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ABSTRACT: In this paper, we describe a procedure for isolating and purifying oil bodies (OBs) from 14 

Oryza sativa bran, and present evidence that strongly suggests a physical association between the OB 15 

organelles and several anti-oxidant phytochemicals (γ-oryzanol and several tocochromanols).  This in 16 

turn provides a valuable comparison with similar analyses of tocochromanols in other plant species, as 17 

well as indicating that rice bran, normally a waste product from the rice industry, may provide a valuable 18 

source of anti-oxidants as well as protein and unsaturated fat, for mammalian consumption.   19 

 20 
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 22 

INTRODUCTION 23 

Oryza sativa, Asian rice, in common with many other food crops harvested for their seed, 24 

contains a significant quantity of fatty-acid-based energy storage molecules.  Typically, the fatty acid 25 

residues contained within these triglycerides are mono- or poly-unsaturated and are thus sensitive to 26 

oxidative degradation (become rancid).  The rate of this oxidation is a function both of exposure to 27 

oxygen in the air and to the number of unsaturated (olefin) bonds present in the fatty acid residues.  28 
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The facile oxidation of poly-unsaturated fatty acid residues that gives rise to rancid fats is therefore at 29 

odds with the observation that seeds containing such poly-unsaturated fatty acids are able to exist in a 30 

stable, unoxidised state for some time before germination.  This begs the question of what mechanism 31 

is employed by plants to protect their triglycerides from oxidation.  An obvious chemical candidate is 32 

the group of lipophilic compounds related to tocopherol (vitamin E), called tocochromanols, and one 33 

steroid-based anti-oxidant, γ-oryzanol.  These are known phytochemicals that have been isolated from 34 

plant species (1,2) and are amongst other phenolic compounds in the seeds of plants (3-5).   35 

Rice bran, a by-product from rice milling, is 15-20 % fatty acids, depending on the variety of 36 

Oryza and type of milling (6). They are known to contain the anti-oxidants noted above although levels 37 

recorded are influenced by the origin of the material (7), bran processing (8) and the method of 38 

extraction and purification (9, 10).  As well as anti-oxidant properties, they also help to maintain the 39 

stability of cellular membranes, and prevent intracellular lipid oxidation (11). 40 

The fatty acids produced by plants are stored as triglycerides in organelles called oil bodies 41 

(OBs) (12, 13). Such OBs serve as an energy source for germination and radicle growth.  OBs are 42 

composed of a triglyceride (fat) core surrounded by a mono-layer of complex lipids embedded with 43 

proteins called oleosins, caleosins and steroleosins (14). Transmission electron microscopy has shown 44 

that the highest concentrations of OBs are located within the aleurone, sub-aleurone and germ, and not 45 

the starchy endosperm of oat and rice grain (15, 16).  However, OBs have not been isolated from rice 46 

bran, nor has any attempt been made to establish their phytochemical composition.    Thus we report 47 

two methods for isolating rice bran OBs.  This has allowed us to determine their phytochemical content 48 

and provides evidence for a physical association between tocochromanols and γ-oryzanol in OBs of 49 

rice bran. 50 

 51 

 52 

MATERIALS AND METHODS     53 

Plant materials  54 

Oryza sativa (Basmati brown rice) from India, 2007 was purchased from East End Food plc. 55 

(Birmingham, UK).  The grains were milled using NW1000 Turbo rice mill (Natrawee technology, 56 
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Bangkok, Thailand).  The bran was sieved through a 600 µm screen immediately and before further 57 

processing.   58 

 59 

Transmission electron microscopy  60 

  Electron micrographs were prepared in an analogous manner to a previous report (16). 61 

Samples of the resulting bran (~1 mm thick) were fixed in freshly made 2·5% glutaraldehyde in 62 

cacodylate buffer (0·05 M, pH 7·4) and washed with freshly made cacodylate buffer. The samples were 63 

then post-fixed in 2% osmium tetroxide before being embedded in Spurr resin and polymerized.  Thin 64 

sections (0·5 µm) were cut and stained with toluidine blue for light microscopy before ultra-thin 65 

sections were selected and mounted on copper grids and stained using uranyl acetate and lead citrate 66 

for electron microscopy (JEOL 1010 TEM; JOEL Ltd., Herts, UK). 67 

 68 

Isolation and washing of oil bodies  69 

Rice bran (100 g) in 500 mL distilled water was mixed on a roller mixer at 50 rpm for 1 h 70 

before homogenisation (2 min, Krups blender,  maximum speed).  The slurry was filtered through three 71 

layers of cheese cloth and the filtrate centrifuged (Beckman Coulter, London, UK) at 10,000 g for 20 72 

min at 5 ºC. The upper-most layer (COBs) was collected, resuspended in 9·0 M urea (1:4, w/v), 73 

vortexed vigorously and centrifuged (10,000 g, 20 min, 5 ºC).  The remaining mass was washed three 74 

more times with distilled water in the same manner to furnish OBs (referred to hereafter as purified 75 

OBs).  Water washed OBs (Figures 2) are purified in the same manner, without suspension in any 76 

aqueous solution of urea.   77 

 78 

Compositional analysis  79 

The moisture content was determined by drying the sample (~200 mg) to constant mass in a 80 

vacuum oven at 40 ºC (48 h). The lipid (phospholipid and triglyceride) content of the dried oil body 81 

sample was determined gravimetrically by repeated extraction with iso-octane (3 × 500 µL) using a 82 

Mini-Beadbeater-16 (Biospec, OK, USA) for 30 sec at the shaking speed of 3,450 oscillations/min at 83 

room temperature.  The lipid extracts were evaporated under nitrogen stream to dryness. Protein 84 
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content of the remaining material was measured using a bicinchoninic acid (BCA) assay (17) calibrated 85 

against bovine serum albumin (BSA). 86 

 87 

Protein analysis by SDS-PAGE 88 

The proteinaceous material from dried oil body samples from which the water and lipidic 89 

material had been separated was denatured using  Laemmli’s solution (Bio-Rad Laboratories, Herts, 90 

UK, 190 µL/mg protein isolate) and β-mercaptoethanol (Bio-Rad, 10 µL/mg protein isolate) at 95 °C 91 

and chromatographed by SDS-PAGE using 4-20% gradient Protean® Gel Tris-HCl Gel (Bio-Rad).  92 

The gels were stained with Imperial Bio-Rad Coomassie blue (R-250).  Excess stain was removed using 93 

ddH2O and imaged using a Bio-Rad GX-800 densitometer.  94 

 95 

Fatty acid composition 96 

The lipid (phospholipids and triglycerides) fraction separated from the rest of the OB material, 97 

vacuum-oven-dried and then dissolved in chloroform (0·01 g/mL), was converted to fatty acid methyl 98 

esters using trimethylsulfonium hydroxide (0·25 M in methanol) using an established method (lipid: 99 

trimethylsulfonium hydroxide 5:1 v/v) (18). A gas chromatograph (Trace GC Ultra, Thermo Scientific, 100 

Loughborough, UK) equipped with a mass spectrometer (DSQ II Single Quadrupole GC/MS, Thermo 101 

Scientific, Loughborough, UK) was employed, with a flame ionization detector (FID) and auto 102 

injection system (CTC Analytics, Essex UK) and operated in the splitless mode. One microlitre of 103 

sample was injected into a capillary column (Phenomenex Zebron ZB-FFAP, California, USA) 30 m × 104 

0·25 mm I.D. coated with nitroterephthalic acid modified polyethylene glycol (0·25 µm film thickness). 105 

Injection temperature was 200 °C. The oven temperature was initially held at 120 °C for 1 min and 106 

increased to 250 ºC at a rate of 5 ºC/min for 4 min. The carrier gas was helium. Retention times of 107 

standards (Supelco 37 Component FAME Mix, Supelco, PA, USA) were used to identify detected fatty 108 

acid esters. Identification was also verified by comparing mass spectra with standard library through 109 

the Thermo Scientific Xcalibur software programme.  Methyl heptadecanoate (250 μg/mL) was used 110 

as an internal standard.  111 

 112 
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Extraction and quantification of tocochromanols and γ-oryzanol 113 

Phytochemicals were extracted from dried oil body samples (~200 mg), using methanol 114 

3 × 800 µL containing 1% butylated hydroxyl toluene through agitation in a mini-Beadbeater-16 for 30 115 

sec at 3,450 oscillations/min and then analyzed by using RP-HPLC as described previously (19). 116 

Samples (20 µL) were injected with a total run time of 35 min at 25 ºC. Identification and quantification 117 

were made using calibration curves prepared from standards of α-, β-, γ-, and δ-tocopherols and 118 

tocotrienols (2-15 μg/mL) (Sigma, Gillingham, Dorset, UK) and γ-oryzanol (50-300 μg/mL) (Tokyo 119 

Chemical Industry UK, Oxford, UK).  Waters Millenium®32 Chromatography Manager Software 120 

(version 3·0) was utilized for data analysis.  121 

 122 

Total phenolic content (TPC)  123 

The TPC of a methanolic extract of dried oil bodies was determined using a modified procedure 124 

based on Folin-Ciocalteau method (19). Samples were left at room temperature for 30 minutes before 125 

measuring absorbance at 750 nm with gallic acid as a standard. Results are expressed as gallic acid 126 

equivalents per g of lipid (mg GAE/gm lipid).  Error values are based on the standard error of 127 

measurements (n = 3) for n = 3 samples.  Error values quoted are propagated from the standard error of 128 

each n.   129 

 130 

 131 

RESULTS AND DISCUSSION 132 

In order to determine the size of rice bran OBs in vivo, images of this system were taken using 133 

Transmission Electron Microscopy (TEM).  The OBs appear as light grey spherical droplets in brown 134 

rice (Figure 1A) and rice bran (Figure 1B), and were all 0·5-1·0 µm in diameter.  In general, OBs were 135 

observed in the aleurone and sub-aleurone layers (Figure 1).  The distribution of OBs observed is in 136 

agreement with previous studies on OBs from Oryza species (15,20). 137 

It should be noted that the bran was richer in both protein (15·0 ± 0·65%), and 138 

lipids/triglycerides (16·3 ± 0·52%) than brown rice (8·9 ± 0·63% and 2·5 ± 0·15% respectively) and 139 

white rice (8·6 ± 0·75% and 0·6 ± 0·03%, respectively).  Yields of OBs from whole-grain basmati 140 
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brown rice and white rice proved low and thus these sources were judged to be too inefficient for 141 

commercial application.  The focus of this investigation was therefore on OBs isolated from the bran 142 

only. 143 

In order to determine both the presence of tocochromanols and γ-oryzanol and any physical 144 

association with OBs quantitatively, several steps were required.  First, the OBs were separated from 145 

the bran and purified.  The success of this step was monitored by determining the protein, lipid and 146 

triglyceride composition of the isolates (compositional analysis).  The purification process was 147 

successful in removing proteinaceous material not associated with OBs, leading to a relative increase in 148 

lipid content (Figure 2).  This analysis was supported by determining the protein composition (using gel 149 

electrophoresis, Figure 3) and the fatty acid profile of the isolate (Figure 4).  Finally, RP-HPLC was used 150 

to determine the presence of tocochromanols and γ-oryzanol in given material, measured against an 151 

independent standard based on commercially available samples of these anti-oxidants.   152 

Although high concentrations of urea are known to have a denaturing effect on proteins (22), it 153 

appears that proteins associated with OBs are perhaps not as sensitive to this effect as others, since the 154 

OBs remain intact despite repeated treatment with concentrated urea solution.  Gel electrophoresis of 155 

the purified protein fraction arising from the purified OBs (Figure 3) showed several bands, including 156 

ones relating to masses of the known isoforms of oleosin (16-18 kDa, bands H and J).  Other masses 157 

include the larger ones observed (50+ kDa, bands A-C), the medium-sized ones (33-34 kDa, band E) 158 

and smaller ones (10 and 13 kDa, bands K and L).  Whether or not the unknown bands provide 159 

evidence for aggregations (dimers, trimers et cetera) of known proteins, unknown OB proteins or 160 

fragments of known proteins respectively is not clear.  However the fact that several other bands from 161 

the purified OB material are consistent with the known composition of OBs (23, 24) (Figure 3) suggests 162 

that the OBs have been purified correctly. 163 

Like the protein composition, the fatty acid composition of purified OBs is similar to the fatty 164 

acid composition of the crude OBs and thus washing the crude oil body material has no effect on it 165 

(Figure 4).  The lipid fraction was extracted from crude OBs using iso-octane, hydrolysed and 166 

methylated before purification to afford fatty acid methyl esters.  The data is shown in Figure 4 and 167 

indicates that around 75% of fatty acids are unsaturated, with no evidence for oxidation of unsaturated 168 
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fatty acids (as measured by GC-MS).  This indicates that the OBs that were isolated remained intact 169 

during purification, as no oxidation or loss of fatty-acid-derived material was observed. 170 

The retention of tocopherols, tocotrienols and oryzanols in purified OBs compared with the 171 

starting bran material is shown in Table 1.  Notably, concentrations of tocochromanols and oryzanols 172 

with respect to total lipid content both decline between that in bran and that in crude oil bodies, and 173 

from crude oil bodies to purified oil bodies.   However, there is a higher retention of tocotrienols (41%) 174 

compared with the tocopherols (17%) between purified OBs and the Oryza sativa bran they were 175 

isolated from.  This also suggests that, in vivo, there is an enrichment of tocotrienols in the OB 176 

compared with tocopherols.  Certainly, there is reduction of >90% in total phenolic compounds, with 177 

>80% of the total phenolic compounds being removed during the urea-washing step alone.  This 178 

demonstrates that there is a significant pool of phenolic compounds that are removed during washing 179 

steps along with extraneous proteins.  Additionally, these data demonstrate that the step in which the 180 

OBs are washed in urea results in some loss in tocopherols and tocotrienols (27% and 23% 181 

respectively), and oryzanol (9%).  This in turn suggests that a quarter of the tocochromanols and about 182 

a tenth of the oryzanols that are present in the bran are either not as strongly linked to the OBs as the 183 

phytochemical fraction that remains after purification, or are not associated with OBs at all.  Further, 184 

the reduction in total phenolic compounds (Table 1) is relatively large with respect to the reduction in 185 

tocochromanols.  Before purification (i.e. in the bran), tocochromanols represent <7% of the total 186 

phenolic fraction.  After purification, this group of compounds represents around a third of the 187 

phenolic compounds that remain.   188 

The possible physical association of tocochromanols and especially γ-oryzanol with OBs ex 189 

vivo suggested by these results agrees with a similar study of Avena sativa that posited an intrinsic 190 

association between tocochromanols and OBs in the seeds in that species (16).  The retention of the 191 

major tocochromanol isomer in Avena and Oryza species during OB isolation is at odds with the 192 

retention-during-purification data for some other seeds for which data has been published to date, viz. 193 

Echium plantagineum and Helianthus annuus (Table 2, 26, 27).  Taken together, these data (Table 2) 194 

suggest that cereals (Avena and Oryza) are enriched in tocotrienols, whereas the oilseeds (Echium and 195 

Helianthus) are enriched in tocopherols. Overall the profile of tocochromanol isomers in the plant 196 
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material (seed/grain/bran) is reflected in the oil bodies whether they are crude or washed, although, as 197 

mentioned above, the rice bran oil bodies show a measureable increase (73% - 86%) in γ-tocotrienol.  198 

An estimate of total tocochromanol present in the purified oil bodies can be made on comparing the 199 

concentration of these phytochemicals per unit mass of lipid in the starting material with that in the 200 

purified OBs.  This calculation strongly suggests that the majority of oil seed tocochromanols are 201 

strongly associated with oil bodies, which appears not to be the case for the cereals for which data is 202 

available.  203 

The placement of these anti-oxidants in OBs in vivo may help to explain the oxidative stability 204 

of the OBs ex vivo (26,28-30).  However, unlike dormant oil seeds, it is notable that Oryza bran material 205 

is prone to oxidation through the release of fatty acids due to the action of lipase enzymes.  What is not 206 

clear is the intracellular origin of these fatty acids and whether any are derived from the OBs 207 

themselves. 208 

Rice bran is currently a waste product from the rice industry, thus OBs recovered from rice 209 

bran via a simple wet milling process provides a rich source of these anti-oxidants as well as 210 

unsaturated fat and protein.  This material is also in a format (OBs) that has potential as a functional 211 

food ingredient as it is easy to handle, and is in a natural form that allows emulsification simply by 212 

dispersing the oil bodies in an aqueous medium.  This reduces the number of ingredients required to 213 

produce food products from it and offers a novel food ingredient that will offer a reduced carbon 214 

footprint with enhanced label credentials.   215 

 216 
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 313 

Figure 1. Electron micrograph of oil bodies in (A) brown rice surface and (B) aleurone layer of 314 

rice bran. OB: Oil body P: Pericarp, SC: Seed coat, Al: Aleurone, SA: Sub-aleurone, SG: Starch 315 

granule 316 

 317 

 318 

Figure 2.  Lipid and protein levels (% dry weight basis) in crude rice bran oil bodies and in OBs 319 

after washing with water and 9·0 M urea. 320 

 321 

 322 
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 323 

Figure 3. SDS-PAGE profiles in oil body preparations from rice bran. OBs washed in urea 324 

demonstrate the same protein composition as those washed only in water.  Lane 1, molecular 325 

mass marker; lane 2, crude oil bodies; lane 3, water-washed oil bodies; lane 4, urea-washed oil 326 

bodies. Bands are identified in accordance with reported work on OB proteins (12,21,23,25) 327 

thus: A-G (lanes 1 and 2 only) are unknown, H and J are identified as oleosin isoforms, K and 328 

L unknown.  All samples were applied at a total protein loading of 10 μg. 329 

 330 
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 331 

Figure 4. Fatty acid composition in crude oil bodies and oil bodies after washing with 9·0 M 332 

urea.   333 

 334 

Table 1.  The concentrations of phytochemicals at various stages of the process.   335 

 336 

 337 

 338 

Phytochemical Bran Crude OBs 

(mg/Kg 

lipid) 

Urea washed 

OBs (mg/Kg 

lipid) 

Phytochemical 

retention 

between Urea 

washed OBs 

and Bran (%) 

mg/Kg 

mass 

mg/Kg lipid 

α-tocopherol 45 ± 3  277 ± 15 58 ± 4 41 ± 1 15 ± 1 

γ-tocopherol 17 ± 1  104 ± 5 30 ± 1 22 ± 1 22 ± 1 

δ-tocopherol 1·5 ± 0·1  9·4 ± 0·6 4·8 ± 0·2 4·3 ± 1·4 46 ± 18 

Total tocopherols 64 ± 3 390 ± 16 93 ± 10 68 ±7 18 ± 3 

α-tocotrienol 19 ± 2 116 ± 11 48 ± 5 33 ± 1 36 ± 4 

γ-tocotrienol 126 ± 3  771 ± 19 425 ± 9 316 ± 7 39 ± 4 

δ-tocotrienol 25 ± 1 153 ± 5 90 ± 2 82 ± 2 54 ± 3 

Total tocotrienols 170 ± 4 1,040 ± 22 563 ± 4 432 ± 2 42 ± 1 

Tocochromanols 

(All)  

233 ± 4 1,430 ± 27 655 ± 11 500 ± 7 35 ± 1 

Total Phenolic 

Content  

3,470 ± 181 21,200 ± 1,102 7,820 ± 157 1,530 ± 147 8 ± 1 

γ-Oryzanol 2,310 ± 40 14,200 ± 250 9,690 ± 130 8,830 ± 97 62 ± 2 
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Plant 

material 

Major toco-

chromanol 

isomer 

Seed/Gra

in/Bran 

COB WWOB UWOB Total 

seed/grain/bran 

tocochromanols 

associated with 

purified oil 

bodiesa
 

Whole Avena 

Grain 

α-tocotrienol 66·3 ± 2·2 77·2 ± 18·2 60·8 ± 13·7 69·3 ± 8·2 20 

Oryza Bran γ-tocotrienol 74·2 ± 3·3 75·5 ± 2·1 ND 73·2 ± 1·9 35 

Echium Seed -tocopherol 92·9 ± 5·5 93·7 ± 7·9 93·4 ± 3·3 93·7 ± 0·6 86 

Helianthus Seed α-tocopherol 94·4 ± 8·3 ND 93·5 ± 10·7 93·9 ± 12·8 80 

 339 

Table 2.  The retention of the major tocochromanol isomer during purification of OBs from 340 

several species, Avena (16), Oryza (present study), Echium (26), Helianthus (27).  ND, not 341 

determined.  aThis estimate is calculated based in the total tocochromanol concentrations per unit 342 

mass lipid. There is an assumption that most of the lipid in these tissues is present in oil bodies. 343 

 344 


