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ABSTRACT 31 

Digital soil maps describe the spatial variation of soil and provide important information on 32 

spatial variation of soil properties which provides policy makers with a synoptic view of the 33 

state of the soil. This paper presents a study to tackle the task of how to map the spatial variation 34 

of soil pH across Zambia.   This was part of a project to assess suitability for rice production 35 

across the country.   Legacy data on the target variable were available along with additional 36 

exhaustive environmental covariates as potential predictor variables.   We had the option of 37 

undertaking spatial prediction by geostatistical or machine learning methods. We set out to 38 

compare the approaches from the selection of predictor variables through to model validation, 39 

and to test the predictors on a set of validation observations.  We also addressed the problem of 40 

how to robustly validate models from legacy data when these have, as is often the case, a 41 

strongly clustered spatial distribution. The validation statistics results showed that the empirical 42 

best linear unbiased predictor (EBLUP) with the only fixed effect a constant mean (ordinary 43 

kriging) performed better than the other methods. Random forests had the largest model-based 44 

estimates of the expected squared errors.  We also noticed that the random forest algorithm was 45 

prone to select as “important” spatially correlated random variables which we had simulated.   46 

Keyword: Linear Mixed Models; REML-EBLUP; Random forests, Spatial prediction of soil 47 

pH. 48 

1. INTRODUCTION 49 

Soil maps describe the spatial variation of soil types and provide important information on spatial 50 

variation of soil properties (Kempen et al., 2010).  Mapping of soil properties is important as it 51 

provides policy makers with a synoptic view of the state of the soil, and agricultural stakeholders 52 

with information about where soil problems might occur (Lark et al., 2019). Soil maps are 53 
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generated using various soil mapping methods which can be divided into conventional and 54 

pedometric approaches (Kienast-Brown et al., 2010; Hengl, 2003).  55 

Conventional soil survey represents soil variation in terms of profile classes and corresponding 56 

map legend units.  It can provide a basis for spatial prediction of soil properties and may also serve 57 

as a structure for recording substantial information on soil management and for systematizing 58 

knowledge of the distribution of soils in the landscape.  Conventional approaches were based 59 

largely on manual processes which are costly and time consuming (Kienast-Brown et al., 2010) 60 

mainly because of long fieldwork periods (Moonjun et al., 2010). Pedometric approaches are based 61 

on the application of mathematical and statistical methods for the  primary purpose of predicting 62 

the values of soil properties where these have not been observed directly (McBratney et al., 2000).  63 

A well-established statistical approach to doing this is the application of  model-based geostatistics 64 

(Stein, 1999; Diggle and Ribeiro, 2007).  In this approach the variation of the soil is represented in 65 

a linear mixed model (LMM) as a combination of fixed effects (which may be a constant unknown 66 

mean, or a function of predictive covariates such as remote sensor data), and random effects, 67 

including Gaussian random fields which exhibit spatial correlation.  The parameters of the LMM 68 

model can be estimated by Residual Maximum Likelihood (REML) method developed by 69 

Patterson and Thompson (1971), which allows parameters of the random effects to be estimated 70 

with small bias arising from uncertainty in the fixed effects (Kitanidis, 1987; Swallow and 71 

Monahan 1984; Zimmerman and Zimmerman, 1991; Lark and Cullis, 2004) .  When the model is 72 

fixed, values of the soil property at unsampled sites can be obtained by the empirical best linear 73 

unbiased predictor (EBLUP) (Stein, 1999; Lark et al., 2006; Lark and Webster, 2006; Minsay and 74 

McBratney, 2007). 75 

There has been a growing interest in the potential of machine learning methods (e.g. Breiman, 76 

2001) as an alternative to statistical modelling for spatial prediction of soil properties (Hengl et al., 77 

2015; Behrens and Scholten, 2007). The main difference between geostatistical approaches and 78 
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random forest is that geostatistics is based on a statistical model.  This provides a basis for formal 79 

inference about the validity of the model (including the task of selecting which covariates to use in 80 

prediction), and for producing a prediction distribution at unsampled sites of interest.  One may 81 

then derive point predictions from this distribution (typically the mean), and measures of 82 

uncertainty.  On the other hand, machine learning methods such as random forests, are predictive 83 

tools applied to identify empirical relationships between the target variable in a training data set 84 

and associated predictive covariates and to extrapolate these to unsampled sites.  With no model 85 

there can be no formal inference, but empirical approaches, based on internal cross-validation are 86 

used, for example, to evaluate the evidence that a particular variable is predictive.   One particular 87 

strength of the geostatistical approach is that the estimation of coefficients for predictor variables, 88 

and inferences about them, are based on a model of the spatial dependence of the random variation.  89 

This accounts for the fact that data which are strongly spatially clustered are likely to be correlated, 90 

and so do not provide independent evidence to support the fitted model. 91 

In the study reported here our objective was to assess approaches for digital mapping of soil pH at 92 

national scale across Zambia to support evaluation of land potential for rice production.  Legacy 93 

data on soil pH were available from a previous national survey.  As with many such surveys, this 94 

followed a two-stage design, and so the observations were spatially clustered.  In addition we had 95 

access to various exhaustive environmental covariates which could be regarded as potential 96 

predictor variables for soil pH..  We compared different forms of linear mixed model, and 97 

prediction with the random forest using a validation subset of the data.   Prediction errors were 98 

evaluated at the validation locations by comparing predictions with observed values.  The selection 99 

of the validation subset, and the quantification of the uncertainty from the observed prediction 100 

errors had to take account of the spatial clustering of the observations in the legacy data.  Because 101 

of this clustering, no subset could be regarded as independent random observations. 102 

2. THEORY 103 
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2.1 Linear Mixed Model 104 

The theory of residual maximum likelihood (REML) in combination with the empirical best 105 

linear unbiased predictor (EBLUP) for spatial interpolation has been illustrated and described 106 

in detail by Lark et al., 2006. The LMM takes the form   107 

𝐳 = 𝐌𝛃 + 𝐒𝛈 + 𝛆, (1) 108 

 109 

where z is a set of observations of the random variable at sampled locations,  𝐌 is the design 110 

matrix of fixed effects, which could include covariates such as topographic attributes,  𝛃 is the 111 

vector of the fixed effects parameters or regression coefficients, 𝐒 is the design matrix of 112 

random effects (which is an identity matrix unless analytical duplicate observations are 113 

included), 𝛈 is a random effect, a Gaussian random variable which has a mean of zero and, in 114 

the spatial setting, a covariance matrix which expresses spatial dependence, ε is an 115 

independently and identically distributed Gaussian residual of mean zero and variance 𝜎2.  116 

These two random components have a joint distribution 117 

[
𝛈
𝛆

] ~𝒩 ([
0
0

] , [
𝜎2𝜉𝐆 𝟎

𝟎 𝜎2𝐈
]) , (2) 118 

 119 

where 𝐈 is the identity matrix and 𝐆 is the correlation matrix of the random effect 𝛈. Element 120 

[i,j] of G, at locations 𝐱𝑖  and 𝐱𝑗   depends only on the interval in space between them under an 121 

assumption of second-order stationarity.  The lag vector 𝐱𝑖 − 𝐱𝑗,  under the assumption of 122 

isotropy, depends only on the scalar part of this vector, the lag distance and so 123 

𝐆[𝑖, 𝑗] = 𝜌(|𝐱𝑖 − 𝐱𝑗|; 𝛼), (3)124 

  125 
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where 𝜌(ℎ; 𝛼) is a correlation function of lag distance h with spatial parameters 𝛼 which control 126 

how the correlation decreases with increasing distance.  The term 𝜉 is the ratio of the variance 127 

of the random effect 𝛈 to 𝜎2, the variance of the residual term. 128 

The residuals depend on the fixed effects parameters 𝛃 in the model, and in ordinary maximum 129 

likelihood estimation the uncertainty in the estimates of the fixed effects parameters biases the 130 

estimates of the random effects parameters.  To avoid this, we use residual maximum likelihood 131 

(REML) which is based on the principle that a new random variable, independent of the fixed 132 

effects, is computed by projecting the original data 𝐳 into a residual space where the fixed 133 

effects can be filtered out (Chai et al., 2008). The log likelihood of the new random variable 134 

which we now call the residual log-likelihood because its independent of fixed effects can be 135 

expressed as; 136 

ℓ𝑅(𝜎2, 𝜉, 𝛼|𝐳) = − 
1

2
{log|𝐇| + log|𝐌T𝐇𝐌| + (𝑛 − 𝑝)𝜎2 +

1

𝜎2
𝐳T(𝐈 − 𝐖𝐂−1𝐖T)𝐳, (4) 137 

Where 𝐇 =  𝜉𝐌𝐆𝐙T + 𝐈, 𝐖 = [𝐌, 𝐒] and 𝐂 = [𝐌T

𝐒T

𝐌 𝐌T𝐒
𝐌 𝐒T𝐒 + ξ−1𝐆−1]. 138 

Once the covariance parameters 𝜎2, 𝜉, 𝛼 have been estimated by REML, they are used to 139 

compute the estimated covariance matrix at sampled points. With the estimated covariance 140 

matrix computed, the estimated fixed effects parameter, �̂�, and predicted random effects, 𝛈,̃  are 141 

then computed by solution of mixed model equation:  142 

𝐂 [
�̂�
�̃�

] = [𝐌T𝐳
𝐒T𝐳

] (5) 143 

With the covariance matrix for the error of the estimates being: 144 

Cov [
�̂� − 𝛃
�̃� − 𝛈

] = 𝜎2𝐂−1. (6) 145 
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Now that the covariance matrix and the fixed effects parameters have been estimated, they are 146 

used in EBLUP to predict the soil property , �̃�𝑝 , at unsampled locations: 147 

�̃�𝑝 = 𝐌p
T�̂� + �̃�𝐩 = 𝐌p

T�̂� + 𝐠o,p
T 𝐆−1�̃�, (7) 148 

where 𝐌p is the design matrix for the prediction sites, 𝐠o,p is a vector computed from the 149 

covariance matrix of 𝛈 with the 𝛈p values at the unsampled locations (Cov[𝛈, 𝛈p] = 𝜉𝜎2𝐠o,p). 150 

The variance of the prediction errors, 𝑉𝑎𝑟[�̃�𝑝 − 𝑧𝑝], which accounts for the uncertainty in 151 

predicting the fixed effects and uncertainty in predicting the random effects is expressed as: 152 

Var[�̃�𝑝 − 𝑧𝑝]    = 𝜎2 {[𝐌p, 𝐠o.p
T 𝐆−1]

T
𝐂−1[𝐌p, 𝐠o.p

T 𝐆−1] + 𝜉(gp,p − 𝐠o.p
T 𝐆−1𝐠o,p) + 1}.            (8) 153 

There are many variables that researchers can use as fixed effects in linear mixed models for 154 

spatial prediction of soil properties. However, it is unwise to include variables without regard 155 

for evidence that they are of predictive value, the inclusion of predictors unrelated to the target 156 

variable may inflate the prediction error variance. To avoid this, variable selection is an 157 

important step in model development.  One approach to the problem is to base the inclusion or 158 

rejection of a predictor based on a hypothesis test in the LMM framework (e.g. by a log-159 

likelihood ratio test) (Verbeke and Molenberghs, 2000).  To reduce the risk of including excess 160 

predictors because of multiple hypothesis testing, one may use false discovery rate control 161 

(Lark, 2017).  The false discovery rate (FDR) is the probability that a null hypothesis is true, 162 

given that it has been rejected.  False discovery rate control can reduce the power to detect real 163 

predictors, and Lark, (2017) demonstrated how this problem can be reduced, while maintaining 164 

FDR control, by the method of alpha investment (Foster and Stine, 2008).  This entails an initial 165 

ordering of the predictors starting with the one which, a priori (and not based on inspection of 166 

the data) is thought most likely to be of predictive value and adding in predictors in declining 167 

order of expected predictive power. In this approach the power to detect a predictor is increased 168 
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by the rejection of null hypotheses early in the sequence while maintaining control of FDR.  169 

This approach has been used elsewhere for spatial prediction (Gashu et al., 2020).  170 

A disadvantage of the LMM approach is that it assumes that the fixed effects are linear in the 171 

parameters. Such a model can represent complex and non-linear relations between soil 172 

properties and predictors, for example through the use of polynomial terms in the predictor 173 

variables, or spline basis functions, but there has been increasing interest in more flexible 174 

methods to predict soil properties from covariates, in particular the machine learning method 175 

known as the random forest. 176 

2.2  Random Forests 177 

The random forest is an ensemble tree-based method that combines multiple decision trees 178 

(classification or regression) to give a prediction (Breiman, 2001). A decision tree is an 179 

algorithm that involves recursive partitioning of data into several simple regions using a series 180 

of splitting rules. It is called a decision tree because these series of splitting rules can be 181 

summarised into an upside-down tree structure as illustrated in Figure 1.  Figure 1 shows a 182 

structure made up of predictors ( 𝑋1, 𝑋2, … … , 𝑋𝑘) which are split into J distinct and non-183 

overlapping regions (𝑅1, 𝑅2, … , 𝑅𝑗) at test node t, and the mean of the response values for the 184 

training observations in each region Rj is calculated and assigned as a prediction for every 185 

observation that falls in region Rj (James et al., 2013). When growing a decision tree, the 186 

following steps are taken; (1) at each test node t, a predictor Xk is randomly sampled from all 187 

the predictors, then the best split point 𝑆𝑘  among all possible splits for the k th predictor is 188 

determined; (2) the best split 𝑆∗ among the 𝑆𝑘 is chosen and this jth predictor at its identified 189 

cut point 𝐶𝑆∗  is used for the splitting at test node 𝑡. (3) The predictor Xk  is split into two regions 190 

( observations with 𝑋𝑘 < 𝐶𝑆∗  and 𝑋𝑘 ≥ 𝐶𝑆∗) at test node 𝑡. Steps 1-3 are repeated on all 191 

descendant nodes to grow a tree 𝑓(𝑥) (Archer and Kimes, 2008; James et al., 2013).  192 
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 193 

Figure 1: illustration of a decision tree 194 

One major limitation with decision trees is that using only one tree for prediction, results in 195 

highly unstable predictions, a small change in the data can result into a large change in the final 196 

estimated tree. To improve the performance of decision trees, Breiman (1996) introduced an 197 

algorithm called Bagging, also known as bootstrap aggregation which takes repeated 198 

(bootstrap) samples (where B is the number of bootstrap samples) from training set with 199 

replacement and builds a total of 𝐵 trees (𝑓1(𝑥), 𝑓2(𝑥), … . . 𝑓𝑏(𝑥)) which the average of all the 200 

prediction trees 𝑓𝑏𝑎𝑔(𝑥) is calculated: 201 

𝑓𝑏𝑎𝑔(𝑥) =  
1

𝐵
∑ 𝑓𝑏(𝑥)

𝐵

𝑏=1

 (9) 202 
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One disadvantage of bagging is that a single predictor may dominate all trees in the bag, 203 

meaning that their outputs are strongly correlated.  As a result of this the reduction in variance 204 

from the use of multiple trees is very limited (James et al., 2013).  To address this, Breiman 205 

(2001) developed a random forest algorithm which is an improvement of bagging. Like 206 

bagging, random forest also takes repeated (bootstrap) samples from the training data and 207 

builds 𝐵 decision trees. But in the case of random forest, when building these trees, to avoid 208 

using one strong predictor for all bagged trees, at every test node 𝑡, when splitting, every bagged 209 

tree is forced to consider only a random subset of predictors by randomly sampling a fresh 𝑚 210 

predictors from a set of 𝑘 predictors, and the split is only allowed to use  one of these 𝑚 211 

predictors. For regression trees, the number of 𝑚 predictors considered at each split is 212 

approximately the total number of predictors divided by three (𝑚 ≈ 𝑘
3⁄  ) and for classification 213 

trees, 𝑚 ≈ √𝑘. Because of this, random forest results in many uncorrelated trees which give a 214 

large reduction in variance when averaged.  215 

The random forest algorithm has three important outputs. These are the out-of-bag Mean 216 

Squared Error (OOB Mean Squared Error), the out-of-bag R-squared and the variable 217 

importance. The RF model does not use all the data for building the tree. In each bootstrap 218 

training set, about one-third of the data are left out. The data that are left out when building the 219 

trees is called out-of-bag (OOB) data and after the trees are grown, the OOB data are used as 220 

test set to measure the strength (OOB Mean Squared Error)  and correlation (OOB R-squared) 221 

of the model. In short, random forest has an inbuilt cross-validation. Variable importance is 222 

defined as the increase in prediction error when OOB data for that variable is randomly 223 

permuted while all others are left unchanged (Liaw, 2002). It analyses the contributions of each 224 

predictor to the overall results (Breiman, 2001). The algorithm randomly permutes the predictor 225 

Xm several times, breaking its original association with the response variable and asses the 226 

relevance of the predictor by using the permuted predictor together with the other unpermuted 227 
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predictors to predict the response variable for the out-of-bag observations giving the difference 228 

in prediction accuracy before and after permuting. The result is a vector of importance measures 229 

for each predictor equivalent to the number of permutations. The algorithm then computes a p-230 

value as a measure of the evidence that a variable is predictive (Strobl et al., 2007; Altmann et 231 

al., 2010).  This permutation p-value is the probability of observing a permuted model (from 232 

the several number of permutations) that is equal to or better than the unpermuted model 233 

(Cummings et al., 2004).  234 

Equation (7) presents the E-BLUP from a linear mixed model.  The second term on the right-235 

hand side corresponds to the spatial interpolation of the correlated random effect in the model.  236 

In this way the E-BLUP combines a regression-type prediction based on the predictor variables 237 

with a spatial interpolation component. As described above the random forest predicts a soil 238 

property from the predictor variables only, making no use of spatial dependence through 239 

interpolation.  An attempts has been made to include spatially weighted local observations in 240 

prediction by random forests by including coordinates as predictors and using weighted buffer 241 

distances (Hengl et al., 2018), neighbouring observations and their distances to the prediction 242 

location were used by Sekulić et al., (2020).  Li et al., (2011) and Viscarra Rossel et al., (2014) 243 

combined random forest with kriging, just like in regression-kriging, by calculating the random 244 

forest residuals and then kriged them to all prediction positions and then added to the results of 245 

the prediction positions. .   246 

As described above, inferences in the random forest approach are based on an internal cross-247 

validation procedure.  This might lead to overoptimistic conclusions about a random forest 248 

model, or about the value of a particular predictor if observations from the same clusters appear 249 

in the OOB sample and in the data used to develop the trees.  That is because the observations 250 

within a cluster can be expected to be strongly correlated, and so the validation of a model fitted 251 
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to data on strongly correlated observations will give an unduly optimistic impression of the 252 

model’s capacity to predict at an independent location. 253 

3. CASE STUDY 254 

3.1. Data  255 

Soil data 256 

This case study uses Rural Agricultural Livelihoods Survey (RALS) of 1713 soil pH data 257 

collected by Indaba Agricultural Policy Research Institute (IAPRI) in collaboration with 258 

Central Statistical Office (CSO) and Ministry of Agriculture. The sampling frame for the RALS 259 

2012 survey was based on the 2010 Census of Housing and Population (CSO/MAL/IAPRI, 260 

2015). Full detail of the stratified two-stage sampling design is provided by (CSO 2012). Four 261 

households were randomly selected in each Standard Enumeration Area (SEA) and soil samples 262 

were collected from the largest maize field. A composite of 10–20 sub-samples of soil collected 263 

throughout each field and each sub-sample was a composite of equal parts soil in the 0–10cm 264 

and10–20cm depth horizons.  Full details on the soil collection and laboratory analysis for soil 265 

pH (determined for a soil suspension in CaCl2 with a standard pH meter) are provided by Burk 266 

et al., (2019) and Chapoto et al., (2016). The spatial prediction of soil pH for Zambia using this 267 

data has been studied by Chapoto et al., (2016) who only used ordinary kriging for the 268 

prediction. 269 

Data cleaning involved removal of spurious values in the x and y coordinates.  The need for 270 

this was indicated when the raw data were first plotted, showing points lying outside the borders 271 

of Zambia. The mean coordinates of all households were computed in each Standard 272 

Enumeration Area (SEA) centroid, and then the households were removed from the data set if 273 

the notional distance to the SEA centroid exceeded 10km.  This threshold value was decided 274 

after discussion with IAPRI staff about plausible values for the distance between a village in 275 

the EA and the centroid.  After data cleaning, a total of 1202 soil samples were used for analysis. 276 
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The sampling pattern for the RALS survey was not designed for spatial interpolation of soil. 277 

Due to the sampling pattern, the data is strongly clustered at the level of SEAs (the SEAs are 278 

the clusters) with a total of 362 clusters. For this reason, splitting of the dataset into training set 279 

(80%) and test set (20%) was done at cluster level (the 362 clusters were split into 260 (80%) 280 

for training and 102 (20%) for validation).  Figure 2 Shows the training and test clusters with 281 

the red solid dots being the training clusters  and the blue solid triangles being the test clusters.  282 

 283 

 284 

Figure 2: Cluster locations for the RALS 2012 soil data. red solid dots being the training 285 

clusters used for spatial prediction of soil pH and the blue solid triangles being the test clusters 286 

left out for validation. 287 

Environmental Covariates 288 
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The environmental predictors available for use in this study were Soilclass, Landcover, mean 289 

annual rainfall, elevation, slope, aspect, valley depth, LS-Factor (a combination of slope and 290 

slope length, relative slope position (RSP), channel network base Level (CNBL) and 291 

Normalized difference vegetation index (NDVI).  292 

Soilclass information was obtained from the 1:1,000,000 scale exploratory soil map of Zambia 293 

compiled by the Zambian Ministry of Agriculture, Zambia Agricultural Research Institute 294 

(ZARI) - Soil Survey Section in 1991(GRZ, 1991) and then digitized to raster format. Map 295 

units are allocated to suborders of the FAO-UNSECO classification as used in the Third Draft 296 

of the legend to the Soil Map of the World (Jahn et al, 2006)).  A total of 96 soil classes were 297 

represented in the data available for model development, but these do not comprise all the 298 

classes on the map of Zambia, and so some generalization is required to develop models for 299 

spatial prediction. We, therefore, reduced the number of classes, by aggregating the classes 300 

from suborder to order level, this reduced the number of classes to 18 and all the classes in the 301 

prediction grid where represented in the training set. Land cover data for the years between 302 

2000 and 2015 with spatial resolution of 300m were downloaded from the European Space 303 

Agency (ESA), (2017). The data presented a similar situation as that of soilclass with landcover 304 

classes in the prediction sites not being represented in the training set. We also reduced the 305 

number of landcover classes, by aggregating them as shown in Table 1.  306 

Table 1: Aggregated landcover classes based on ESA, (2017) 307 

New Class ESA Class Description 

1 

10 rainfed cropland 

20  irrigated or post-flooding cropland 

30 Mosaic cropland (>50%) / natural vegetation (tree 

2 

11 Herbaceous cover 

40 herbaceous cover) (>50%) / cropland (<50%) 

110 

Mosaic herbaceous cover (>50%) / tree and shrub 

(<50%) 

3 12 Tree or shrub cover 
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100 

Mosaic tree and shrub (>50%) / herbaceous cover 

(<50%) 

4 

50 

closed to open (>15%), evergreen, broadleaved, tree 

cover 

60 

closed to open (>15%), deciduous, broadleaved, 

tree cover 

61 closed (>40%), deciduous, broadleaved, tree cover 

62 open (15-40%), deciduous, broadleaved, tree cover 

5 

120 Shrubland 

122 Shrubland deciduous 

6 130 Grassland 

7 

160 fresh or brackish water, flooded, tree cover 

170 saline water, flooded, tree cover 

180 

fresh/saline/brackish water, flooded Shrub or 

herbaceous cover 

8 190 Urban areas 

9 

200 Consolidated bare areas 

202 Unconsolidated bare areas 

 308 

Mean annual rainfall data (averages from 1970 to 2000) with a spatial resolution of 1km was 309 

downloaded from WorldClim website (Fick and Hijmans, 2017).  A 90-m resolution NASA 310 

Shuttle Radar Topography Mission (SRTM3) Digital elevation model (DEM) was downloaded 311 

from USGS (2019) and projected to WGS 84 UTM 35 S. The DEM was pre-processed by filling 312 

sinks using the fill sinks (Planchon/Darboux, 2001) tool in Saga GIS, and then elevation, slope, 313 

aspect, valley depth, LS-Factor (a combination of slope and slope length), relative slope 314 

position (RSP) and channel network base Level (CNBL) data was extracted from the DEM 315 

using basic terrain analysis tool in Saga GIS. MODIS land surface reflectance (MOD009GA 316 

V6) was downloaded from USGS (2019).  After downloading the respective data sets, Quantum 317 

GIS was used to project the data sets to WS 84 UTM 35s and then converted to the Integrated 318 

Land and Water Information System (ILWIS) format. Then ILWIS was used to harmonise all 319 

the raster files to the same extent and cell size of 1km. Normalized difference vegetation index 320 

(NDVI) was extracted from the remote sensing images using the imageIndices of the 321 

soilassessment package for the R platform (Omuto, 2020). 322 
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3.2. Spatial Prediction of soil pH 323 

Soil pH is an important chemical property of the soil that affects its fertility status. This is 324 

because the availability of most essential plant nutrients is influenced by the levels of pH in the 325 

soil (Jones, 2012). There are two principal processes that affect the levels of soil pH in the soil 326 

(1) the production of H+ ions and (2) the loss of basic cations from the soil. Eleven variables 327 

were available to be considered as possible predictors for soil pH.  328 

In section 2.1 we explained how variable selection for the LMM included false discovery rate 329 

control, to avoid over-fitting, with alpha-investment to improve the probability of retaining 330 

covariates which are predictive as predictor variables.  The alpha-investment approach is most 331 

effective if the predictors can be ordered, a priori, with the one thought most likely to be 332 

predictive ranked first and so on as shown in Table 3.  It must be emphasized that this ranking 333 

is based on prior considerations about the underlying process, and not on exploration of the 334 

data.  We did this ordering of exhaustive environmental covariates based on how they influence 335 

the production of H+ ions and the loss of basic cations from the soil. Rainfall was proposed as 336 

the most influential factor at national scale. Soils in environments with large annual rainfall 337 

tend to have relatively low pH due to reduced based saturation resulting from loss of basic 338 

cations by leaching (McCauley, et al., 2009; Brady and Weil, 2014).  For this reason more acid 339 

soils are expected in the northern parts of Zambia (Agroecological Region Three) and in the 340 

south (Agroecological Region One) where annual rainfall is much smaller (Veldkamp et al., 341 

1984; GRZ and UNDP, 2009).  Soil class was ranked second because the soil classes represent 342 

variations in soil parent material, weathering and rejuvenation of land surfaces and development 343 

of the soils. The old, highly weathered plateau soils in the northern part of the country have lost 344 

most of the basic cations. The sandy soils in the western part are easily leached with little 345 

accumulation of basic cations. On the on the hand, the Karoo group materials in the valleys are 346 

rich in basic cations resulting in high pH values.  After soil class we included topographic 347 
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variables Slope, Elevation and Valley Depth.  These should reflect processes such as the 348 

movement of water which carries with it dissolved basic cations from steep slope to flat areas, 349 

and the rejuvenation of weathered land surfaces which entails the removal of old highly-350 

weathered material to reveal material with a larger content of weatherable minerals.  We then 351 

included Landcover and the Normalized Difference Vegetation Index (NDVI).  These will 352 

reflect effects of land management practices, including agricultural inputs, and decisions on 353 

land use which may depend on how local pH limits crop performance. The NDVI will also 354 

reflect local vigor of vegetation growth, which may be pH limited.  Finally we included some 355 

further topographic variables which may reflect differences in the soil-forming environment 356 

(length-slope factor, channel network base level, relative slope position and aspect.  357 

  The data points were first projected from WGS 1984 to WSG UTM 35s. A total of 19 358 

observations had duplicate coordinates, which were jittered by adding 100m to each of the 359 

coordinates for one site. An exploratory model was fitted to the data with all predictors 360 

included, using the likfit function of geoR package (Ribeiro and Diggle, 2001) with residual 361 

maximum likelihood (REML) as the likelihood method.  The only output from this model which 362 

was examined were the residuals, for which summary statistics were calculated, and exploratory 363 

plots to check the plausibility of the assumption of normally distributed errors.  In addition, the 364 

correlation model type (exponential or spherical) was identified for which the residual 365 

likelihood was largest, and this model was then used in all further analyses.  During the 366 

sequence testing of hypothesis, first the null model, m0, (with the only fixed effect a constant 367 

mean) was fitted with the likfit function and ML as the likelihood method. Then the next model, 368 

m1, with the first predictor in the sequence was fitted in the same way. The likelihood ratio was 369 

then calculated:  370 

𝐿 = 2(𝐿m1 − 𝐿mo), (10) 371 
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where 𝐿m1 is the likelihood for model m1 and 𝐿𝑚0 is the likelihood for the null model.  If the 372 

null model is correct, then the asymptotic distribution of L is  𝜒2 with degrees of freedom equal 373 

to the number of additional parameters in model m1 by comparison with m0.   If L provided 374 

evidence to reject the null model with P<0.05, then the additional predictor in model m1 was 375 

retained.  The second predictor in the list was then considered.  When all predictors had been 376 

examined the P-values at each step were reassessed in sequence using alpha-investment as 377 

described by Lark (2017) and controlling the FDR at 0.05.  Details of this approach are provided 378 

by Lark (2017), but in summary successive tests are made against a threshold P-value which 379 

depends on a quantity, the alpha-wealth, which is either augmented when null hypotheses are 380 

rejected or augmented when they are rejected.  If the hypotheses are ordered so that the variables 381 

which, a priori, are expected to be good predictor variables are considered early, then this alpha 382 

investment method increases the probability of selecting predictive covariates while controlling 383 

FDR. 384 

After variable selection, the likfit function of geoR package in R with REML as the likelihood 385 

method was used to fit two linear mixed models. One with the selected predictors as fixed 386 

effects (Kriging with an external drift) and the other with a constant mean as fixed effect 387 

(ordinary kriging). The E-BLUP prediction for both models was then calculated at the 388 

validation points. 389 

The ranger function of ranger package (Wright and Ziegler, 2017) was used to fit the random 390 

forest model. Because random forest has an inbuilt variable selection that occurs within the 391 

model by randomly selecting variables to be used at splitting nodes, two models were fitted, 392 

one with all variables and the other with the two variables that were selected during the alpha-393 

investment variable selection procedure. In this study, we use the ranger package in R to 394 

compute the permutation variable importance according to Altmann et al., (2010).  395 
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When predicting soil properties in space, the random forest algorithm can find apparently 396 

predictive relationships between the target variable and arbitrary spatial variables (such as 397 

digital images of human faces) when these are presented as candidate predictor variables 398 

alongside covariates which pedometricians might reasonably expect to be predictive of soil 399 

properties, (Wadoux et al., 2020).  This shows that pattern recognition should not be equated to 400 

knowledge discovery.  It may also suggest that the random forest algorithm is prone to 401 

overfitting, as a result of which its predictions at independent locations may be unreliable. To 402 

investigate this effect, we generated entirely random spatially autocorrelated candidate 403 

predictor variables, independent of our data, which we call null predictors. We used six spatially 404 

correlated but mutually independent null predictors, specifying a spherical variogram with a 405 

distance parameter of 100 km, nugget variance of 0 and correlated variance of 1 for each. We 406 

used the function RFsimulate from the RandomFields package for R (Schlather et al., 2015) to 407 

simulate valuses of these null predictors at the calibration locations.  We then used the ranger 408 

package (Wright and Ziegler, 2017) to fit a random forest model with all predictors including 409 

the null variables as predictors and then computed the permutation variable importance 410 

according predictor p-values from the model result. 411 

To examine the possibility of improving RF predictions by an additional kriging step (following 412 

Li et al., 2011 and Viscarra Rossel et al., 2014), residuals of the models at training points were 413 

derived (subtracting the predicted values from the observed values) and then a  variogram was 414 

fitted to the residuals using likfit with a constant mean as the only fixed effect.  The evidence 415 

for spatial dependence in the residuals was assessed by comparing the Akaike Information 416 

Criterion (AIC) for the fitted model and for a non-spatial alternative which are reported in likfit 417 

output. 418 
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3.3.  Validation 419 

Validation of each selected model or random forest was done using the validation data set.  At 420 

each validation location the predicted soil pH was computed, and the prediction error was 421 

calculated as the difference between the predicted and observed soil pH (so a positive error is 422 

when the predicted pH exceeds the observed value).  As exploratory summary statistics the 423 

mean error, median and mean square error were computed. 424 

The validation data belong to a subset of SEA from the original survey, and as such are strongly 425 

clustered.  Because of this the sample average of the squared errors may not be a good estimate 426 

of the mean square error, because the observations are not independent.  A model-based 427 

approach was therefore taken to compute the expected squared error of prediction.  A LMM 428 

was fitted to the prediction errors at the validation site (with a constant mean the only fixed 429 

effect).  The expected square error (ESE) for each set of predictions was then computed as the 430 

sum of the squared mean error and the variances (nugget and spatially correlated) from the 431 

LMM.  This is the a priori mean square error, i.e. the expected square error at a random location, 432 

and as such is likely to exceed the MSE computed directly from the errors of clustered data. 433 

4. RESULTS  434 

4.1 Variable selection 435 

Table 2 and Figure 3 show the distribution of the residuals from the exploratory model. The 436 

histogram appears symmetrical and normal and the points on the QQ plot are close to a straight 437 

line.  The residuals have octile skewness inside the range [−0.2,0.2] and skewness inside [−1,1], 438 

which would mean that a transformation is not normally considered necessary (Rawlins et al., 439 

2005, Webster and Oliver, 2007).  440 
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Table 2: Statistical summary of residuals from the exploratory model 441 

mean Median Variance SD Skewness Octile 

skewness 

Kurtosis 

2.366e-16 -0.040 0.167 0.408 0.487        0.159 1.044 

 442 

 443 

Figure 3: Histogram and quantile plot of residuals from exploratory model 444 

 445 

Table 3: REML estimates of parameters and AIC for the exploratory model, null model and the 446 

hypothesis tests. 447 

Test Predictors Partial 

Sill 

Range  Nugget AIC 

Max.likelihood Non-spatial 

 Exploratory (all predictors) 0.1367 21.08 0.218 1570 1664 

0 mean 0.259 68.28 0.224 1618 1946 

1 Rainfall 0.217 51.87 0.222 1611 1865 

2 Rainfall + Soilclass 0.197 52.71 0.221 1622 1817 

3 Rainfall +Slope 0.214 51.98 0.222 1610 1856 

4 Rainfall + Elevation 0.180 39.70 0.220 1598 1774 

5 Rainfall + Elevation + Valley 

depth 

0.173 33.48 0.218 1598 1770 

6 Rainfall+ Elevation +  Landcover 0.174 40.09 0.220 1603 1769 

7 Rainfall + Elevation + NDVI 0.181 39.83 0.220 1600 1776 

8 Rainfall + Elevation + LS  0.174 38.84 0.221 1596 1760 
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9 Rainfall + Elevation + LS + 

CNBL 

0.171 37.40 0.221 1597 1783 

10 Rainfall + Elevation + LS + RSP 0.171 38.13 0.221 1598 1751 

11 Rainfall + Elevation + LS + 

Aspect 

0.173 39.18 0.221 1598 1760 

 448 

Table 4 shows the log likelihood ratio and p-values of each test at respective degree of freedom 449 

df and chi-square distribution values. The likelihood ratios of tests 1,4 and 8 were greater than 450 

the chi-square distribution value values. Therefore, the null hypothesis for these cases were 451 

rejected, and the predictors retained during the sequential testing.  The rest of the tests had log 452 

likelihood ratio less than their respective chi-square distribution values. Hence the null 453 

hypothesis was accepted for these predictors and they were dropped. 454 

Table 4:  likelihood ratio and p-values of each hypothesis test at respective degree of 455 

freedom(df) and chi-square distribution values.  456 

Test df Chi-

square  

Likelihood 

ratio 

p-

value 

1 Rainfall 1 3.841 9.533 0.002 

2 Rainfall + Soilclass 17 27.587 22.506 0.166 

3 Rainfall +Slope 1 3.841 2.429 0.119 

4 Rainfall + Elevation 1 3.841 14.416 0.000 

5 Rainfall + Elevation + Valley depth 1 3.841 1.817 0.177 

6 Rainfall+ Elevation +  Landcover 8 15.507 10.836 0.211 

7 Rainfall + Elevation + NDVI 1 3.841 0.598 0.439 

8 Rainfall + Elevation + LS  1 3.841 3.946 0.047 

9 Rainfall + Elevation + LS + CNBL 1 3.841 1.047 0.306 

10 Rainfall + Elevation + LS + RSP 1 3.841 0.403 0.525 

11 Rainfall + Elevation + LS + Aspect 1 3.841 0.213 0.644 

Df= Degree of freedom which is the difference between the total degree of freedom for the 457 

target model and that of the model being compared to, LS= LS-Factor, CNBL= Channel 458 

Network Base Level, RSP= relative slope position.   459 

 460 

Figure 4.a shows the alpha wealth after each test and it can be observed that the quantity of the 461 

wealth is increased when the null hypothesis is rejected and depleted when the null hypothesis 462 
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retained, and it goes to zero at the end of the sequence. Figure 4.b shows the p-values (open 463 

symbols) for the successive tests of additional predictors, as in Table 4, and the threshold (solid 464 

symbols) against which each successive p-value is tested to achieve FDR.  On this basis rainfall 465 

and elevation were selected as predictors.  466 

 467 

 468 

Figure 4: a. alpha wealth after each test. b. probability of alpha investment and p-values 469 

 470 

4.2  Spatial prediction of soil pH 471 
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The estimated covariance parameters for the linear mixed models to be used for spatial 472 

prediction of soil pH by the E-BLUP with elevation and rainfall as fixed effects for prediction 473 

(Method A) and a constant mean as the only fixed effect (Method B, equivalent to ordinary 474 

kriging) are shown in Table 5. The nugget, partial sill and range for the model with rainfall and 475 

elevation as fixed effects are 0.220, 0.195 and 33.95 respectively.  These values are smaller 476 

than the corresponding parameters for the model with a constant mean as the only fixed effect 477 

(0.224, 0.269 and 72.83). AIC values for both models are less than those of respective non-478 

spatial AIC.  On this basis we may conclude that there is evidence for spatial dependence in the 479 

random component of the LMM, and so potentially benefits in computing the E-BLUP for 480 

spatial prediction at unsampled sites. 481 

Table 5: Covariance parameters for A= REML-EBLUP with elevation and rainfall as fixed 482 

effects selected through alpha-investment (kriging with external drift), B=REML-EBLUP with 483 

the only fixed effect a constant mean (ordinary kriging). 484 

Method Partial Sill Range  Nugget AIC 

Max.likelihood Non-

spatial 

A 0.195 33.95 0.220 1184 1310 

B 0.269 72.83 0.224 1614 1945 

 485 

Table 6 shows the number of trees, number of predictors, number of variables considered at 486 

each split, target node size and out-of-bag cross validation of the two random forest methods. 487 

The out-of-bag MSE and R-squared show that there is a slight reduction in performance of the 488 

random forest model with rainfall and elevation 489 

Table 6: ntree = number of trees in the forest; mtry = number of variables considered at each 490 

split 491 

Method ntree predictors  mtry Target node 

size 

Out-of-Bag 

MSE 

Out-of-Bag  

R-squared 
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C 200 11 3 5 0.31 0.30 

D 200 2 1 5 0.32 0.27 

 492 

Table 7 shows the permutation variable importance for each predictor when a random forest 493 

model is fit with all predictors alone and when we include null predictors (sim1 to sim6) which 494 

were generated by simulation to examine how random forest variable importance performs with 495 

predictors that have no relation to the data. For the random forest model, the most important 496 

variable is elevation with importance value of 0.166, followed by Channel Network Base Level 497 

with value of 0.155. some variable importance values for some predictors are almost equal or 498 

even less, but their p-values are much smaller. Null variables sim1 and sim6 despite have low 499 

variable importance values, but very small p-values (less than 0.01).  The inclusion of these 500 

null variables has a substantial effect on the p-values of some predictors such as soilclass, slope, 501 

landcover. 502 

Table 7: Permutation variable importance and p-values when a random forest model is fit with 503 

all predictors alone and when we include null predictors (sim1 to sim6).   504 

Predictor No null predictors Null predictors  included 

Importance p-value Importance p-value 

rain 0.0889 0.0099 0.0912 0.0099 

soilclass 0.0231 0.0198 0.0153 0.0099 

slope 0.0318 0.8218 0.0268 0.2079 

elevation 0.1657 0.0099 0.1718 0.0099 

valley 0.0761 0.0099 0.0544 0.0099 

landcover 0.0063 0.4752 0.0074 0.0792 

NDVI 0.0499 0.0099 0.0470 0.0099 

ls 0.0467 0.3267 0.0286 0.1287 

cnbl 0.1554 0.0099 0.1477 0.0099 

rsp 0.0554 0.0198 0.0330 0.0495 

aspect 0.0148 0.1188 0.0066 0.3663 

Sim1   0.0279 0.0099 

Sim2   0.0232 0.0198 

Sim3   0.0187 0.0594 

Sim4   0.0204 0.0198 

Sim5   0.0160 0.1782 

Sim6   0.0274 0.0099 
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 505 

Table 8 shows the estimated parameters of the random forest residuals for the exponential, 506 

spherical and pure nugget correlation models. the non-spatial model was preferred because the 507 

AIC values for the spatial component was higher than that of the non-spatial component in both 508 

random forest predictions. Indeed, the fitted correlated variance for the spatial covariance 509 

function was zero.  On this basis there is no scope to improve the RF predictions by a kriging 510 

step. 511 

Table 8: Estimated parameters of the exponential, spherical and pure nugget correlation 512 

functions for the residuals of the two random forest predictions. 513 

Method Parameter Exponential Spherical Pure.nugget 

RF (dem + rain) 

Partial Sil 0 0 0.188 

range 0 0 50 

Nugget 0.188 0.188 0 

AICmax.lelihood 1123 1123 1123 

AICnon-spatial 1119 1119 1119 

RF (all predictors) 

Partial Sil 0 0 0.157 

range 0 0 50 

Nugget 0.157 0.157 0 

AICmax.likelihood 951.4 951.4 951.5 

AICnon-spatial 947.4 947.4 947.4 

 514 

Figure 5 shows the predicted spatial variability of soil pH. The spatial pattern is similar for all 515 

the models with low pH values (less than 5.5) in the Western and Northern parts and higher 516 

values (above 6) in the Southern and Eastern parts. 517 
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   518 

Figure 5: Prediction maps of soil pH for (a) REML-EBLUP with elevation and rainfall as fixed 519 

effects selected through alpha-investment (kriging with external drift), (b)REML-EBLUP with 520 

the only fixed effect a constant mean (ordinary kriging  (c) random forest with all predictors 521 

(d). random forest with elevation and rainfall as predictors selected through alpha-investment. 522 

4.3  Map Validation 523 

Table 9 shows the summary validation statistics for (A) REML-EBLUP with elevation and 524 

rainfall as fixed effects selected through alpha-investment (kriging with external drift), 525 

(B)REML-EBLUP with the only fixed effect a constant mean (ordinary kriging),  (C) random 526 

forest with all predictors (D). random forest with elevation and rainfall as predictors selected 527 

through alpha-investment. The mean and median error values were smallest for the REML-528 

EBLUP (ordinary kriging) method while that of the REML-EBLUP (kriging with external drift) 529 

was larger than that of the two random forest methods. The MSE and RMSE for the two REML-530 
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EBLUP methods were smaller than those of the two random forest methods with REML-531 

EBLUP (ordinary kriging) having the smallest values. There was spatial dependency in the 532 

prediction error in all the cases with the two REML-EBLUP cases having the smaller partial 533 

sill values of 0.15 compared to 0.30 and 0.22 values for Random forest (elevation and rainfall 534 

predictors) and random forest (all predictors) respectively. The ESE values for all the cases 535 

were larger than the MSE values because the bias (ME) for the models is greater than zero. 536 

REML-EBLUP (ordinary kriging) had the smallest ESE value.   537 

Table 9: Summary Validation statistics for(A) REML-EBLUP with elevation and rainfall as 538 

fixed effects selected through alpha-investment (kriging with external drift), (B)REML-EBLUP 539 

with the only fixed effect a constant mean (ordinary kriging), (C) random forest with all 540 

predictors (D). random forest with elevation and rainfall as predictors selected through alpha-541 

investment. 542 

Variable A B C D 

Prediction error 
Mean  0.168 0.094 0.116 0.128 

Median 0.212 0.148 0.200 0.200 

MSE 0.417 0.388 0.463 0.551 

Corr.Model Exponential Exponential Exponential Exponential 

Partial Sil 0.154 0.145 0.218 0.299 

Range 48.380 44.670 40.200 36.250 

Nugget 0.240 0.240 0.237 0.238 

 ESE 0.422 0.393 0.468 0.553 

 543 

5. DISCUSSION 544 

The mapped soil pH by all approaches is shown in Figure 5. The optimum pH (CaCl2) for plant 545 

growth is between 5.2 – 7.5. bellow the pH of 5.2, the levels of Aluminum, Manganese and 546 

Copper are toxic for plant growth, Phosphorous and Magnesium are not available to plant. 547 

Above pH of 7.5, the interactions between Calcium, Magnesium and Potassium have a negative 548 

impact on root absorption. Copper, Iron, Manganese, Zinc, Boron and Phosphorous are 549 
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deficient (Lake, 2000). The maps in Figure 5 show pH values less than 5.2 in the western and 550 

northern parts of the country meaning we expect these areas to have challenges of Aluminum, 551 

manganese and copper toxicity as well as Phosphorous and Magnesium deficiencies. In the 552 

Southern parts of the country the pH values, according to all the maps in Figure 5, range from 553 

5.2 to 7.5 which are optimal for plant growth. There are few areas in the southern part of Zambia 554 

with pH above 7.5. Similar spatial variations were observed by Chapoto et al., 2016. The 555 

southern parts where the pH is high is a valley area, the northern parts receives high rainfall and 556 

the western part despite receiving the same amount of rainfall as the eastern part, the areas is 557 

characterized by Kalahari sand. Our results show a similar spatial pattern for soil pH as that 558 

presented in the SoilGrids map (www.soilgrids.org) of  Hengl et al., (2017). The main 559 

difference is that our map shows low pH values in the west of the country, whereas the SoilGrids 560 

map shows larger values there.  Our results are more plausible pedologically given the parent 561 

material, and it has been long-established that the soils formed over the Kalahari sands of 562 

western Zambia are weakly to extremely acidic (Brammer, 1976).  A more thorough assessment 563 

of the SoilGrids predictions using the RALS data would be of interest. 564 

Predictions by the E-BLUP from the LMM with the only fixed effect a constant mean 565 

(equivalent to ordinary kriging) were better than other predictions in the sense that the mean 566 

and median errors were closest to zero and the mean square error and expected square error 567 

were the smallest. This is unexpected, given the evidence provided in the model-fitting stage 568 

for a significant relationship between soil pH and the selected covariates.  This might be 569 

expected to result in better predictions from the LMM which includes these covariates as fixed 570 

effects.  However, one may note (Table 5) that the correlated random variance in the LMM with 571 

rainfall and elevation as fixed effects is only about 25% smaller than the corresponding variance 572 

in the LMM with a constant mean the only fixed effect.  The fact that a covariate is significantly 573 

related to a soil property does not necessarily mean that it will allow improved prediction of 574 

http://www.soilgrids.org/
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that property relative to a model without that covariate.  That is because the corresponding fixed 575 

effect coefficient must be estimated, and this estimation is a source of error in the prediction. 576 

Furthermore, Zimmerman et al., (1999) found that ordinary kriging performed better than 577 

universal kriging (UK, equivalent to the E-BLUP with some covariates) with a spatially 578 

clustered data set, while UK performed better when the data were not clustered.  This may be 579 

because, in a strongly clustered data set, the effective degrees of freedom with which the fixed 580 

effects coefficients are estimated may be relatively small. 581 

The use of random forests to include the environmental covariates in spatial prediction was less 582 

successful than the LMM and E-BLUP, with larger values of ESE.  This could be due to over-583 

fitting.  It is notable that the residuals from the fitted RF at the calibration data points showed 584 

no spatial dependence, while the RF prediction errors at the validation points (Table 9) do show 585 

spatial dependence.  This could arise because the RF algorithm, given its flexibility and ability 586 

to fit non-linear relationships, generates a model which closely fits the variations within the 587 

training data set, but which is not representative of the relationship between the predictor 588 

variables and target variable in the underlying population.  This would lead both to marked bias 589 

in models of the random variation based on the residuals, as can also occur with ordinary least 590 

squares (Lark et al., 2006) and also in poor performance of the RF on a separate validation data 591 

set.  These data may also provide a problem for the RF methodology because of the strong 592 

spatial clustering.  If some data from a cluster are used in the development of trees while others 593 

are in the OOB subset then the assessment of the model and the value of the predictors may be 594 

over-optimistic.  A predictor variable overfitted to a clustered data set might well fail to predict 595 

effectively at independent validation points.  This emphasizes the importance of a genuinely 596 

independent validation of spatial predictions (Brus et al., 2011). 597 

Spatial clustering of the observations may also be a contributing factor to the small p-values 598 

attributed to the entirely random, although spatially autocorrelated, null predictors which we 599 
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evaluated.  This gives reason for caution when interpreting RF output.  It is consistent with the 600 

findings of Wadoux et al., (2020) that the RF algorithm may select as predictor variables 601 

covariates which are not related to the target properties of interest by any direct or indirect 602 

causal relations.  A spatially dependent predictor variable of this nature may indeed support 603 

spatial prediction of a variable to which it has no underlying relationship, but if this is the case 604 

then one might prefer to use a properly-designed set of orthogonal polynomial basis functions 605 

for the model rather than arbitrary variables.  Furthermore, with strongly spatially clustered 606 

data, it is even more likely that a uncausally-related predictor will result in poor predictions at 607 

independent validation sites.   608 

Many digital soil mapping studies use legacy data sets, rather than new samples collected for 609 

the purpose.  As legacy data sets may originate in local surveys, or from networks of 610 

experimental stations, they may show marked spatial clustering, as do the RALS data because 611 

of their two-stage cluster sampling design.  We note that such clustering may cause difficulties 612 

for the RF algorithm but that it is also important to account for it when dividing data into 613 

prediction and validation subsets.  There is a risk of bias in the validation of a map if validation 614 

and training data are drawn from common clusters.  The estimation of validation statistics from 615 

a validation set which is strongly clustered may also result in bias, which is why we have used 616 

a model-based approach to compute these statistics in this study.  The expected squared error, 617 

computed from the model, in this case is not very different from the mean squared error 618 

computed directly although in each case it exceed the mean square error as expected (Table 9).  619 

This could be because the clusters are reasonably balanced (similar numbers of observations in 620 

each), and are themselves selected independently and at random.  The model-based method to 621 

quantify prediction uncertainty is, nonetheless, a more general approach for use with validation 622 

data from locations not selected by probability sampling.    623 
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6. CONCLUSION 624 

Spatial variability of soil pH was  mapped using REML-EBLUP with elevation and rainfall as 625 

fixed effects selected through alpha-investment (kriging with external drift), REML-EBLUP 626 

with the only fixed effect a constant mean (ordinary kriging), random forest with all predictors 627 

and random forest with elevation and rainfall as predictors selected through alpha-investment 628 

models. The soil pH maps from these models showed similar patterns with pH values less than 629 

5.2 in the Western and Northern parts of the country. In the Southern parts of the country the 630 

pH values range from 5.2 to 7.5 which are optimal levels of soil pH for plant growth.  631 

The ME, MSE and ESE (computed as the sum of the squared mean error and the nugget and 632 

spatially correlated variances from the LMM) were used to validate the performance of the 633 

models for spatial prediction of soil pH. The values of the ME, MSE and ESE from the 634 

validation statistics showed that REML-EBLUP with the only fixed effect a constant mean 635 

(ordinary kriging) performed better than the other methods.  636 

Random forests had the largest values of MSE and ESE.  This may result from over-fitting, and 637 

from the strongly spatially clustered distribution of the observations in the legacy data set which 638 

could affect the internal cross-validation in the RF algorithm.   639 

We also noticed that the algorithm appeared susceptible to wholly random “null predictors” 640 

which we had simulated.  Other studies, notably by Wadoux et al. (2020) have shown this, but 641 

we believe this to be the first example where mutually independent random spatially 642 

autocorrelated candidate predictor variables have been selected alongside pedologically 643 

plausible ones.  The selection of such null predictors should give pause as it suggests that the 644 

random forest algorithm may be prone to overfitting. We suggest that this problem warrants 645 

further study as pedometricians should always aim to generate insight from their analyses, as 646 

well as predictions. 647 



33 

 

We note that legacy data, often used in digital soil mapping, may be strongly clustered like 648 

ours.  We emphasize again the importance of splitting data into prediction and validation 649 

subsets at cluster level (i.e. allocating all data in any one cluster to the prediction or to the 650 

validation set).  In this case there was not a large difference between the ESE (model-based 651 

estimate of the expected squared error) and the MSE (average of the squared errors), but this 652 

would not be true in general, and the use of a model-based approach to the analysis of validation 653 

errors at locations not selected independently and at random is most appropriate. 654 

Finally, we note that we found no evidence for spatial correlation in the residuals from the fit of the 655 

random forest to the prediction data set, although there was correlation in the prediction errors by this 656 

method at the validation sites.  This is an important reminder that such residuals given us little if any 657 

insight into the actual behavior of the prediction error, and are good reasons to avoid using kriging 658 

methods in combination with modelling methods which, unlike REML and EBLUP, do not have a built-659 

in methodology to estimate parameters of the error without bias. 660 
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