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SOLUTIONS WITH SNAKING SINGULARITIES FOR THE FAST

DIFFUSION EQUATION

MAREK FILA, JOHN ROBERT KING, JIN TAKAHASHI, AND EIJI YANAGIDA

Abstract. We construct solutions of the fast diffusion equation, which exist

for all t ∈ R and are singular on the set Γ(t) := {ξ(s);−∞ < s ≤ ct}, c > 0,

where ξ ∈ C3(R;Rn), n ≥ 2. We also give a precise description of the behavior
of the solutions near Γ(t).

1. Introduction

We study positive singular solutions of the fast diffusion equation

(1.1) ut = ∆um

in Rn, where 0 < m < 1 and n ≥ 2. Let Γ be a curve in Rn expressed as
Γ = {ξ(s); s ∈ R} with ξ : R → Rn. We are interested in a positive entire-in-time
solution that is singular on the set

Γ(t) := {ξ(s);−∞ < s ≤ ct} ⊂ Γ for each t ∈ R,

where c > 0 is a constant. Such a solution can be called a snaking solution (or a
solution with a snaking singularity). We first introduce our result and then give a
brief survey about some different singular solutions.

For x ∈ Rn and r0 > 0, we write

r(x) := dist(x,Γ), Γr0 := {x ∈ Rn; 0 ≤ r(x) < r0},

where dist(x,Γ) := infy∈Γ |x− y|. In what follows, we always impose the following
condition.

Condition 1.1. Γ is a curve expressed as Γ = {ξ(s); s ∈ R}. Here ξ ∈ C3(R;Rn) is
an injection satisfying |ξ′| ≡ 1. Moreover, ξ satisfies the following:

(i) There exists a constant K > 1 such that |ξ′′(s)|, |ξ′′′(s)| ≤ K for all s ∈ R.
(ii) There exists a constant 0 < r̃0 < (2K)−1 such that, for any x ∈ Γr̃0 , there

exists a unique number s(x) ∈ R satisfying r(x) = |x− ξ(s(x))|.

Set

(1.2) Q :=
{

(x, t) ∈ Rn+1;x ∈ Rn \ Γ(t), t ∈ R
}
.
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We define an exponent m∗ by

m∗ :=


0 if n = 2,

n− 3

n− 1
if n ≥ 3.

Our main result implies the existence of a solution with a snaking singularity if
m∗ < m < 1.

Theorem 1.2. Let n ≥ 2, m∗ < m < 1, c > 0 and 0 < ε < 1. Assume that Γ
satisfies Condition 1.1. Then there exists a positive solution u ∈ C2,1(Q) of (1.1)
in Q such that the following estimate holds. There exists a constant 0 < δ < r̃0

depending on c and ε such that

(1− ε)U(x, t) ≤ u(x, t) ≤ (1 + ε)U(x, t)

for any (x, t) ∈ Rn+1 with 0 < r(x) ≤ δ and −∞ < s(x) ≤ ct+ δ, where

U(x, t) := c−
1

1−m

(
(n− 1)m

1−m

(
m− n− 3

n− 1

)) 1
1−m

×
(√

r2(x) + (s(x)− ct)2 + s(x)− ct
)− 1

1−m

.

In particular, u is singular on Γ(t) = {ξ(s);−∞ < s ≤ ct} for each t ∈ R.

Let us now mention some known results on positive singular solutions of the
equation

(1.3) ut = ∆um, x ∈ Rn \ {θ(t)}, t > 0,

where 0 < m < 1, n ≥ 2 and θ ∈ C1([0,∞);Rn) is a given function. We consider
(1.3) with the initial condition

(1.4) u(x, 0) = u0(x), x ∈ Rn \ {θ(0)}.
We are interested in solutions that are singular at θ(t), that is,

(1.5) u(x, t)→∞ as x→ θ(t), t ≥ 0.

For example, when θ ≡ 0 and n ≥ 3, (1.3) has a singular steady state given by

ũ(x) = C|x|−
n−2
m , x ∈ Rn \ {0},

where C is an arbitrary positive constant. Another explicit singular solution for
θ ≡ 0, u0 ≡ 0 and

mc :=
(n− 2)+

n
< m < 1

is

u∗(x, t) :=

(
ct

|x|2

) 1
1−m

, c := 2m

(
2

1−m
− n

)
.

For 0 < m < 1 and n ≥ 2, one can find in [1] a complete classification of
nonnegative solutions of ut = ∆um in D′((Rn \{0})× (0,∞)) which are continuous
in Rn × [0,∞) with values in (0,∞], satisfy (1.4) with u0 ≡ 0 and (1.5).

For the existence of self-similar solutions with a standing singularity (θ ≡ 0), we
refer to [1] when mc < m < 1 and to [12,26] when 0 < m < mc and n ≥ 3.

If mc < m < 1 then all weak solutions of ut = ∆um with locally integrable
initial data u0 become immediately bounded and continuous, see [9]. On the other
hand, in the same range mc < m < 1, stronger singularities may persist, see
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[2, 3]. It was shown in [2] that for mc < m < 1, the strongly singular set of u0

cannot shrink in time for extended continuous solutions. Here the strongly singu-
lar set of u0 is defined as the set of points at which u0 is not locally integrable
and an extended continuous solution satisfies the equation pointwise in the set
{(x, t) ∈ Rn+1; v(x, t) < ∞}, and is continuous with values in (0,∞]. The exis-
tence of extended continuous solutions with expanding strongly singular sets is also
established in [2].

The evolution of standing singularities of proper (minimal) solutions of ut =
∆um on a bounded domain was studied in [27] for n ≥ 3 and 0 < m ≤ mc. By
a proper solution we mean a solution obtained as a limit of increasing bounded
approximations.

It was shown in [6] that for m > (n − 2)/(n − 1) and n ≥ 3, under some
assumptions on given functions θ, k, u0, there are solutions of (1.3)-(1.5) which
behave as k(t)|x−θ(t)|−(n−2)/m near x = θ(t). This corresponds to the singularity of
the steady state ũ. For m < (n−2)/(n−1) such solutions with moving singularities
do not exist. The case n = 2 has been treated recently in [5]. It has been established
there that solutions with moving singularities, which behave near the singularity
like the fundamental solution of the Laplace equation, raised to the power 1/m,
exist for m > 0.

For various results on solutions with moving singularities (θ 6≡ 0) for the heat
equation (m = 1) we refer to [13, 14, 24], for semilinear heat equations see [10, 11,
14,15,19–23,25] and also [16,17] for the Navier-Stokes system.

Our result is somehow disconnected from the previous ones since the nature of
the singularity described here is novel and different. Our aim is to contribute to a
deeper understanding of singularity formation and non-uniqueness phenomena for
the fast diffusion equation. The implications for the Cauchy problem consist in
showing the existence of initial functions from which a strong singularity can move
in time along a prescribed curve, leaving the solution singular behind. As far as we
know, this kind of behavior has not been observed previously.

The idea of the proof is to use matched asymptotics in order to construct suitable
sub- and super-solutions. The most important part of them is derived from an
explicit entire solution which can be found in the special case when the curve is
a straight line. We also rely on some delicate properties of the distance function.
Once entire comparison functions are constructed, the proof can be finished by
standard methods.

The paper is organised as follows. In Section 2 we study an explicit solution
when {Γ(t); t ∈ R} is a straight line. In Section 3 we prepare suitable comparison
functions for the proof of Theorem 1.2. Section 4 contains the proof and Section 5 a
discussion. In Appendix A we give a short derivation of the formula for the explicit
solution from Section 2.

2. Explicit solution

In this section, we consider the case ξ(s) = sω, where ω ∈ Rn is a unit vector.

2.1. Singular traveling wave solution. Let c > 0 be a constant and let a := cω
be a velocity vector. Set x = y + ta. Then by taking v(y, t) = u(y + ta, t), we see
that v satisfies the equation

(2.1) vt = ∆yv
m + a · ∇yv.
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If m∗ < m < 1, this equation has a stationary solution explicitly expressed as

ϕ = ϕ(y) := A(|a||y|+ a · y)−
1

1−m ,(2.2)

A = A(n,m) :=

(
(n− 1)m

1−m

(
m− n− 3

n− 1

)) 1
1−m

.(2.3)

We observe that the solution

u(x, t) = ϕ(x− ta) = A (|a||x− ta|+ a · (x− ta))
− 1

1−m

of (1.1) has a singularity on the set {sω;−∞ < s ≤ ct} for each t ∈ R, and so we
call this solution the singular traveling wave solution.

We note that, in the case where n = 1 and 0 < m < 1, the explicit solution in
(2.2) is known as a semi-wavefront solution, cf. for instance [8, Section 2.1]. See
Appendix A for a straightforward derivation of (2.2)-(2.3).

2.2. Stability of the singular traveling wave solution. By a direct computa-
tion, we have

∆ϕm = −a · ∇ϕ =
A

1−m
|a|
|y|

(|a||y|+ a · y)−
1

1−m ≥ 0.

Let 0 < γ < 1. Setting ϕ+(y) := (1 + γ)ϕ(y) gives

∆(ϕ+)m + a · ∇ϕ+ = (1 + γ)m∆ϕm + (1 + γ)a · ∇ϕ
= ((1 + γ)m − (1 + γ))∆ϕm ≤ 0.

Hence ϕ+ is a super-solution of (2.1). Similarly, ϕ−(y) := (1 − γ)ϕ(y) is a sub-
solution of (2.1), and so the functions

u±(x, t) := ϕ±(x− ta) = (1± γ)ϕ(x− ta)

are a super-solution and a sub=solution of (1.1), respectively. Thus, the singular
traveling wave solution ϕ(x−ta) is stable, and so it is expected that we can construct
suitable comparison functions for proving Theorem 1.2.

2.3. Singular traveling wave solution in cylindrical coordinates. For x ∈
Rn, let r(x) be the distance between x and the line {ξ(s) = sω; s ∈ R}. Writing

x = z(x) + s(x)ω, z(x) ⊥ ω,
we have r(x) = |z(x)| = |x− s(x)ω| and s(x) = ω · x. Then by using

x− ta = x− s(x)ω + s(x)ω − ctω = z(x) + (s(x)− ct)ω,
we obtain

|a||x− ta| = c
√
|z(x)|2 + |(s(x)− ct)ω|2 = c

√
r2(x) + (s(x)− ct)2,

a · (x− ta) = cω · z(x) + cω · (s(x)− ct)ω = c(s(x)− ct).
Hence the traveling singular solution can be written as

u(x, t) = ψ(r(x), s(x)− ct) = Ac−
1

1−m

(√
r2(x) + (s(x)− ct)2 + s(x)− ct

)− 1
1−m

,

ψ = ψ(r, σ) := Ac−
1

1−m

(√
r2 + σ2 + σ

)− 1
1−m

.

Based on the above observation, we handle more general cases in the subsequent
sections.
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3. Comparison functions

In what follows, we take r0 > 0 such that 0 < r0 < r̃0, where r̃0 (< 1) is given in
Condition 1.1. Then for any x ∈ Γr0 , there exists a unique real number s(x) ∈ R
such that r(x) = |x− ξ(s(x))|. We remark that r(x) and s(x) are C3-functions on
Γr0 \ Γ, since ξ is C3.

The goal of this section is to prove the following proposition, which guarantees
the existence of suitable comparison functions for showing Theorem 1.2.

Proposition 3.1. Let n ≥ 2, m∗ < m < 1, c > 0 and 0 < ε < 1. Then there exist
a super-solution u and a sub-solution u of (1.1) in Q such that the following (i)
and (ii) hold.

(i) u ≥ u > 0 on Q.
(ii) There exists a constant 0 < δ < r0 depending on c and ε such that

(1− ε)U(x, t) ≤ u(x, t) ≤ u(x, t) ≤ (1 + ε)U(x, t)

for any (x, t) ∈ Rn+1 satisfying 0 < r(x) ≤ δ and −∞ < s(x) ≤ ct + δ,
where U is given in Theorem 1.2.

3.1. Ingredients of comparison functions. Our comparison functions are based
on the following function.

U(x, t) = ψ(r(x), σ(x, t)) = Ac−
1

1−m

(√
r2(x) + σ2(x, t) + σ(x, t)

)− 1
1−m

,

σ(x, t) := s(x)− ct,

where U is the same as in Theorem 1.2. Notice that U is defined at least on the set{
(x, t) ∈ Rn+1;

either x ∈ Γr̃0 \ Γ with s(x) ≤ ct,
or x ∈ Γr̃0 with s(x) > ct

}
,

where r̃0 is given in Condition 1.1. We observe that U(·, t) is singular on the set
Γ(t) = {ξ(s);−∞ < s ≤ ct} for each t ∈ R. In order to compute the derivatives
of U , we explicitly compute ∇s, ∇r, ∆s and ∆r as follows. First, we prepare a
fundamental lemma.

Lemma 3.2. For x ∈ Γr0 \ Γ, the following equality holds.

(3.1) (x− ξ(s(x))) · ξ′(s(x)) = 0.

Moreover, ξ′(s(x)) · ξ′′(s(x)) = 0 also holds for x ∈ Γr0 \ Γ.

Proof. Since ξ(s(x)) is the nearest point from x, we have

∂s(|x− ξ(s)|2)|s=s(x) = −2(x− ξ(s(x))) · ξ′(s(x)) = 0,

∂2
s (|x− ξ(s)|2)|s=s(x) = 2|ξ′(s(x))|2 − 2(x− ξ(s(x))) · ξ′′(s(x)) ≥ 0.

Then (3.1) follows. Moreover, by |ξ′(s(x))|2 = 1, we also have (x − ξ(s(x))) ·
ξ′′(s(x)) ≤ 1. From |ξ′(s)|2 = 1 for s ∈ R, it follows that ξ′(s) · ξ′′(s) = 0 for
s ∈ R. �

Note that |(x − ξ(s(x))) · ξ′′(s(x))| ≤ r0K ≤ 1/2 by r0 < r̃0 and Condition 1.1.
By using this lemma, we can compute ∇s, ∇r, ∆s and ∆r as follows.
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Lemma 3.3. For x ∈ Γr0 \ Γ, the following equalities hold.

∇s(x) =
ξ′(s(x))

1− (x− ξ(s(x))) · ξ′′(s(x))
,

∇r(x) =
x− ξ(s(x))

|x− ξ(s(x))|
,

∆s(x) =
(x− ξ(s(x))) · ξ′′′(s(x))

[1− (x− ξ(s(x))) · ξ′′(s(x))]3
,

∆r(x) =
n− 2− (n− 1)(x− ξ(s(x))) · ξ′′(s(x))

1− (x− ξ(s(x))) · ξ′′(s(x))
r(x)−1.

In particular, ∇s(x) · ∇r(x) = 0.

Proof. In this proof, we write s = s(x) and r = r(x) for short. From the differenti-
ation of (3.1) with respect to x, it follows that

(3.2)
0 = ξ′(s)− |ξ′(s)|2∇s+ [(x− ξ(s)) · ξ′′(s)]∇s

= ξ′(s)−∇s+ [(x− ξ(s)) · ξ′′(s)]∇s.

Then,

∇s =
ξ′(s)

1− (x− ξ(s)) · ξ′′(s)
.

By taking the divergence in (3.2), we have

ξ′′(s) · ∇s−∆s+ ξ′′(s) · ∇s− ξ′(s) · ξ′′(s)|∇s|2

+ (x− ξ(s)) · ξ′′′(s)|∇s|2 + [(x− ξ(s)) · ξ′′(s)] ∆s = 0.

This together with ξ′ · ξ′′ ≡ 0 shows that

−∆s+ (x− ξ(s)) · ξ′′′(s)|∇s|2 + [(x− ξ(s)) · ξ′′(s)] ∆s = 0,

and so

∆s =
(x− ξ(s)) · ξ′′′(s)

1− (x− ξ(s)) · ξ′′(s)
|∇s|2 =

(x− ξ(s)) · ξ′′′(s)
[1− (x− ξ(s)) · ξ′′(s)]3

.

By the differentiation of r = |x− ξ(s)| and by (3.1), we have

∇r =
x− ξ(s)− [(x− ξ(s)) · ξ′(s)]∇s

|x− ξ(s)|
=

x− ξ(s)
|x− ξ(s)|

.

By (3.1) again, we also have ∇s · ∇r = 0. Taking the divergence of ∇r = (x −
ξ(s))r−1 yields

∆r = nr−1 − r−1ξ′(s) · ∇s− r−2(x− ξ(s)) · ∇r
= [n− 1− ξ′(s) · ∇s] r−1

=

[
n− 1− |ξ′(s)|2

1− (x− ξ(s)) · ξ′′(s)

]
r−1.

This together with |ξ′| ≡ 1 shows the desired equality for ∆r. �

From Lemma 3.3 and Condition 1.1, the following lemma immediately follows.
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Lemma 3.4. For x ∈ Γr0 \ Γ, the following inequalities hold.

2−1 ≤ (1 + r0K)−1 ≤ |∇s(x)| ≤ (1− r0K)−1 ≤ 2,

− 8r0K ≤ −
r0K

(1− r0K)3
≤ ∆s(x) ≤ r0K

(1− r0K)3
≤ 8r0K,

n− 2− (n− 1)r0K

1 + r0K
r(x)−1 ≤ ∆r(x) ≤ n− 2 + (n− 1)r0K

1− r0K
r(x)−1.

We next compute the derivatives of U . Set

Qr0 :=

{
(x, t) ∈ Rn+1;

either x ∈ Γr0 \ Γ with s(x) ≤ ct,
or x ∈ Γr0 with s(x) > ct

}
.

Lemma 3.5. For (x, t) ∈ Qr0 , the following equalities hold.

Ut =
1

1−m
(r2 + σ2)−

1
2 cU,

∆Um =

[
Am−1m

(1−m)2
(r2 + σ2)−

1
2 cU

] [
− (1− |∇s(x)|2)

(
(1−m)σ2

r2 + σ2
+

σ√
r2 + σ2

)
+ (1 +m|∇s(x)|2)− (1−m)r∆r(x)− (1−m)

(√
r2 + σ2 + σ

)
∆s(x)

]
,

where r = r(x) and σ = σ(x, t) = s(x)− ct.

Proof. The time derivative Ut is easy. The spatial derivative ∆Um is computed as

∆Um = (ψm)rr|∇r(x)|2 + (ψm)σσ|∇s(x)|2 + (ψm)r∆r(x) + (ψm)σ∆s(x).

Straightforward computations show that

(ψm)r = −A
m−1m

1−m
r(r2 + σ2)−

1
2 cU,

(ψm)rr =

[
Am−1m

(1−m)2

(
1− σ√

r2 + σ2

)
− Am−1m

1−m
σ2

r2 + σ2

]
(r2 + σ2)−

1
2 cU,

(ψm)σ = −A
m−1m

1−m

(√
r2 + σ2 + σ

)
(r2 + σ2)−

1
2 cU,

(ψm)σσ =

[
Am−1m

(1−m)2

(
1 +

σ√
r2 + σ2

)
− Am−1m

1−m
r2

r2 + σ2

]
(r2 + σ2)−

1
2 cU.

From these equalities and |∇r| = 1, the desired equality for ∆Um follows. �

3.2. Super-solution near Γ. Fix 0 < ε′ < 1. Set

u+(x, t) := (1 + ε′)(Um(x, t) + 1)
1
m .

We check that u+ is a super-solution of (1.1) on Qr0 provided that r0 is small
enough. By Lemma 3.5, we have

(3.3)

u+
t = (1 + ε′)

(
1 + U−m

) 1
m−1

Ut

=
1 + ε′

1−m
(
1 + U−m

) 1−m
m (r2 + σ2)−

1
2 cU

=
1 + ε′

1−m

(
1 +A−mc

m
1−m

(√
r2 + σ2 + σ

) m
1−m

) 1−m
m

(r2 + σ2)−
1
2 cU.
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Since ∆(u+)m = (1 + ε′)m∆Um, we will estimate ∆Um. By Lemmas 3.5 and
3.4, we have

∆Um ≤
[
Am−1m

(1−m)2
(r2 + σ2)−

1
2 cU

] [
|1− |∇s(x)|2|

(
(1−m)σ2

r2 + σ2
+

|σ|√
r2 + σ2

)
+ 1 +

m

(1− r0K)2
− (1−m)

n− 2− (n− 1)r0K

1 + r0K

+ 8r0K(1−m)
(√

r2 + σ2 + σ
)]
.

From the estimate of |∇s| in Lemma 3.4, (2.3) and

(3.4)
(1−m)σ2

r2 + σ2
+

|σ|√
r2 + σ2

≤ 2,

it follows that

∆Um ≤
[
Am−1m(n− 1)

(1−m)2

(
m− n− 3

n− 1

)
+
Am−1m

(1−m)2
8r0K(1−m)

(√
r2 + σ2 + σ

)
+O(r0)

]
(r2 + σ2)−

1
2 cU

≤
[

1

1−m
+ Cr0

(√
r2 + σ2 + σ

)
+O(r0)

]
(r2 + σ2)−

1
2 cU

with a constant C = C(m,A,K) > 0 as r0 → 0. Thus,

∆(u+)m ≤
[

(1 + ε′)m

1−m
+ Cr0

(√
r2 + σ2 + σ

)
+O(r0)

]
(r2 + σ2)−

1
2 cU

with a constant C = C(m,A,K, ε′) > 0 as r0 → 0.
The above computations show that

u+
t −∆(u+)m ≥ (1 + ε′)m

1−m

[
(1 + ε′)1−m

(
1 +A−mc

m
1−m

(√
r2 + σ2 + σ

) m
1−m

) 1−m
m

− 1− Cr0

(√
r2 + σ2 + σ

)
+O(r0)

]
(r2 + σ2)−

1
2 cU.

We first assume that

A−mc
m

1−m

(√
r2 + σ2 + σ

) m
1−m ≥ 2.

Then,

(1 + ε′)1−m
(

1 +A−mc
m

1−m

(√
r2 + σ2 + σ

) m
1−m

) 1−m
m

− 1− Cr0

(√
r2 + σ2 + σ

)
≥ (1 + ε′)1−mA−(1−m)c

(√
r2 + σ2 + σ

)
− 1− Cr0

(√
r2 + σ2 + σ

)
≥ 2

1
m (1 + ε′)1−m − 1 +

(
(1 + ε′)1−m

2
A−(1−m)c− Cr0

)(√
r2 + σ2 + σ

)
≥ 0

provided that r0 is small depending on ε′, m, c and A. On the other hand, we next
assume that

A−mc
m

1−m

(√
r2 + σ2 + σ

) m
1−m ≤ 2.
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In this case, we have

(1 + ε′)1−m
(

1 +A−mc
m

1−m

(√
r2 + σ2 + σ

) m
1−m

) 1−m
m

− 1− Cr0

(√
r2 + σ2 + σ

)
≥ (1 + ε′)1−m − 1− 2

1−m
m CA1−mc−1r0 ≥ 0

provided that r0 is small depending on m, A, c and C = C(m,A,K, ε′). Hence u+

is a super-solution in Qr0 provided that r0 is sufficiently small depending only on
m, A, K, c and ε′.

3.3. Super-solution on Q. We construct a super-solution on Q, where Q is de-
fined by (1.2). For B, b > 1, define

(3.5) u(x, t) :=


[
η(r(x))(u+)m(x, t) +B(b− η(r(x)))

] 1
m if r(x) ≤ r0,

(Bb)
1
m otherwise.

Here η is defined below. Let r1 and r2 satisfy 0 < r1 < r2 < r0. We define
η ∈ C∞([0,∞)) by

η = η(ρ) :=


1 for 0 ≤ ρ ≤ r1,

Φ(ρ)

Φ(ρ) + Ψ(ρ)
for r1 < ρ < r2,

0 for ρ ≥ r2,

where

Φ(ρ) := exp

(
− 1

r2 − ρ

)
, Ψ(ρ) := exp

(
− 1

ρ− r1

)
.

After straightforward computations, we have

Φ′ = − 1

(r2 − ρ)2
Φ, Φ′′ =

1− 2r2 + 2ρ

(r2 − ρ)4
Φ,

Ψ′ =
1

(ρ− r1)2
Ψ, Ψ′′ =

1 + 2r1 − 2ρ

(ρ− r1)4
Ψ, η′ =

Φ′Ψ− ΦΨ′

(Φ + Ψ)2
,

η′′ =
1

(Φ + Ψ)2
(Φ′′Ψ− ΦΨ′′)− 2

(Φ + Ψ)3
(Φ′Ψ− ΦΨ′)(Φ′ + Ψ′),

and so

η′(ρ) = − ΦΨ

(Φ + Ψ)2

(
1

(r2 − ρ)2
+

1

(ρ− r1)2

)
,

η′′(ρ) =
ΦΨ

(Φ + Ψ)2

(
1− 2r2 + 2ρ

(r2 − ρ)4
− 1 + 2r1 − 2ρ

(ρ− r1)4

)
− 2ΦΨ

(Φ + Ψ)3

(
1

(r2 − ρ)2
+

1

(ρ− r1)2

)(
Φ

(r2 − ρ)2
− Ψ

(ρ− r1)2

)
for r1 < ρ < r2. We note that

(3.6) lim
ρ↑r2

η(ρ)

η′′(ρ)
= lim
ρ↑r2

|η′(ρ)|
η′′(ρ)

= 0.
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By direct computations, we have

ut = [(u+)mη +B(b− η)]
1−m
m (u+)m−1ηu+

t ,

−∆um = (B − (u+)m)∆(η(r(x)))− 2∇(η(r(x))) · ∇(u+)m − η(r(x))∆(u+)m

= (B − (u+)m)(η′′ + η′∆r)− 2η′∇r · ∇(u+)m − η∆(u+)m,

where ∇r and ∆r are evaluated at r(x). In the region r(x) ≤ r1, we have

ut −∆um = [(u+)m +B(b− 1)]
1−m
m (u+)m−1u+

t −∆(u+)m ≥ u+
t −∆(u+)m ≥ 0,

since u+
t > 0 by (3.3). On the other hand, in the region r(x) ≥ r2, we have

ut −∆um = 0. Hence it suffices to consider the region r1 < r(x) < r2.
First, we observe the case where r(x) is smaller than r2 and is close to r2. By

u+
t > 0, we have ut ≥ 0, and so

ut −∆um ≥ (B − (u+)m)(η′′ + η′∆r)− 2η′∇r · ∇(u+)m − η∆(u+)m.

We take constants C̃ > 1 and B such that C̃−1 ≤ u+ ≤ C̃ for r1 < r(x) < r2 and

B > C̃m. By (3.6) and η′′ > 0 near r2, we have η′′ − |η′||∆r| > 0 near r2. Then
there exists a constant C > 1 independent of b such that

ut −∆um ≥ (B − C̃m)(η′′ − C|η′|)− C|η′| − Cη.

Then by (3.6) again, there exists a constant r1 < r′2 < r2 independent of b such
that ut −∆(u)m ≥ 0 for r′2 < r(x) < r2.

We next examine the case where r1 < r(x) < r′2. Note that there exists a
constant c̃ > 0 such that c̃ ≤ η(r(x)) ≤ 1 for r1 < r(x) < r′2. By u+

t > 0, there
exists a constant C > 1 depending on r1 and r2 but not on b such that

ut ≥ B
1−m
m (b− η(r(x)))

1−m
m (u+)m−1ηu+

t ≥ c̃C−1B
1−m
m (b− 1)

1−m
m ,

−∆um = −η∆(u+)m + (B − (u+)m)(η′′ + η′∆r)− 2η′∇r · ∇(u+)m ≥ −C −BC.

Then there exists b > 1 such that ut −∆um > 0 for r1 < r(x) < r′2. Hence u is a
super-solution on Q.

3.4. Sub-solution on Q. For M > 0, set
(3.7)

u−(x, t) :=

{
(1− ε′)

[
Um(x, t)−M −M |σ(x, t)|

m
1−m ζ(σ(x, t))

] 1
m

+
if r(x) ≤ r0,

0 otherwise,

where σ(x, t) = s(x) − ct, [·]+ is the positive part and ζ ∈ C∞(R) is a decreasing
function satisfying ζ(σ) = 1 if σ ≤ −2, ζ(σ) = 0 if σ ≥ −1 and 0 ≤ ζ ≤ 1. Let M
satisfy

(3.8) M > max

{
3

m
1−mAmc−

m
1−m r

− 2m
1−m

0 , 10
m

1−mAmc−
m

1−m r
− 2m

1−m

0

}
.

We will see that u− is a sub-solution of (1.1) on Q. By the fact that the maximum
of two sub-solutions is also a sub-solution and Lemmas 3.6 and 3.7 below, we only
have to consider the case where

(3.9) (x, t) ∈ Qr0 ∩ {u− > 0} and σ(x, t) ≤ 1.

Lemma 3.6. If r(x) = r0, then u−(x, t) = 0.
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Proof. Let x satisfy r(x) = r0. Then,

(3.10)

U(x, t) = Ac−
1

1−m

(√
r2
0 + σ2 + σ

)− 1
1−m

= Ac−
1

1−m |σ|−
1

1−m

(√
1 + (r0/σ)2 + σ/|σ|

)− 1
1−m

≤ Ac−
1

1−m |σ|−
1

1−m

(√
1 + (r0/σ)2 − 1

)− 1
1−m

.

We first consider the case σ ≤ −2. From r0 ≤ 1 and σ2 ≥ 4, it follows that

√
1 + (r0/σ)2 − 1 =

(r0

σ

)2
∫ 1

0

1

2

(
1 +

(r0

σ

)2

θ

)− 1
2

dθ

≥ 1

2

(r0

σ

)2
(

1 +
(r0

σ

)2
)− 1

2

≥ 1

3

(r0

σ

)2

,

so that

U(x, t) ≤ 3
1

1−mAc−
1

1−m r
− 2

1−m

0 |σ|
1

1−m .

This together with (3.8) and ζ(σ) = 1 for σ ≤ −2 gives[
Um −M −M |σ|

m
1−m ζ(σ)

]
+
≤
[(

3
m

1−mAmc−
m

1−m r
− 2m

1−m

0 −M
)
|σ|

m
1−m

]
+

= 0.

We next consider the case −2 ≤ σ < 0. From 1 ≤ 16/σ2 and r0 < 1, it follows
that√

1 + (r0/σ)2 − 1 ≥ 1

2

(r0

σ

)2
(

1 +
(r0

σ

)2
)− 1

2

≥ 1

2

(r0

σ

)2
(

16 + r2
0

σ2

)− 1
2

≥ r2
0

10|σ|
.

By (3.10), we have

U(x, t) ≤ 10
1

1−mAc−
1

1−m r
− 2

1−m

0 ,

and so [
Um −M −M |σ|

m
1−m ζ(σ)

]
+
≤
[
10

m
1−mAmc−

m
1−m r

− 2m
1−m

0 −M
]

+

= 0.

Finally, we examine the case σ ≥ 0. In this case,[
Um −M −M |σ|

m
1−m ζ(σ)

]
+
≤
[
Amc−

m
1−m r

− m
1−m

0 −M
]

+
= 0.

The lemma follows. �

Lemma 3.7. If σ(x, t) ≥ 1, then u−(x, t) = 0.

Proof. If σ ≥ 1, then

U(x, t) = Ac−
1

1−m

(√
r2(x) + σ2 + σ

)− 1
1−m ≤ Ac−

1
1−m ,[

Um −M −M |σ(x, t)|
m

1−m ζ(σ(x, t))
]
+
≤
[
Amc−

m
1−m −M

]
+

= 0,

the lemma follows. �
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We consider the case (3.9) with σ ≤ −2, −2 ≤ σ ≤ −1 and −1 ≤ σ ≤ 1,
respectively. First, we assume (3.9) with σ ≤ −2. By the negativity of σ and the
positivity of Ut, we have

u−t = (1− ε′) 1

m

[
Um −M −M |σ|

m
1−m

] 1
m−1

[
mUm−1Ut +

Mm

1−m
c|σ|

m
1−m−2σ

]
≤ (1− ε′) 1

m
U1−m

[
mUm−1Ut +

Mm

1−m
c|σ|

m
1−m−2σ

]
≤ (1− ε′)Ut =

1− ε′

1−m
(r2 + σ2)−

1
2 cU.

Direct computations yield

∆(u−)m = (1− ε′)m∆Um − (1− ε′)mM∆(|σ|
m

1−m ).

By Lemmas 3.5 and 3.4, we have

∆Um ≥
[
Am−1m

(1−m)2
(r2 + σ2)−

1
2 cU

] [
− |1− |∇s|2|

(
(1−m)σ2

r2 + σ2
+

|σ|√
r2 + σ2

)
+ 1 +

m

(1 + r0K)2
− (1−m)

n− 2 + (n− 1)r0K

1− r0K

− 8r0K(1−m)
(√

r2 + σ2 + σ
)]
.

From the negativity of σ, it follows that

(3.11)

√
r2 + σ2 + σ = |σ|

(√
1 + (r/σ)2 − 1

)
=
r2

|σ|

∫ 1

0

1

2

(
1 +

(
r

|σ|

)2

θ

)− 1
2

dθ ≤ r2

2|σ|
.

By |σ| ≥ 2 and r0 ≤ 1, we have√
r2 + σ2 + σ ≤ 1

4
.

This together with (3.4) implies that

∆Um ≥
[
Am−1m

(1−m)2
(r2 + σ2)−

1
2 cU

] [
−2

(
1− 1

(1 + r0K)2

)
+1 +

m

(1 + r0K)2
− (1−m)

n− 2 + (n− 1)r0K

1− r0K
− 2r0K(1−m)

]
=

[
Am−1m(n− 1)

(1−m)2

(
m− n− 3

n− 1

)
+O(r0)

]
(r2 + σ2)−

1
2 cU (r0 → 0).

We estimate ∆(|σ|
m

1−m ). By computations, we have

∆(|σ|
m

1−m ) =
m

1−m

(
m

1−m
− 1

)
|σ|

m
1−m−2|∇s|2 +

m

1−m
|σ|

m
1−m−2σ∆s,

and so

|∆(|σ|
m

1−m )| ≤ C
[
(r2 + σ2)

1
2 c−1U−1

(
|σ|

m
1−m−2|∇s|2 + |σ|

m
1−m−1|∆s|

)]
× (r2 + σ2)−

1
2 cU
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with a constant C = C(m) > 0. Then, (3.11), r2 ≤ σ2, Lemma 3.4 and |σ| ≥ 2
show that

(r2 + σ2)
1
2 c−1U−1

(
|σ|

m
1−m−2|∇s|2 + |σ|

m
1−m−1|∆s|

)
= (r2 + σ2)

1
2A−1c

1
1−m−1

(√
r2 + σ2 + σ

) 1
1−m (|σ| m

1−m−2|∇s|2 + |σ|
m

1−m−1|∆s|
)

≤ C|σ|
(
r2
0

|σ|

) 1
1−m (

4|σ|
m

1−m−2 + 8r0K|σ|
m

1−m−1
)

≤ Cr
2

1−m

0

(
4|σ|−2 + 8K|σ|−1

)
≤ Cr

2
1−m

0 (1 + 4K) = O(r
2

1−m

0 ) (r0 → 0)

with some constant C = C(m,A, c) > 0.
From the above computations and (2.3), it follows that

(3.12)

u−t −∆(u−)m

≤
[

1− ε′

1−m
− (1− ε′)mA

m−1m(n− 1)

(1−m)2

(
m− n− 3

n− 1

)
+ o(1)

]
× (r2 + σ2)−

1
2 cU

= −(1− ε′)m
[

1− (1− ε′)1−m

1−m
+ o(1)

]
(r2 + σ2)−

1
2 cU (r0 → 0).

Hence u− is a sub-solution in the case (3.9) with σ ≤ −2 provided that r0 is
sufficiently small. Remark that the smallness of r0 is determined only by m, n, A,
c, K, M and ε′.

Let us next consider the case (3.9) with −2 ≤ σ ≤ −1. By the negativity of σ
and ζ ′, we have

u−t = (1− ε′) 1

m

[
Um −M −M |σ|

m
1−m ζ(σ)

] 1
m−1

×
[
mUm−1Ut +

Mm

1−m
c|σ|

m
1−m−2σζ(σ) +M |σ|

m
1−m cζ ′(σ)

]
≤ (1− ε′)Ut.

From the smoothness of |σ|
m

1−m ζ(σ) as a function for −1 ≤ σ ≤ −2, it follows that

∆(u−)m = (1− ε′)m∆Um − (1− ε′)mM∆(|σ|
m

1−m ζ(σ))

≥ (1− ε′)m∆Um − C
[
(r2 + σ2)

1
2 c−1U−1

]
(r2 + σ2)−

1
2 cU

with a constant C = C(ε′,M, ζ) > 0. Since (3.11) also holds for the case −2 ≤ σ ≤
−1, we see from r2 + σ2 ≤ 5 and |σ| ≥ 1 that

(r2 + σ2)
1
2 c−1U−1 = (r2 + σ2)

1
2 c

1
1−m−1A−1

(√
r2 + σ2 + σ

) 1
1−m

≤ C
(√

r2 + σ2 + σ
) 1

1−m ≤ C
(
r2
0

|σ|

) 1
1−m

≤ Cr
2

1−m

0 = O(r
2

1−m

0 )

as r0 → 0, where C = C(m,A, c) > 0 is some constant. Hence we obtain the same
estimates as in (3.12). Then we see that u− is a sub-solution in the case (3.9) with
−2 ≤ σ ≤ −1 if r0 is sufficiently small depending only on m, n, A, c, K, M , ε′ and
ζ.



14 M. FILA, J. R. KING, J. TAKAHASHI, AND E. YANAGIDA

Finally, we examine the case (3.9) with −1 ≤ σ ≤ 1. In this case, we have

u−t = (1− ε′) 1

m
[Um −M ]

1
m−1

mUm−1Ut ≤ (1− ε′)Ut,

∆(u−)m = (1− ε′)m∆Um.

Then the same estimates as in (3.12) immediately follow, and so u− is a sub-solution
in the case (3.9) with −1 ≤ σ ≤ 1 if r0 is sufficiently small depending only on m,
n, A, K and ε′.

Recall that we only have to consider the case (3.9). Thus, u− is a sub-solution
of (1.1) on Q provided that r0 is sufficiently small depending only on m, n, A, c,
K, M , ε′ and ζ.

3.5. Positive comparison functions. We prove Proposition 3.1.

Proof of Proposition Proposition 3.1. Let 0 < ε′ < ε < 1. We set u and u− as in
(3.5) and (3.7), respectively. Define

u(x, t) := max{u−(x, t), ε}.
Since the maximum of two sub-solutions is also a sub-solution, u is a positive sub-
solution on Q. Moreover, we can easily check that u ≤ u on Q. Then (i) holds.

We prove (ii). By the choice of u and u, we have

u = [(1 + ε′)m(Um + 1) +B(b− 1)]
1
m ,

u = (1− ε′)
[
Um −M −M |σ|

m
1−m ζ(σ)

] 1
m

+

for (x, t) ∈ Γr1 \ Γ. For (x, t) ∈ Rn+1 with 0 < r(x) ≤ δ and σ ≤ δ, by (3.11), we
have

Um = Amc−
m

1−m

(√
r2 + σ2 + σ

)− m
1−m

≥


(√

2 + 1
)− m

1−m

Amc−
m

1−m δ−
m

1−m if −∞ < σ ≤ δ,

Amc−
m

1−m

(
δ2

2|σ|

)− m
1−m

if −∞ < σ < 0.

Then there exists a constant C = C(m,A, c) > 0 such that

1 ≤

{
Cδ

m
1−mUm if −∞ < σ ≤ δ,

C|σ|−
m

1−m δ
2m

1−mUm if −∞ < σ < 0.

From this, it follows that

u ≤
[
(1 + ε′)m(1 + Cδ

m
1−m ) + CB(b− 1)δ

m
1−m

] 1
m U ≤ (1 + ε)U

and

u =

(1− ε′)
[
Um −M −M |σ|

m
1−m ζ(σ)

] 1
m

+
(−∞ < σ < 0)

(1− ε′) [Um −M ]
1
m
+ (0 ≤ σ ≤ δ)

≥


(1− ε′)

[
1− CMδ

m
1−m − CMδ

2m
1−m

] 1
m

+
U (−∞ < σ < 0)

(1− ε′)
[
1−MCδ

m
1−m

] 1
m

+
U (0 ≤ σ ≤ δ)

≥ (1− ε)U
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for (x, t) ∈ Rn+1 with 0 < r(x) ≤ δ and −∞ < σ ≤ δ provided that δ is sufficiently
small depending only on m, A, b, B, c, M , ε and ε′. Hence (ii) follows. �

4. Proof of the main theorem

We define an exhaustion of Q, and then we apply an argument from [7] (see also
[4, Lemma 2.1]) to show the existence of an entire-in-time singular solution.

Proof of Theorem 1.2. Let {Ωi(t)}t∈R be a family of smooth bounded domains in
Rn such that Ωi(t) ( Ωi+1(t),

⋃
i≥1 Ωi(t) = Rn \ Γ(t) for each t ∈ R and Si :=

{(x, t) ∈ Rn+1;x ∈ ∂Ωi(t), t ∈ (−i, i)} is smooth. Define

Qi := {(x, t) ∈ Rn;x ∈ Ωi(t), t ∈ (−i, i)}.
Note that

⋃
i≥1Qi = Q and Qi ( Qi+1. Consider the following approximate

problem. 
wt = ∆wm in Qi,

w = u on Si,

w(·,−i) = u(·,−i) in Ωi(−i).
By the assumptions on Ωi and the uniform positivity of comparison functions u and
u on Qi, this approximate problem has a bounded solution wi satisfying u ≤ wi ≤ u
in Qi. Since u is a sub-solution, the comparison principle for bounded solutions
implies that wi(·,−i) = u(·,−i) ≤ wi+1(·,−i) in Ωi(−i). From the comparison
principle for bounded solutions again, it follows that

u ≤ wi ≤ wi+1 ≤ u in Qi

for each i. Hence the limiting function

u(x, t) := lim
i→∞

wi(x, t), (x, t) ∈ Q

exists and satisfies u ≤ u ≤ u in Q. By the same argument as in [6, Lemma 5.1]
based on the parabolic interior regularity theory and a diagonalization argument,
we see that u ∈ C2,1(Q) and wi → u in C2,1

loc (Q) as i→∞. Hence u satisfies (1.1)
in Q. Moreover, the desired estimate on u immediately follows from Proposition
3.1, and the proof is complete. �

5. Discussion

While our focus here is on furthering the classification of singular behavior in
fast nonlinear diffusion, rather than upon applications, we now briefly comment on
the nature of latter that lies in the background. A key phenomenon associated with
fast diffusion is the suppression of transport at high “concentrations” u (see [18]
for a number of illustrative applications). It is hoped that the associated intuition
clarifies the physical status of singular solutions in the context of localized sources of
material, the line singularities in the above being associated with restricted ability
of material to diffuse away from the ridge of high concentration laid down by the
moving source at the head of the snake (possibly augmented by continued injection
along the evolving line).

The snaking solutions are the simplest representatives of a much more general
class, that is in turn illustrative of very wide-ranging issues of non-uniqueness in
the equation of fast diffusion (cf. [6] and references therein), whereby the head of
the snake can be specified to take any path leaving in its wake a line singularity.
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Before we give a formal argument for this, we introduce a transformed equation
and some notation. Writing W := mum−1 takes equation (1.1) to the quadratically
nonlinear form

(5.1) Wt = W∆W − 1

1−m
|∇W |2.

We use the notation x = (x1, x2, . . . , xn) ∈ Rn, ρ := (x2
2 + · · · + x2

n)1/2. A formal
argument proceeds along the following lines: at a point on which the singular curve
is smooth, we take the x1 direction to be tangential to the curve, the dominant
balance then reading

(5.2) Wt ∼W
(
Wρρ +

n− 2

ρ
Wρ

)
− 1

1−m
W 2
ρ

on the assumption of cylindrical symmetry, this having a self-consistent local solu-
tion

(5.3) W ∼ ρ2

2B(t− t∗)
, B :=

n− 1

1−m

(
m− n− 3

n− 1

)
, as ρ→ 0, t > t∗ ,

where t∗ is the time at which the head of the snake passes through the location in
question, the behavior at the head being a quasi-steady generalization of the above
traveling wave solution.

Numerous natural generalizations presumably arise: the head of the snake can
come to a halt or retreat, its path may not need to be smooth and singular sets
of dimensionality greater than one are possible (the simplest such examples being
the above solutions embedded in higher dimensional space with no dependence on
the additional dimensions). Very specific questions relate to whether cylindrical
symmetry necessarily follows in the sense of (5.2)-(5.3) and with respect to the
large-time behavior when the head comes to a stop in finite time.

Appendix A. The traveling wave solution

We seek a traveling wave for (5.1) in the x1 direction, writing

w = W (x1 − ta, x2, . . . , xn), a > 0

and introducing paraboloidal coordinates Y and Z via

x1 − ta =
1

2
(Y 2 − Z2), R = Y Z, W = φ(Y, Z)

to give

−a(Y φY − ZφZ) = φ

(
φY Y + φZZ + (n− 2)

(
1

Y
φY +

1

Z
φZ

))
− 1

1−m
(
φ2
Y + φ2

Z

)
.

Setting φ = φ(Y ) yields the ODE

−aY φY = φ

(
φY Y +

n− 2

Y
φY

)
− 1

1−m
φ2
Y

that corresponds to the Boltzmann similarity reduction of the porous-medium equa-
tion in n− 1 dimensions and whose scaling properties imply the existence of a so-
lution φ = aY 2/B equivalent to the representation (2.2)-(2.3). This solution thus
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constitutes a reduction of (1.1) akin to that exploited by the Ivantsov solution to
the Stefan problem.
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