2 Size Ref. Inst.# n/L/m/C/top IRf1 IRf2

Small Won & Kim (1997) 1 4/2/6/2/13 [28;33] [33;34] Large Harhalakis et al. (1990) 22 20/4/26/4/81 [30;53] [95;170]
2 5/2/6/2/14 [28;33] [33;50] 23 20/5/26/5/81 [34;52] [102;203]

Tang et al. (2010) 3 4/2/7/2/13 [16;27] [11;11] Tang et al. (2010) 24 22/4/27/4/71 [62;77] [172;398]
4 8/2/7/2/27 [31;71] [23;54] Zeng et al. (2015) 25 21/4/26/4/86 [63;93] [200;440]

Deliktas et al. (2019) 5 4/2/6/2/13 [27;50] [11;24] 26 24/4/22/4/96 [51;71] [260;494]
6 6/2/6/2/21 [28;67] [34;56] Halat & Bashirzadeh (2015) 27 25/5/33/5/90 [67;77] [178;466]
7 6/2/8/2/18 [26;49] [33;39] 28 25/5/35/5/96 [48;68] [159;375]
8 7/3/7/2/25 [37;81] [21;56] 29 26/5/38/5/87 [57;66] [146;352]
9 7/2/9/3/24 [29;63] [25;38] 30 27/5/30/5/97 [67;81] [208;502]
10 7/3/8/3/24 [29;62] [36;56] 31 27/5/30/5/132 [91;105] [347;831]
11 8/4/11/4/25 [29;74] [38;63] 32 27/5/40/5/101 [42;59] [173;337]
12 9/3/9/3/30 [34;71] [74;135] 33 27/5/40/5/101 [48;65] [158;375]

Medium Deliktas et al. (2019) 13 10/4/11/4/33 [34;73] [60;108] 34 27/5/29/5/104 [33;48] [130;219]
14 10/4/13/4/31 [31;67] [60;91] Zeng et al. (2015) 35 30/5/26/5/111 [48;74] [261;519]

Zeng et al. (2015) 15 11/3/11/3/37 [35;55] [75;134] Tang et al. (2010) 36 30/5/30/5/105 [47;75] [152;384]
Halat & Bashirzadeh (2015) 16 10/2/8/2/33 [47;55] [85;153] 37 35/5/30/5/126 [34;68] [149;330]

17 12/2/8/2/38 [52;61] [117;233] Arkat et al. (2007) 38 30/4/25/4/113 [51;75] [248;551]
18 12/4/12/4/38 [35;48] [75;125] Zeng et al. (2015) 39 35/5/27/5/132 [51;71] [215;500]

Tang et al. (2010) 19 12/3/9/3/38 [42;58] [141;239] Tang et al. (2010) 40 40/6/25/6/138 [59;94] [239;638]
Deliktas et al. (2019) 20 14/4/13/4/45 [35;77] [84;192] 41 45/6/28/6/157 [59;92] [313;758]

21 15/4/16/4/48 [31;86] [63;129] 42 50/6/30/6/175 [59;93] [340;820]
Case study 43 58/4/41/4/269 [1671;2181] [1449;16595]

are performed on the three sample instances. The FJCS-SDFSTs-ITTs instances #12, #21 and #43 are
arbitrarily selected from the small, medium and large size instances, respectively.

Each EA is run for 1000 times using random weights generated within the interval of [0,1] and with the
constraint w1+w2 = 1 for each of the scalarization method for solving a problem instance. Additionally, 1000
different reference points for CSM and TSM are randomly created within a certain interval. The minimum
value of makespan is determined as the lower bound based on the 31 runs by setting w1 = 1 (w2 = 0), while
the maximum objective value of makespan is determined as the upper bound using 31 results obtained after
setting w1 = 0 (w2 = 1). The lower and upper bounds of total tardiness are computed in the same way for
the intervals. Table 5 provides the intervals from which the reference points for CSM and TSM are randomly
drawn. α in Eq (13) is computed as α = [min {w1, w2} − 0.01]. ρ in Eq (14) is fixed as 0.01. The number of
fitness evaluation is used as the stopping criterion, which is a factor of population size (for TMA with WSM
approach, the number of maximum iteration is 100 and depth-of-search parameter is 4). The parameter
settings of each operator used in the evolutionary algorithms are discussed in Section 3.4.

Each of the evolutionary algorithm variant with the scalarization method is run by considering different
combinations of operators on the three selected sample instances for 1000 times. At each trial, fitness function
(WSM, CSM, or TSM) is varied through a random setting of their relevant parameters, such as weights,
reference points. Non-dominated solutions are obtained from those 1000 trials, for which hypervolume is
calculated for each EA configuration per instance. Then the mean hypervolume for each EA configuration is
computed averaging the normalized hypervolume values over the three sample instances.

Table 6 summarises the results based on mean hypervolume (Avr.). The trivial observation is that the
choice of algorithmic components is influential on the performance of the evolutionary algorithms for FJCS-
SDFSTs-ITTs. The best approach for FJCS-SDFSTs-ITTs from the tuning experiments turns out to be
the transgenerational genetic algorithm with the best mean hypervolume value of 0.9856. This evolutionary
algorithm employs the order-based uniform crossover (CO1), generic replacement scheme (R1), and TSM as
the fitness function. One point crossover makes the performance of the genetic algorithm poorer regardless
of the replacement scheme used. The steady-state genetic algorithm using the one point crossover performs
the worst among all evolutionary algorithms. In almost all cases, the use of local search regardless of the
hill-climbing method used improves the performance of the genetic algorithm version. The two interesting
exceptions are the best performing approach and also the steady-state genetic algorithm using CO3 and
TSM as the fitness function, which yields the mean hypervolume value of 0.9643. The proposed hill-climbing
method HC2 seems to perform slightly better than HC1 in the overall. Similarly, the transgenerational
evolutionary algorithm performs better than the steady-state evolutionary algorithms.

Based on the results in Table 6, the best configuration for each of the evolutionary algorithms is as follows:
(i) TMA with CSM performs the best using the order-based one-point crossover (CO3), generic replacement
scheme (R1), and LN1 (HC1), (ii) SSMA with TSM performs the best using the order-based one-point

17



crossover (CO3), steady-state replacement with strong elitism (R3), and integrated LN1 and LN3 (HC2),
(iii) TGA with TSM performs the best when using the order-based uniform crossover (CO1), and generic
replacement scheme (R1), and (iv) SSGA with TSM performs the best when using the order-based one-point
crossover (CO3), and steady-state replacement with strong elitism (R3). Interestingly, if we consider the
average performances of algorithms and choose the best algorithms focusing on the scalarization methods
based on mean hypervolume turns out to be (i) for CSM, (iii) for TSM, however for WSM the winner becomes
(v) TMA with WSM using the order-based one-point crossover (CO3), generic replacement scheme (R1), and
LN1 (HC1). Hence, the hypervolume values belonging to the best configurations are (i) 0.9851, (ii) 0.9437,
(iii) 0.9856, (iv) 0.9643, and (v) 0.9849 tuned evolutionary algorithms at their best are used in the next set
of experiments.

4.3. Performance comparison of tuned evolutionary algorithms

To further evaluate the performance of the tuned EAs obtained from the previous set of experiments,
namely TMA with WSM, SSMA with TSM, TGA with TSM, and SSGA with TSM, we have performed
additional computational experiments on 43 different instances and analyzed the results. Each experiment is
repeated 31 times under the same configuration of operators and parameters for all of the four evolutionary
algorithms. Table 7 illustrates the performance comparison of all MOEAs across all problem instances based
on hypervolume. For statistical analysis of paired comparisons of TMA with WSM and each of the other
EAs, we have applied Wilcoxon signed rank test using 31 results from the algorithms based on hypervolume.
The following notation is adopted in Table 7. For a given instance, > (<) indicates that the TMA with WSM
performs better (worse) than the algorithm indicated on the right side of the notation in the column label
and this performance difference is statistically significant within a confidence interval of 95%. If there is no
statistically significant performance variation between TMA with WSM and the other evolutionary algorithm
then this is indicated with the notation ‘≈’.

We also performed comparison of each pair of four evolutionary algorithms considering the best results
for each of the 43 instances. The total number of different pair-wise comparisons of algorithms sums up
to 172 (43 × 4). TMA with WSM, 89 out of 172 comparisons performs better than the other algorithms.
This performance difference is statistically significant for the 15 of the cases while there is no significant
performance variation for 74 of them. More specifically, Table 7 shows that TMA with WSM delivers a
similar or better performance when compared to SSMA with TSM, TGA with TSM, and SSGA with TSM
over 38, 42 and all of the 43 instances, respectively.

All evolutionary algorithms perform similarly on almost all the small instances and there is no winner.
Only for instance#12 SSMA with TSM performs the best and this performance variation is statistically
significant as indicated in Fig. 9(a). The second best performing EA is TMA with WSM on this problem
instance. However, performance differences start to amplify on the medium instances. On 4 of the medium
instances including #13, #14, #16 and #18 all four algorithms still perform similarly. As for the remaining
medium instances, memetic algorithms, namely TMA with WSM and SSMA with TSM perform significantly
better than the genetic algorithm variants. For the instances #19-#21, SSMA with TSM is the best, which
is also confirmed for the medium instance#21 in Fig. 9(c). TMA with WSM is the best for instance#15.
Both memetic algorithms deliver a similar performance on the five out of nine medium instances. On 17 out
of 22 large instances including the real-world case study, TMA with WSM outperforms all other evolutionary
algorithms considering the Wilcoxon signed-rank test. This performance difference is statistically significant.
Fig. 9(c) to 9(f) confirms this observation on the instances #21, #35, #40, #43, respectively. SSGA with
TSM is the worst performing algorithm among four EAs on the large instances. Hence, in the overall TMA
with WSM using precedence preserving order-based crossover and LN1 hill-climbing is the best evolutionary
algorithm for solving the FJCS-SDFSTs-ITTs. The number of fitness evaluations for each instance in each
trial (run) is kept the same for each algorithm for fairness. Due to the data structures used and additional
complexities such as the computation of the scalarization method used, an algorithm could run slightly more
or less than the others. The total running time of an algorithm varies from 1 to 90 seconds for a single trial
depending on the size of an instance. In overall, TMA with WSM runs slightly faster than the all others on
the majority of the instances.

As a sample, we plotted the Pareto fronts consisting non-dominated trade-off solutions achieved by each
MOEA on one small, two medium, and three relatively large arbitrarily chosen instances, including the
instance#12 (Fig. 10(a)), instance#15 (Fig. 10(b)), instance#21 (Fig. 10(c)), instance#35 (Fig. 10(d)),
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Table 6. Normalized hypervolume values belonging to every evolutionary method with scalarization
methods for every configuration. Bold entries highlight the best performing configurations for the
tansgenerational/steady-state genetic and memetic algorithms based on the mean normalized hypervolume
averaged over three problem instances.

SM Inst.#
Transgenerational Genetic Algorithm Steady State Genetic Algorithm

CO1; R1 CO1; R2 CO2; R1 CO2; R2 CO3; R1 CO3; R2 CO1; R3 CO2; R3 CO3; R3

WSM

12 0.7949 0.8462 0.8974 0.6410 1.0000 0.6410 0.8462 0.5641 1.0000
21 0.9581 0.8878 0.2568 0.0324 0.6108 0.1243 0.9554 0.1487 0.6054
43 0.9774 0.9635 0.8244 0.8298 0.9741 0.9512 0.9708 0.8364 0.9615
Avr. 0.9101 0.8992 0.6595 0.5011 0.8616 0.5722 0.9241 0.5164 0.8557

CSM

12 1.0000 0.8205 0.5385 0.3846 0.9487 0.7180 0.7949 0.2051 0.8462
21 0.9730 0.1635 0.3595 0.2824 0.9622 0.8730 0.5608 0.4460 0.9081
43 0.9777 0.9586 0.8397 0.8214 0.9753 0.9455 0.9765 0.8070 0.9658
Avr. 0.9836 0.6476 0.5792 0.4962 0.9621 0.8455 0.7774 0.4860 0.9067

TSM

12 1.0000 0.8462 0.7436 0.4872 1.0000 0.8462 0.7436 0.0000 1.0000
21 0.9797 0.4122 0.3257 0.0000 0.9730 0.1689 0.8784 0.1703 0.9338
43 0.9771 0.9536 0.8411 0.8222 0.9733 0.9530 0.9672 0.8025 0.9590
Avr. 0.9856 0.7373 0.6368 0.4364 0.9821 0.6560 0.8631 0.3243 0.9643

SM Inst.#
Transgenerational Memetic Algorithm

CO1;R1 CO1;R2 CO1;R1 CO1;R2 CO2;R1 CO2;R2 CO2;R1 CO2;R2 CO3;R1

HC1 HC1 HC2 HC2 HC1 HC1 HC2 HC2 HC1

WSM

12 1.0000 1.0000 0.8462 0.9487 0.8205 0.7949 1.0000 1.0000 1.0000
21 0.9973 0.9743 1.0000 0.9905 0.9824 0.6014 0.9851 0.9946 0.9973
43 0.9546 0.9742 0.9506 0.9310 0.9310 0.9551 0.9271 0.9220 0.9574
Avr. 0.9840 0.9828 0.9323 0.9567 0.9113 0.7838 0.9707 0.9722 0.9849

CSM

12 1.0000 1.0000 1.0000 0.8974 0.8462 0.9744 1.0000 0.9487 1.0000
21 0.9973 0.9676 0.9946 0.9959 0.9770 0.9351 0.9892 0.9811 0.9973
43 0.9476 0.9675 0.9543 0.9653 0.9432 0.9449 0.9259 0.9148 0.9579
Avr. 0.9816 0.9784 0.9830 0.9529 0.9221 0.9515 0.9717 0.9482 0.9851

TSM

12 0.8462 0.9487 1.0000 0.8974 1.0000 0.7436 0.8974 0.8974 1.0000
21 0.9919 0.9905 1.0000 0.9932 0.9838 0.9054 0.9973 0.9905 0.9973
43 0.9529 0.9700 0.9454 0.9558 0.9421 0.9459 0.9244 0.9049 0.9554
Avr. 0.9303 0.9697 0.9818 0.9488 0.9753 0.8650 0.9397 0.9309 0.9842

SM Inst.#
Transgenerational Memetic Algorithm Steady Stade Memetic Algorithm
CO3;R2 CO3;R1 CO3;R2 CO1;R3 CO1;R3 CO2;R3 CO2;R3 CO3;R3 CO3;R3

HC1 HC2 HC2 HC1 HC2 HC1 HC2 HC1 HC2

WSM

12 0.6923 0.8462 0.8462 0.7179 1.0000 0.9744 0.8462 0.8974 0.8974
21 0.9878 0.9973 0.9946 0.9973 1.0000 0.9473 1.0000 0.9946 1.0000
43 0.9679 0.9533 0.9591 0.7993 0.8250 0.8251 0.8337 0.8206 0.8392
Avr. 0.8827 0.9323 0.9333 0.8382 0.9417 0.9156 0.8933 0.9042 0.9122

CSM

12 0.7949 1.0000 0.8974 1.0000 1.0000 0.7692 1.0000 1.0000 0.8974
21 0.9811 0.9973 0.9973 0.9932 0.9959 0.9297 0.9932 0.9905 0.9973
43 0.9695 0.9556 0.9636 0.7837 0.8180 0.8124 0.8113 0.8008 0.8343
Avr. 0.9152 0.9843 0.9528 0.9257 0.9380 0.8371 0.9348 0.9304 0.9097

TSM

12 0.7436 1.0000 1.0000 1.0000 1.0000 0.4872 1.0000 1.0000 1.0000
21 0.9919 1.0000 0.9932 0.9919 0.9973 0.9149 0.9878 0.9932 0.9959
43 0.9624 0.9518 0.9537 0.7891 0.8289 0.8107 0.8239 0.8217 0.8351
Avr. 0.8993 0.9839 0.9823 0.9270 0.9421 0.7376 0.9373 0.9383 0.9437

CO1: Order-based Uniform Crossover; CO2: Order-based One-point Crossover; CO3: Precedence Preserving Order-based Crossover

SM: Scalarization Method; HC1: LN1; HC2: Integrated LN1&LN3
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(a) Instance#12 (b) Instance#15

(c) Instance#21 (d) Instance#35

(e) Instance#40 (f) Instance#43

Fig. 9: Box-plots of the hypervolume values obtained from 31 runs of each evolutionary approach for six
sample instances

instance#40 (Fig. 10(e)), and instance#43 (Fig. 10(f)). The Pareto fronts are obtained from each EA’s best
run yielding the best hypervolume. Fig. 10 illustrates that the best sets of trade-off solutions from all MOEAs
for the small instance#12 have the same Pareto front plots while the TMA with WSM produces better results
when compared to the other algorithms for the remaining cases. This approach also produces a wider spread
of trade-off solutions on the Pareto front for the instance#35. Moreover, the majority of the plots of the best
Pareto fronts are not convex and the results show that a Pareto front obtained for an FJCS-SDFSTs-ITTs
problem instance might contain unsupported trade-off solutions, for example, as in Fig. 10(d) where TGA
with TSM has an unsupported solution with the makespan value of 58 which is not on the convex hull of the
whole Pareto front.
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(a) Instance#12 (b) Instance#15

(c) Instance#21 (d) Instance#35

(e) Instance#40 (f) Instance#43

Fig. 10: The illustration of Pareto fronts consisting of non-dominated trade-off solutions obtained from
the best of runs with each random weight considering 1000 weights in the WSM calculations for six sample
instances

5. Conclusion and future work

In this study, we addressed the problem of multi-objective flexible job shop cell scheduling in the presence
of exceptional and the reentrant parts, intercellular moves, intercellular transportation times, and sequence-
dependent family setup times. We have tested various algorithmic components as a part of genetic and
memetic algorithms for solving the bi-objective FJCS-SDFSTs-ITTs problem. We have also compared the
performance of the tuned evolutionary algorithms using weighted sum, conic, and tchebycheff scalarization
methods. The empirical results illustrate the success of a novel transgenerational memetic algorithm using
a ‘new’ hill-climbing algorithm, guided by an objective function based on weighted sum during the search.
The proposed TMA with WSM approach outperforms the remaining evolutionary algorithms producing a
similar or better performance over at least 38 of the 43 instances and all solutions to the instances represent
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the best-known solutions so far.
Moreover, the sample plots of the Pareto fronts obtained from the memetic algorithm concur with the

same observations as in Deliktas et al. (2019). The Pareto fronts for the bi-objective FJCS-SDFSTs-ITTs
problem instances are not trivial, and they contain unsupported trade-off solutions that are not on the convex
hull of the Pareto front.

As a trivial future research direction, we can test single point based search methods for multi-objective
optimization based on the selected operators that we have designed for the population-based evolutionary
algorithms in this study. Moreover, the performance of those approaches using scalarization can be compared
to the multi-objective evolutionary algorithms, such as NSGA-II, SPEA2. As future work, the proposed
approach can be extended further and applied to the other variants of the problem, for example, that
considers intracellular setup times and intracellular transfer times.
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