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ABSTRACT: Self-consistent field methods for excited states offer an
attractive low-cost route to study not only excitation energies but also
properties of excited states. Here, we present the generalization of two self-
consistent field methods, the maximum overlap method (MOM) and the σ-
SCF method, to calculate excited states in strong magnetic fields and
investigate their stability and accuracy in this context. These methods use
different strategies to overcome the well-known variational collapse of energy-
based optimizations to the lowest solution of a given symmetry. The MOM
tackles this problem in the definition of the orbital occupations to constrain
the self-consistent field procedure to converge on excited states, while the σ-
SCF method is based on the minimization of the variance instead of the
energy. To overcome the high computational cost of the variance
minimization, we present a new implementation of the σ-SCF method with the resolution of identity approximation, allowing
the use of large basis sets, which is an important requirement for calculations in strong magnetic fields. The accuracy of these
methods is assessed by comparison with the benchmark literature data for He, H2, and CH+. The results reveal severe limitations of
the variance-based scheme, which become more acute in large basis sets. In particular, many states are not accessible using variance
optimization. Detailed analysis shows that this is a general feature of variance optimization approaches due to the masking of local
minima in the optimization. In contrast, the MOM shows promising performance for computing excited states under these
conditions, yielding results consistent with available benchmark data for a diverse range of electronic states.

1. INTRODUCTION

Atoms and molecules may exhibit exotic chemistry in strong
magnetic fields. Such chemistry is of particular interest in
astrophysics since ultrastrong magnetic fields may occur in, for
example, the vicinity of white dwarf stars.1−4 Since this range
of magnetic fields cannot be investigated on Earth, quantum
chemistry is an essential tool for understanding chemistry
under these conditions. In this context, Lange et al. showed
that a new molecular bonding mechanism, the perpendicular
paramagnetic bonding in H2 and He2, should exist in strong
magnetic fields.5 However, computing properties under such
conditions beyond the perturbative regime needs particular
machinery. In addition to the modifications of the molecular
Hamiltonian due to the external field, gauge-origin independ-
ence of energies and properties has to be ensured. This may be
achieved by means of London atomic orbitals (LAOs) but
leads to a computational cost that is higher than that of
calculations with standard Gaussian-type basis sets.6,7

Excited states are of fundamental importance in chemistry,
not only in the absence of magnetic fields where they are
essential in many areas such as photochemistry but also in the
presence of magnetic fields. From the theoretical point of view,

their study has led to the development of a wide range of
methods. These include the linear response-based methods
such as configuration interaction singles (CIS),8,9 time-
dependent Hartree−Fock (TD-HF)10 or density functional
theory (TD-DFT),11,12 coupled-cluster methods (CC) such as
equation-of-motion CC (EOM-CC),13−16 multiconfigurational
self-consistent field (MCSCF),17,18 multi-reference (MR) wave
function-based methods such as configuration interaction
(MRCI),19 or perturbation theories.20−25 The computation
of excited states in the presence of magnetic fields is essential
for understanding and interpreting the spectra observed from
stellar objects where such strong fields exist. In the late 90’s,
the first computational studies of excited states in strong
magnetic fields were carried out for atoms and ions at the HF
level by Ivanov and Schmelcher.26−29 Studies including
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electron correlation have also been presented at the full CI
(FCI) level30−34 and by means of quantum Monte-Carlo by
Jones, Ortiz, and Ceperley.35 More recently, linear response
HF36,37 and EOM-CCSD38−40 have been extended to the
strong-magnetic field regime. However, the complex algebra
required by the use of LAOs makes the adaptation of these
sophisticated methods often a complicated task, in addition to
significantly increasing their computational cost.
In this context, the prospect of computing excited states

through self-consistent field (SCF) approaches is attractive.
Indeed, using a mean-field approach presents several
advantages: (i) it provides a simple picture of excited states
which may be interpreted in the same way as the ground-state
(GS) ones, (ii) it yields a reference wave function to which
correlated methods may be applied, (iii) unlike linear
response-based methods, it could provide a correct description
of many types of excitations (including, e.g., double excitations
and charge transfer),41,42 and (iv) the computational cost
should be no more than that for the GS calculation with the
same method. However, the main difficulty is to find a way to
circumvent the variational collapse problem, since a variational
optimization of the energy will generally lead to the lowest
energy state of a given spin and spatial symmetry.
The maximum overlap method (MOM) of Gilbert, Besley,

and Gill41 may be seen as a practical implementation of the Δ-
SCF method.43−45 The principle of the Δ-SCF method is to
optimize a non-aufbau configuration by promoting an electron
from an occupied orbital to a virtual orbital of a GS wave
function. However, since the order of molecular orbitals
(MOs) may change between SCF iterations, tracking the
desired configuration is often difficult. The MOM attempts to
overcome this issue by defining the occupation according to
the orbitals that have the most overlap with those from the
previous iteration. The MOM has been successfully used in a
wide range of applications, such as the computation of core-
excited states in the context of X-ray spectroscopy46−51 or to
provide a reference wave function for several correlated
methods.52−56

Despite its success, the MOM suffers from deficiencies,
among which is the collapse to other solutions during the SCF
procedure, which cannot always be prevented, and other
strategies have been employed to variationally optimize excited
states through energy optimization-based schemes. Colle et
al.57 proposed to variationally determine excited states by
constraining the wave function to be orthogonal to the GS.
While this constraint is more complicated to implement, it has
led to several methods either in HF58−60 or DFT,61−65 with
which excited states may be calculated. More recently, the
computation of excited states through mean-field approaches
has seen a great renewal of interest, and different strategies
have been explored.66−74 These include the possibility to
overcome the variational collapse of the energy optimization
with direct optimization techniques. In this context, Hait and
Head-Gordon proposed an extension of direct orbital
optimization to optimize excited states by minimizing the
square of the orbital gradient to avoid variational collapse; this
is termed the squared-gradient minimization (SGM) ap-
proach.71 Furthermore, the use of quasi-Newton optimization
approaches in this context has been exploited by Levi et al.73,74

In order to improve further on the Δ-SCF method, as the
MOM does by tracking the orbital occupations, the state-
targeted energy projection method enforces the computation
of non-aufbau configurations by restricting the occupied-

virtual orbital rotations by means of a level shift in the
definition of the Fock matrix.72 Finally, following a different
approach, Neuscamman et al. developed excited-state mean-
field theory (ESMFT), in which a generalized variation
principle is introduced to target excited states using the
method of Lagrange multipliers.66−68

An alternative possibility to overcome the variational
collapse of the energy optimization is to instead optimize a
different measure of the wave function. Based on the
minimization of the variance,75,76 Ye et al. have recently
introduced the σ-SCF method for computing either the GS or
excited states.69,70 This method proceeds through two
successive minimizations with (i) an energy-targeting mini-
mization to target the desired state and to provide an initial
guess for (ii) a variance minimization of the state. While the
variance is a quantity commonly used in quantum Monte-
Carlo methods, less attention has been paid to its exploitation
elsewhere in electronic structure theory.
The present paper is organized as follows: after introducing

the theoretical background of quantum chemistry in strong
magnetic fields, Section 2 presents the MOM and σ-SCF
method and discusses their implementation in strong magnetic
fields. Numerical applications are presented in Section 3, and
we compare the performance of both methods in the presence
of a magnetic field. The helium atom, the hydrogen molecule,
and the methylidinium ion have been chosen as prototypical
examples since they are representative of the species that may
exist in the vicinity of magnetic white dwarf stars,1−4,77−79 and
the results are discussed in comparison with higher levels of
theory, such as FCI and EOM-CCSD calculations. Finally, in
Section 4, we discuss the practical limitations of variance-based
optimization and explain their origin.

2. THEORY
2.1. Quantum Chemistry in Strong Magnetic Fields.

The electronic non-relativistic Hamiltonian for an N-electron
system in the absence of a magnetic field is given by

∑ ∑ ∑̂ = +
| − |

+
| − |>

H
Z

p
r R r r

1
2

1

i
i

i K

K

i K i j i j
0

2

, (1)

with the momentum operator pi = −i∇i for the electron i with
coordinates ri. Here, ZK and RK are the charge and position of
the nucleus K, respectively. The effect of a magnetic field B is
introduced by a modification of the kinetic energy operator
with the vector potential A, defined such that B = ∇ × A, and
with a spin-dependent term B·S as
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which can be re-written as

̂ = ̂ + · + · +H H A p B S A
1
20

2
(3)

The second and third terms correspond to the orbital and
spin paramagnetic components, respectively, these are the
linear Zeeman paramagnetic terms, while the last term
corresponds to the diamagnetic term, with quadratic depend-
ence on the field strength.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00236
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

B

pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00236?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Due to the dependence of the vector potential on the gauge
origin RO in a uniform magnetic field, eigenfunctions of the
Hamiltonian in eq 3 become dependent on the choice of RO,
which is completely arbitrary. This behavior cannot be
modeled using a finite basis set, except by explicitly including
the gauge-origin dependence; this approach is adopted using
LAOs, which consist of standard Gaussian-type functions
multiplied by complex phase factors6,7

ϕ ϕ′ = − × − ·r r( ) ( )e
i B R R r2 ( )K O (4)

These exhibit the correct behavior to the first order with
respect to the magnetic field and ensure that calculated
observables are gauge-origin-invariant.
2.2. MOM and Initial MOM. In order to variationally

determine excited states, the MOM provides a way to track the
desired non-aufbau configuration between SCF iterations,
since the change in the order of MOs at each step may
complicate this task.41 At the nth iteration, one may define the
overlap matrix between the current MOs and those from the
previous iteration as

= − †O C SC( )n n1 (5)

with C being the matrix of MO coefficients and S being the
overlap matrix in the atomic orbital (AO) basis. Thus, defining
the projection

∑ ∑ ∑ ∑= = − *
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(6)

where i and j run over the M occupied MOs of the (n − 1)th
and nth iterations, respectively, and p and q run over the N
AOs, allowing the current set of MOs to be occupied by
selecting those which have the greatest overlap with those from
the previous iteration. Another possibility is to choose the
initial-guess orbitals as the reference set of MOs

= †O C SC( ) n0 (7)

This method, called as the initial MOM (IMOM), may
enable the computation of some states often difficult to access
with the MOM, such as doubly excited states.42 In order to
reach convergence to the desired excited state, the starting

orbitals should be as close as possible to those of this solution.
Often, orbitals obtained from a GS calculation provide an
adequate guess for MOM and IMOM calculations when
occupied with the required non-aufbau configuration. This
choice has been used throughout the current work.
Therefore, the implementation of the MOM and IMOM is

very simple since it mainly consists of a small modification to
the SCF process. Furthermore, this simplicity is of particular
interest for our purpose since the generalization of these
methods to the strong magnetic field framework is
straightforward.

2.3. Variance Minimization and the σ-SCF Method.
The variance functional

[Φ] = ⟨Φ| ̂ |Φ⟩ − ⟨Φ| ̂ |Φ⟩S H H2 2
(8)

provides an alternative measure for the accuracy of a trial wave
function Φ. Expressing this normalized wave function in the
basis of the exact eigenstates Ψi of the Hamiltonian

∑|Φ⟩ = |Ψ⟩c
i

i i
(9)

where ci corresponds to the expansion coefficients; its variance
may be expanded in terms of the corresponding eigenvalues Ei
as
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From this equation, it is readily seen that if Φ is an
eigenstate of the system, the variance is equal to zero, and
otherwise, S[Φ] measures the departure of Φ from one of the
eigenfunctions of the Hamiltonian. Therefore, the variance
presents a local minimum for each eigenstate, and a self-
consistent optimization of this quantity should approximate
not only the GS but also excited states. Thus, one may expect
to compute a desired state if the initial guess is already located
in its variational well. The σ-SCF method provides a way to
locate the desired well by performing an energy-targeting
minimization, which provides the guess density matrix for the
subsequent variance minimization. The energy-targeting
function

Figure 1. Energy-targeting function (black circles), variance (blue crosses), and energy (orange crosses) with respect to ω for the hydrogen
molecule (rH−H = 1.4 bohr) in the u-3-21G basis.
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ω ω[Φ] = ⟨Φ| − ̂ |Φ⟩W H( ) ( )2 (11)

is dependent on the user-defined parameter ω. Figure 1
illustrates the meaning of both quantities defined by eqs 8 and
11 for the example of H2 in the u-3-21G basis, where the prefix
‘u-’ indicates that the basis set is uncontracted. The black curve
corresponds to the energy-targeting minimization, which
presents clear wells with respect to ω. Each of these wells is
associated with a plateau in terms of variance (blue) and
energy (orange). Thus, σ-SCF proceeds through two
successive minimizations: (i) W[Φ](ω) (black circles) may
be optimized with a given value of ω, providing a guess in the
desired well. Once this quantity is optimized, (ii) the
minimization of the variance converges to the minimum of
the related energy-targeting well (blue). The optimized wave
function allows us to calculate the energy of the state (orange).
Thus, one may target a particular state by selecting an
appropriate value of ω, which should be close to the electronic
energy of that state. For further discussion about the physical
meaning of W[Φ](ω) and ω, the reader should refer to ref 69.
Although variance minimization-based methods are less

popular than their energy optimization counterparts, this
approach has been studied in the 60’s and 70’s80−83 and is
commonly applied in quantum Monte-Carlo methods.84 The
main difficulty associated with such methods arises from the
square of the Hamiltonian occurring in eqs 8 and 11. Indeed,
expressing eq 8 in an orthogonal AO basis gives

∑

∑ ∑

∑ ∑

∑ ∑

∑ ∑

∑ ∑

∑ ∑

= { + }

+ | |

− | |

+ | |

+ | |

− | |

+ | |

α α α α β β β β

α α α α

α α α α

α α β β

β β β β

β β β β

β β α α

S D F Q F D F Q F

D Q D Q pq rs ji lk

D Q D Q pq rs ji lk

D Q D Q pq rs ji lk

D Q D Q pq rs ji lk

D Q D Q pq rs ji lk

D Q D Q pq rs ji lk

1
2

( )( )

1
2

( )( )

1
2

( )( )

1
2

( )( )

1
2

( )( )

1
2

( )( )

pqrs
pq qr rs sp pq qr rs sp

pqrs ijkl
pi qj rk sl

pqrs ijkl
pi ql rk sj

pqrs ijkl
pi qj rk sl

pqrs ijkl
pi qj rk sl

pqrs ijkl
pi ql rk sj

pqrs ijkl
pi qj rk sl

(12)

Here, Dpq is the element of the density matrix between AOs p
and q, Fpq is an element of the Fock matrix, and Qpq is an
element of the matrix defined as Q = I − D, with I being the
identity matrix. Note that two electron integrals (TEIs) are
given in an orthogonal AO basis. This expression clearly shows
the introduction of 8-index summations over the TEIs. This
results in an increase in the computational cost compared to an
energy-based optimization such as HF or MOM calculations
with a scaling of N( )5 , where N is the number of basis
functions, coupled with a large prefactor.69 So far, this has
limited the applications of σ-SCF to atoms or diatomic
molecules in small basis sets.69,70 However, the size of the basis
sets used for atoms and molecules in strong magnetic fields is
an important requirement since they must be sufficiently
flexible to describe the deformation of the electronic structure
due to the field. Furthermore, care should be taken in selecting

basis sets for excited states since their electron densities may be
more diffuse than those of ground states. The scaling of σ-SCF
in addition to the basis set requirements makes the use of the
RI approximation attractive; a reformulation of eq 12 using the
RI approximation has been developed and implemented in the
present work. For the sake of convenience, all working
equations and the derivation of the RI-based implementation
are presented in the Appendix, along with numerical
illustrations of its effectiveness. These developments signifi-
cantly reduce the computational cost, and the RI-version scales
as M N K( )2 2 , with M being the number of occupied orbitals
and K being the number of auxiliary basis functions. It is worth
noting that the σ-SCF equations are expressed in terms of the
Fock matrix and the TEIs, and thus, the introduction of the
terms in the Hamiltonian occurring from the magnetic field
does not modify the σ-SCF equations since they result only in
a modification of the one-electron operator. However, due to
the use of LAOs, there is less permutational symmetry for the
TEIs38 and so less opportunity to accelerate calculations by
taking advantage of this.

3. RESULTS AND DISCUSSION

The MOM, IMOM, and σ-SCF have been generalized for
calculations in strong magnetic fields and using LAOs in our
development platform QUEST,85,86 where all three methods
have been implemented using standard TEIs and also with the
RI approximation (see the Appendix for numerical compar-
isons of RI and conventional results). Although the MOM/
IMOM may be used with DFT, in the present work, they are
only applied to Hartree−Fock to enable a direct comparison
between the MOM/IMOM and σ-SCF, since the latter is not
directly applicable to DFT. All calculations have been
performed using the unrestricted formalism, permitting a
direct computation of different spin multiplicities. Magnetic
field strengths are given in atomic units, where 1B0 ≈ 2.35 ×
105 T.
As a proof of concept, in Section 3.1, we initially study the

two-electron example of the helium atom in the 6-311G basis
under strong magnetic fields and compare the excited-state
energies obtained from both the MOM and σ-SCF with the
results of FCI calculations, computed using the BAGEL
package,87 and results of CIS calculations obtained using the
time-dependent linear response implementation in QUEST.
Following this, in Section 3.2, the energy spectra of the

hydrogen molecule were computed with the MOM/IMOM
and σ-SCF at zero field and in the presence of magnetic fields
parallel and perpendicular to the internuclear axis and
compared with CIS spectra. These were computed in the u-
aug-cc-pVDZ and u-aug-cc-pVQZ basis sets; in general,
uncontracted orbital basis sets are used to allow greater
flexibility to respond to the effects of the magnetic field. Here,
the RI approximation was employed with the AutoAux
auxiliary basis,88 which provides large flexible RI basis sets
tailored automatically to each orbital basis used throughout.
Subsequently, the energies of selected states of the hydrogen

molecule with a magnetic field parallel and perpendicular to
the molecular axis were calculated using the MOM and
compared with the results of EOM-CCSD calculations from ref
39 at magnetic field strengths from 0 to 1B0. A similar analysis
is conducted for the methylidinium ion (CH+) with a magnetic
field applied parallel to the internuclear axis in Section 3.3. In
both cases, the RI approximation was used with the u-aug-cc-
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pVQZ and u-aug-cc-pCVQZ orbital basis sets for hydrogen
and carbon atoms, respectively, and the AutoAux auxiliary
basis. The same molecular geometries as in ref 39 were used
throughout. For CH+, a magnetic field perpendicular to the
molecular axis was also studied with the MOM, and the results
are compared to those of the FCI calculations from ref 40 with
the same molecular geometry. Note that this study uses the
more modest cc-pVDZ basis. In all cases, the Cartesian form of
these basis sets was used to enable a comparison with refs 39
and 40.
3.1. Helium Atom. The example of the helium atom in the

6-311G basis corresponds to a system with six ms = 0
configurations and three configurations for each ms = ±1.
While in the absence of a magnetic field, the ms = ±1
determinants of a given triplet state are degenerate, the spin
Zeeman effect that arises by virtue of an applied magnetic field
breaks this degeneracy and makes it necessary to consider all
ms components. Figure 2 presents the energies of all ms = ±1
components computed with the MOM and σ-SCF, denoted by
squares and crosses, respectively, as a function of magnetic
field strength. Since the 6-311G basis set only features s-type
orbitals for the helium atom, only the spin part of the Zeeman
effect is relevant, causing the splitting of both ms components
of each triplet state. Over the range of magnetic field strengths
for which these were computed (from 0 to 1B0), the
diamagnetic term does not seem to be a significant
contribution and the energies show a near-linear variation

with the field strength. Both methods are in very good
agreement, and energy differences between the MOM and σ-
SCF calculations at each field strength are below the
convergence criterion (all energy differences are below 10−10

Eh).
Figure 3 (left panel) presents the energy of the ms = 0

components computed using both methods with respect to the
magnetic field strength, and the same good qualitative
agreement is observed. However, plotting the differences
between the MOM and σ-SCF energies with respect to the
field for each determinant in the right panel of Figure 3 reveals
different features. The quantitative agreement between both
approaches for the ms = 0 configurations is less impressive than
that for the ms = ±1 components. The ground state (1sα1sβ)
and the highest excited state (3sα3sβ) present the smallest
energy difference, which is non-negligible (about 0.4 mEh),
while the energy given by both methods for the first excited
state differs by about 4 mEh at zero field. The difference seems
to be neither related to the nature of the excited configuration
(open- or closed-shell configuration) nor the position of the
states in the energy spectrum; those with the two largest
differences are the first and fourth excited configurations. It
may be worth noting that the three states presenting the largest
differences include an occupied 2s orbital, while all differences
between both methods decrease when the magnetic field
strength increases. Finally, in contrast to ref 69, the MOM
solutions do not necessarily appear lower in energy than the σ-

Figure 2. Total energy (Eh) computed with σ-SCF and the MOM as a function of magnetic field strength in B0 for the ms = ±1 configurations of
He in the 6-311G basis set.

Figure 3. Total energies (left panel) computed with σ-SCF and the MOM and energy differences between both (right panel) for the ms = 0
configurations of He in the 6-311G basis.
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SCF ones, and indeed, it may be seen in Figure 3 that this is
only the case for the ground and fourth excited states.
Table 1 presents the mean absolute error (MAE) between

both SCF methods and FCI calculations over a range of

magnetic field strengths from 0 to 1B0 for all states. While the
MOM and σ-SCF give a consistent description of the GS, their
MAEs compared with FCI calculations are relatively large, and
this quantifies how much the GS is stabilized by electron
correlation compared to its mean-field description. In contrast,
the triplet configurations are relatively well described by both
SCF methods, with an MAE of about 0.2 mEh for the
configurations occupying the 1s2s orbitals and about 3.0 mEh
for the configurations occupying the 1s3s and 2s3s orbitals. It

should be noted that the energies of the ms = 0 triplet
components are obtained by simply removing the Zeeman
contribution from the total energy of the ms = ±1 component.
Interestingly, both closed-shell excited states have an MAE
with the same magnitude as that for the triplet states. In
addition, the largest MAEs occur for the open-shell singlet
states, with values larger than 10 mEh. However, the energy of
these states is obtained using the simple projection technique45

= −↑↓ ↑↑E E E2S (13)

which becomes

= − +↑↓ ↑↑ ↓↓E E E E2
1
2

( )S (14)

in the presence of an external magnetic field due to the spin
Zeeman energy contributions present in the ms = ±1
components. Evaluating open-shell singlet-state energies
through this kind of approach is only appropriate when the
singlet state and the corresponding triplet state have similar
charge distributions. The same idea is also exploited to
compute magnetic exchange couplings by means of broken
symmetry determinants (i.e., singlet−triplet gaps in magnetic
compounds).89,90 However, this approximation may be no
longer valid for some excited states in which the orbital
relaxation leads to significantly different total densities between
the singlet and triplet states.
For comparison, MAEs for CIS calculations are also

presented in Table 1. We have confirmed that the errors
relative to FCI do not vary substantially for each approach as a
function of field and so may be reasonably summarized by the
MAEs. The CIS results are presented using both the lowest-
energy 1sβ2sβ and 1sα1sβ SCF solutions as the initial
determinant. The former provides a good reference for the
components of the triplet 1s3s and 2s3s excited states, yielding
MAEs essentially identical to those of the MOM and σ-SCF
procedures, which optimize the orbitals in these configurations.
In contrast, using the 1sα1sβ reference to calculate the 1s3s
triplet-state components leads to MAEs that are substantially
larger, indicating the importance of orbital relaxation effects. A
similar effect is observed for the 1s2s triplet components using
the same reference. As expected, the open-shell singlet states
are not well described by CIS. Interestingly, in most cases, the
CIS MAEs for these states are significantly higher than those

Table 1. Mean Absolute Error (mEh) for the MOM, σ-SCF,
and CIS Relative to FCI Calculations for Each State of the
Helium Atom in the 6-311G Basis over a Range of Magnetic
Fields from 0 to 1B0 with a Step of 0.05B0

a

occupation ⟨Ŝ2⟩ ms MOM σ-SCF CISb CISc

1s1s 0 0 15.69 15.78 12.22 15.69
1s2s 2 0 0.20 0.20 0.20 8.09

−1 0.17 0.17 0.17 8.13
1 0.24 0.24 0.24 8.15

0 0 20.94d 14.45d 17.25 45.21
2s2s 0 0 3.31 1.03 4.79
1s3s 2 0 3.01 3.01 3.01 5.91

−1 2.87 2.87 2.87 6.05
1 3.16 3.16 3.16 6.19

0 0 23.14d 24.38d 145.90 51.37
2s3s 2 0 3.10 3.10 3.10

−1 2.95 2.95 2.95
1 3.24 3.24 3.24

0 0 40.12d 46.27d 149.61
3s3s 0 0 2.23 2.28

aNote that the FCI ⟨Ŝ2⟩ is given here to indicate the states
considered, and MOM and σ-SCF yield values close to 1 for the open-
shell singlet statesreflecting significant spin contamination. Blank
entries correspond to doubly excited states that are not accessible
from CIS calculations. bThe CIS calculation is based on the 1sβ2sβ

SCF solution. cThe CIS calculation is based on the 1sα1sβ SCF
solution. dEnergies of the open-shell singlets are obtained using the
projection in eq 14.

Figure 4. Energy spectrum (Eh) in the u-aug-cc-pVDZ/AutoAux basis (left panel) and in the u-aug-cc-pVQZ/AutoAux basis (right panel) of the ms
= −1 components computed through CIS, the MOM/IMOM, and σ-SCF in the absence and in the presence of a magnetic field of 1B0 parallel and
perpendicular to the bond axis of the hydrogen molecule. Gray lines correspond to unphysical σ-SCF solutions.
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for the MOM and σ-SCF, indicating that orbital relaxation may
significantly reduce errors for these states, despite the fact that
these methods do not provide spin pure states, and the
energies are obtained through the projection of eq 14.
Nonetheless, substantial errors remain, reflecting the well-
known difficulty in describing open-shell singlet states with
single-determinant wave functions.
3.2. Hydrogen Molecule. An important computational

requirement for atoms and molecules in strong magnetic fields
is the size of the basis set, which must be sufficiently flexible to
represent the distortion of the orbitals due to a strong
magnetic field.38,91 Such calculations then usually require the
use of large and uncontracted basis sets, such as the u-aug-cc-
pVQZ basis set used in this work. Previous calculations with σ-
SCF have been limited to very small basis sets.69,70 In the
Appendix, an implementation using the RI approximation is
presented. This allows calculations to be performed at lower
cost, with more appropriate basis sets. Before comparing with
reference calculations computed with the EOM-CCSD
method, the MOM and σ-SCF calculations are first compared
in larger basis sets.
Figure 4 presents the energy spectrum computed using CIS,

the MOM/IMOM, and σ-SCF for the ms = −1 components for
the hydrogen molecule in the absence and in the presence of a
magnetic field of 1B0 parallel and perpendicular to the
molecular axis. Results in the two basis sets are compared:
first in the modest u-aug-cc-pVDZ basis (left) and second in
the larger u-aug-cc-pVQZ basis (right), more appropriate for
calculations in strong magnetic fields. In both cases, applying a
magnetic field stabilizes the ms = −1 components due to spin
Zeeman effects. Furthermore, it may be seen that the energy

spectrum in the parallel case presents more states than at zero
field; this observation may be attributed to the effect of the
orbital Zeeman contribution, which removes the degeneracy
between orbitals with angular momentum greater than zero. In
the same way, the number of states is even larger in the
perpendicular case since the symmetry of the system is further
reduced by the application of a magnetic field in this
orientation.
Considering first the spectra computed in the u-aug-cc-

pVDZ basis, shown on the left of Figure 4, it can be seen that
the values obtained from CIS, the MOM/IMOM, and σ-SCF
in the absence of a field and in parallel and perpendicular fields
are largely consistent between the methods. This confirms that
most singly excited states in the CIS spectra can be obtained
with the MOM/IMOM and σ-SCF in this basis set.
Furthermore, some states are accessible with the MOM/
IMOM and σ-SCF, which do not appear in the CIS spectra, for
example, those with energies of around −0.22 and −0.24 Eh for
H2 in a parallel magnetic field; analysis reveals that these are
multiply excited states, which cannot appear in CIS spectra.
However, the results presented here show only those states
readily obtained from the standard MOM/IMOM approach
using the ground-state orbitals as the guess from which to
construct the non-aufbau solutions.
Despite the generally good agreement, the correspondence

between the MOM/IMOM and σ-SCF spectra and CIS is not
exact; a relatively small number of states present in the CIS
spectra were only accessible with either the MOM/IMOM or
σ-SCF but not both. In addition, several σ-SCF calculations
converge to unphysical solutions, highlighted in gray in Figure
4. The presence of these spurious solutions has been

Figure 5. Total energies (Eh) computed with EOM-CCSD (top left) and the MOM (top right) for the hydrogen molecule in the u-aug-cc-pVQZ/
AutoAux basis in a magnetic field parallel to the molecular axis and their energy difference with the 1Σg

+/1Σg state (bottom left and right). Data for
the EOM-CCSD calculations are taken from ref 39.
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highlighted by Ye and Van Voorhis in ref 70, while Goodisman
interpreted similar observations when using variance-based
methods as a probable mixture of several states.92 These
unphysical solutions in the σ-SCF spectra can be problematic
when they lie close in energy to a physical solution, for
example, as indicated by the gray line close to the ground-state
solution in the absence of a magnetic field. In practical
calculations, unless the value of ω is carefully scanned and the
resulting solutions are analyzed in detail, these cases could
easily be misassigned as one of the physical solutions. This
problem can be exacerbated in the presence of a magnetic field
since this may lower the symmetry of the system; for example,
additional unphysical solutions are visible around the first
excited state in the parallel field and around the solution at
−0.4 Eh in the perpendicular field.
The spectra obtained using the larger u-aug-cc-pVQZ,

shown in the right panel of Figure 4, present a somewhat
different picture. The comparison between the MOM/IMOM
and CIS spectra is similar to that observed in the smaller basis,
with the great majority of states in the CIS spectra accessible
with the MOM/IMOM, while the MOM/IMOM spectra
contain additional lines corresponding to multiple excitations.
However, the σ-SCF spectra are distinctly more sparse than
their CIS and MOM/IMOM counterparts. Indeed, it may be
seen that not all states computed via the MOM/IMOM
approach are accessible with σ-SCF. In the absence of a field,
even the GS cannot be computed through the variance-based
method, while several low-lying excited states are missing in
the presence of the perpendicular magnetic field. It is worth
noting that although the energy-targeting step usually correctly
approaches the desired state, the subsequent variance

minimization converges to a different state. The fact that
some states are impossible to access through variance
minimization in the larger basis set will be analyzed in more
detail in Section 4. A particularly striking example is that of the
ground state of triplet H2 in the absence of a field. For Δ-SCF
approaches, this would be considered as the most trivial case
since it is the lowest of the given spin multiplicity. The relative
sparseness of the spectrum obtained with σ-SCF in large basis
sets in addition to the presence of spurious states makes its use
difficult. Indeed, the comparison with higher levels of theory
such as FCI, providing spin pure states, requires the definition
of spin-purified energies, which are obtained through eq 14 in
this work. In this projection technique, several determinants
are necessary to describe open-shell singlet states, and
frequently, one of them may be missing with σ-SCF. For this
reason, more detailed comparisons with EOM-CCSD calcu-
lations are made only for the MOM calculations.
The lowest 1Σg

+, 1Πg
+, 1Σu

+, 3Σu
+, and 3Πu

+ states of the
hydrogen molecule at the equilibrium geometries of the 1Σg

+

state32 have been studied and compared to the EOM-CCSD
reference calculations recently published by Hampe and
Stopkowicz.39 Figures 5 and 6 present the comparison between
EOM-CCSD39 and MOM calculations with a magnetic field
parallel and perpendicular to the bond axis, respectively. In
order to make this comparison possible, the MOM open-shell
singlet states 1Σu and 1Πu are obtained by the projection
defined in eq 14. For the parallel case, Figure 5 presents the
total energy of the states as a function of the field strength for
EOM-CCSD (top left) and the MOM (top right). In both
cases, the energies of the 1Σg and

1Σu states increase with the
magnetic field strength due to the diamagnetic term. While the

Figure 6. Total energies computed with EOM-CCSD (top left) and the MOM (top right) for the hydrogen molecule in the u-aug-cc-pVQZ/
AutoAux basis in a magnetic field perpendicular to the molecular axis and their energy difference with the 1Σg

+/1Ag state (bottom). Data for the
EOM-CCSD calculations are taken from ref 39.
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1Πu state is also a singlet, the occupation of a π orbital results
in a competition between the orbital Zeeman effect, stabilizing
the energy, and the diamagnetic term, leading to an energy
minimum around B∥ = 0.2B0. For the triplet states

3Σu and
3Πu,

the energy is largely stabilized by the spin Zeeman
contribution, and the diamagnetic term does not significantly
counteract this effect over the range of magnetic field strength
considered here. While the 3Πu state is higher in energy than
3Σu at zero field, the orbital Zeeman effect due to the
occupation of the π orbital in 3Πu results in a crossing between
both states at around B∥ = 0.4B0 for the MOM and EOM-
CCSD, with the 3Πu state becoming the ground state at higher
fields. However, the crossing between the 1Σg and triplet states
predicted by both methods is slightly different, occurring at B∥
> 0.4B0 for EOM-CCSD and at B∥ < 0.4B0 for the MOM. The
same observation may be made for the crossing between 1Σu
and 1Πu, noting that 1Σu appears slightly higher than 3Πu at
zero field for the MOM, while this ordering is reversed for
EOM-CCSD. Nevertheless, the overall picture is qualitatively
and quantitatively well described by the MOM, and the similar
profiles of the excitation energies from the 1Σg state presented
in the bottom left and right panels of Figure 5 confirm this
trend. Furthermore, it is worth noting that quantitative
agreement could be improved by the inclusion of correlation
in the MOM solutions. Since the MOM corresponds only to a
modification of the orbital occupations, it may be applied to
DFT in the same way as for HF, while post-HF treatments
such as CC may be applied to the MOM solution as well.
The perpendicular case is presented in Figure 6, showing the

energy of the states with respect to magnetic field strength for
EOM-CCSD (top left) and the MOM (top right). Applying a

magnetic field perpendicular to the molecular axis reduces the
symmetry of the system, from C∞h in the parallel case to C2h.
Then, the nature of the states changes compared to the parallel
case, leading to important differences; this may be demon-
strated with the application of a magnetic field to the 1Σu

+

state. Applying a parallel magnetic field to 1Σu
+ results in the

1Σu state, which is only affected by the destabilizing
diamagnetic term, and its energy increases with the square of
the magnetic field strength. In the perpendicular field, the 1Σu

+

state becomes the 1Bu state. In this reduced symmetry, a
greater mixing of orbitals may occur; as a result, this state
becomes stabilized by the orbital Zeeman effect in addition to
the destabilization by the diamagnetic term. This results in the
presence of a minimum at B⊥ ≈ 0.1B0. The effect of a
perpendicular magnetic field on these states has been already
discussed by Hampe and Stopkowicz, and the reader should
refer to refs 5, 39, and 93 for a deeper analysis. In our
comparison, the MOM correctly represents the energy changes
with respect to the magnetic field strength, and it may be seen
that the crossings of the 1Ag state with the 3Bu and

3Au states
are qualitatively well represented. As already observed in the
parallel case, unlike the MOM, at zero field, the 1Σu

+ state is
lower than 3Πu

+ with EOM-CCSD, resulting in a crossing
between the 1Bu and

3Au states, which does not occur with the
MOM. However, as observed for the parallel case, the MOM
provides results that are otherwise generally in very good
agreement with those of the EOM-CCSD calculations, which
may be further improved by the inclusion of correlation in the
MOM solution with DFT.

3.3. Methylidinium Ion. The methylidinium ion (CH+) is
an interesting example since this molecule may exist in the

Figure 7. Total energies computed with EOM-CCSD (top left) and the MOM (top right) for CH+ in the u-aug-cc-pCVQZ/AutoAux basis in a
magnetic field parallel to the molecular axis and their energy difference with the 3Π (bottom). Data for the EOM-CCSD calculations are taken from
ref 39.
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vicinity of white dwarf stars,79 while it cannot be studied by
FCI in a large basis set. Figure 7 shows the different results
obtained from the EOM-CCSD method and MOM in u-aug-
cc-pCVQZ for the lowest 1Σ, 1Δ, 1Π, 3Σ, 3Π, and 3Δ states in a
magnetic field parallel to the molecular axis. Since analyzing
the behavior of the different states yields similar conclusions to
those drawn in the hydrogen molecule example, the present
discussion is mainly focused on the comparison between the
two methods.
Figure 7 presents the total energy of each state with respect

to the field for EOM-CCSD (top left) and the MOM (top
right). While the MOM and EOM-CCSD calculations mainly
differ due to the absence of the correlation effects in the
MOM, the evaluations of the triplet states are in very good
qualitative agreement. Thus, the energies of the 3Σ, 3Π, and 3Δ
states as a function of field strength present very similar trends
for the MOM and EOM-CCSD, while the EOM-CCSD
energies are shifted by the correlation contribution. While this
may also be said for the 1Π state, the situation is different for
the 1Σ and 1Δ states. Indeed, the 1Σ state appears higher in
energy with the MOM than with EOM-CCSD; this may be
seen at zero field, where the 1Σ state is almost degenerate with
the 3Π state for the MOM. The 1Δ state presents the same
variation in energy with field strength with the MOM and
EOM-CCSD, while it appears significantly higher in energy
compared to the 3Σ state with the MOM. This point is
confirmed by comparing the excitation energies from the 3Π
state for EOM-CCSD and the MOM, presented in the bottom
left and right panels of Figure 7, respectively. The energy
differences are slightly overestimated with the MOM for both
the 1Σ and 1Δ states, confirming this trend. However, it cannot
be argued that this result comes from the projection technique

since both states are closed-shell; instead, it shows how the
additional treatment of correlation could improve MOM
calculations in strong magnetic fields.
As previously described, the electronic structure of

molecules in strong magnetic fields can be highly sensitive to
the orientation of the molecule with respect to the field, since
the symmetry of the orbitals can be significantly lower in some
orientations than in others. Figure 8 presents the total energy
of the 1Σ+/11A′, 1Π/11A″, 1Π/21A′, and 1Δ/3A′ states with
respect to a magnetic field perpendicular to the molecular axis
for FCI (top left) from ref 40 and the MOM (top right) in the
cc-pVDZ basis set. The overall picture is qualitatively well
represented by the MOM, especially for the lowest 1Σ+/11A′
state and the 1Π/11A″ state. For the 1Π/21A′ state, the
behavior is slightly different with the MOM, particularly above
0.4B0, where the energy appears to change less with a further
increase in field strength with the MOM than with FCI. This
results in a crossing between 1Π/21A′ and 1Π/11A″ at about
0.9B0 for FCI, while it occurs at slightly lower field strength for
the MOM, at about 0.8B0. Finally, the

1Δ/3A′ state computed
with the MOM also presents a somewhat different shape, since
the change in curvature at about 0.5B0 in the FCI plot does not
appear with the MOM. Despite these slight differences, the
excitation energies from the 1Σ+/11A′ state presented in the
bottom of Figure 8 show a consistent description with the
MOM, despite the lack of correlation. We have also confirmed
that MOM calculations with the substantially larger u-aug-cc-
pCVQZ basis (not presented) yield results in close agreement
with the top right panel of Figure 8. In particular, the crossing
of the 1Π/21A′ and 1Π/11A″ states remains at ∼0.8B0 and the
1Δ/3A′ state also remains smooth around 0.5B0.

Figure 8. Total energies computed with FCI (top left) and the MOM (top right) for CH+ in the cc-pVDZ/AutoAux basis in a magnetic field
perpendicular to the molecular axis and their energy difference with the 1Σ+/11A′ (bottom). Data for the FCI calculations are taken from ref 40.
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4. LIMITATIONS OF THE VARIANCE-BASED SCHEME

While the variance-based minimization has been shown to
yield results consistent with those of energy-based optimization
for some examples in Section 3.2, there are significant
limitations that have been observed. Section 3 highlighted
that the energies computed with the two methods may be
different, while some states appear completely inaccessible
through variance minimization. In addition, spurious solutions
may be obtained using the variance minimization, which do
not correspond to a physical solution.70 Although at first
surprising, these limitations have been observed in the
literature in different contexts both during the 60’s80,94 and
recently.84 As discussed in Section 2, the variance function of
eq 8 defines a sum of local minima, each of which has a
minimum of zero. Each minimum corresponds to an
eigenfunction of the Hamiltonian, and then, in contrast to
the energy-based optimization that will have a (possibly
degenerate) global minimum, all states are equally represented
in terms of variance. However, in practical calculations, finite
basis sets and single-determinant wave functions are used and
may lead to minima with non-zero values, which vary
according to how well the basis and wave function ansatz
represent each particular state.94

4.1. Difference between Energy-Based and Variance-
Based Determinations.We now turn back to the example of
the helium atom. In this example, the MOM and σ-SCF
provide an equal description of the ms = ±1 determinants,
while for some of the ms = 0 configurations, the difference in
energy is significant. One of the properties of the variance is to
describe how accurately expectation values are evaluated and

provide upper and lower bounds to the eigenvalue of the ith
state94

⟨Φ| ̂ |Φ⟩ − [Φ] ≤ ≤ ⟨Φ| ̂ |Φ⟩ + [Φ]H S E H Si i i i i i i (15)

Here, one may readily see that smaller the variance is, the more
accurate the wave function should be. Table 2 presents the
energy difference between both methods with the associated
variance for all configurations of the helium atom in the 6-
311G basis at zero field. As one may see, the square root of the
variance of the MOM and σ-SCF solutions is equal to zero for
the ms = ±1 determinants, resulting in a similar evaluation of
the energy with both approaches. For the ms = 0
configurations, [Φ]S is greater than zero, and the energy
differences between the MOM and σ-SCF solutions are non-
negligible. Even if further trends are difficult to discern, one
may conclude that since the ms = ±1 states seem to be well
defined in this basis set, the variance-based and energy-based
methods are mutually consistent. For the ms = 0 config-
urations, large values of [Φ]S yield a wider interval, in which
the approximate energy of the ith eigenstate may be contained
according to eq 15; there is then no reason for both
approaches to give the same description.

4.2. Problem of the Masked States. In the example of
the hydrogen molecule in Section 3, we commented that some
states are inaccessible through variance-based minimization,
which often converges to other solutions. It was observed that
this can happen even for the ground state of a given symmetry,
which would usually be considered easy to access via Δ-SCF
approaches. Recently, Filippi et al.84 reported the same
problem in the context of QMC and pointed out that “this
finding is unexpected, especially, considering that variance

Table 2. Energy Difference (Eh) between the MOM and σ-SCF and the Square Root of the Variance for all Determinants of the
Helium Atom in the 6-311G Basis in the Absence of a Magnetic Field

⟨Φ| ̂ |Φ⟩ − ⟨Φ| ̂ |Φ⟩σ‐H HMOM SCF [Φ]S MOM [Φ] σ‐S SCF

ms = ±1 1s2s 0.000 0.000 0.000
1s3s 0.000 0.000 0.000
2s3s 1.600 × 10−11 0.000 0.000

ms = 0 1sα1sβ −1.100 × 10−4 0.316 0.315
1sα2sβ 3.733 × 10−3 0.287 0.277
2sα2sβ 3.193 × 10−3 0.299 0.207
1sα3sβ −8.842 × 10−4 0.220 0.297
2sα3sβ 3.432 × 10−3 0.284 0.276
3sα3sβ 5.364 × 10−5 0.316 0.316

Figure 9. W[Φ] with respect to ω for the 3Σu,
3Σg, and

3Πg states of the hydrogen molecule (rH−H = 1.4 bohr) in the absence of a magnetic field in
the u-aug-cc-pVDZ/AutoAux basis (left) and the u-aug-cc-pVQZ/AutoAux basis (right).
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minimization has been the method of choice in QMC for
decades and is still routinely used”. Noting that the minima
may have non-zero values in finite basis calculations with
single-determinant approaches, it may be possible that some
higher lying minima could be masked80 by overlapping
variational wells associated with a lower minimum. In other
words, some states are inaccessible through the variance
because they are hidden by some others, and in this sense, this
problem differs from the well-known variational collapse.
The consequence of the non-zero values of the minima may

be illustrated by the functional defined in eq 11, which allows
one to plot the profile of the variance with respect to ω for any
state using its energy and variance; for states inaccessible
through σ-SCF, the values of W[Φ] have been evaluated from
the corresponding MOM solutions. Here, we focus on the
triplet ground state 3Σu (blue) and the 3Σg (orange) and 3Πg
(yellow) excited states of the hydrogen molecule at zero field,
and their profile has been plotted with respect to ω; the results
are shown in the left and right panels of Figure 9 in the u-aug-
cc-pVDZ and u-aug-cc-pVQZ basis sets, respectively. As shown
in Section 3, the triplet ground state cannot be computed with
σ-SCF at zero field in the u-aug-cc-pVQZ basis, in contrast to
these two excited states. In the u-aug-cc-pVDZ basis (left panel
of Figure 9), the orange and yellow minima are clearly defined,
while the blue minimum is situated within the orange well.
Despite this, all these states are accessible through a variance
minimization. The overlap between these states can be
calculated using the natural orbitals associated with the σ-
SCF density matrix, revealing that the 3Σu and

3Σg states are
orthogonal, while the 3Σu and 3Πg states are non-orthogonal
(with an overlap of 0.31). In the u-aug-cc-pVQZ basis (right
panel), the situation is different, since the minimum of the blue
well lies just within the yellow well. While the 3Σu state may be
approached through the energy-targeting function in eq 11 for
ω < −1.6 au, the subsequent variance minimization yields the
3Πg state, which has a lower variance. Interestingly, the
solution obtained by the energy-targeting optimization has an
energy similar to that of the GS, to which it is expected to be a
close approximation; however, its overlap with the 3Πg state
yielded by the subsequent variance minimization is 0.23. This
indicates that a state is masked and inaccessible through a

variance optimization if its minimum is included in the well of
another state to which it is not orthogonal.
The use ofW[Φ](ω) also provides an explanation of the fact

that all states of interest of the hydrogen molecule are
accessible in u-aug-cc-pVQZ in strong magnetic fields. Figure
10 presents the W[Φ](ω) functional for the lowest 3Σu,

3Σg,
3Πg, and

3Πu states at zero field as a solid line and in a
magnetic field of 1B0 parallel to the molecular axis with dashed
lines. At zero field, all variance minima are concentrated in a
small range of ω values, hiding the minima for 3Σu (blue) and
3Πu (green). Applying a magnetic field results in a separation of
the wells in ω, making all states accessible. Furthermore, even
though the minimum of 3Πu is included in the well of 3Σu in
the presence of the field, both states are orthogonal, and so the
3Πu state is not masked by the 3Σu state.
It is worth noting that while the 3Σu state cannot be

optimized through the variance in u-aug-cc-pVQZ, it may be
targeted through the minimization of the W[Φ](ω) function.
Indeed, as shown in the right panel of Figure 9, the well of the
3Σu state corresponds to the minimum of W[Φ](ω) for ω <
−1.6, and the energy-targeting step may be used to obtain an
initial guess for this state. However, some states may be
entirely inaccessible such as the 3Πu, at zero field shown in
Figure 10, since the entire green well is masked by the others.
Furthermore, unlike in the context of energy optimization,
improving the basis set does not necessarily improve the
description of states in terms of variance.94 Indeed, the
improvement of the basis set is not uniform in all states and
may favor the description of some states compared to others.
To show this, eq 10 may be expressed as

∑[Φ] = − ⟨ ̂ ⟩S c E H( )
i

i i
2 2 2

(16)

In this equation, ⟨Ĥ⟩ is evaluated with an approximate wave
function ansatz, a single-determinant in σ-SCF, whereas Ei is
an FCI eigenvalue. As a result, when the basis set becomes
more complete, the variance is not guaranteed to decrease and
in some cases may actually increase if the state is poorly
described by a determinant. A clear example is shown in Figure
9 with the 3Σu state where the variance, given by the minimum

Figure 10. W[Φ](ω) with respect to ω for the 3Σu,
3Σg,

3Πu, and
3Πg states of the hydrogen molecule in the absence of a magnetic field (with rH−H

= 1.40 bohr) in solid lines and in the presence of a parallel magnetic field (with rH−H = 1.25 bohr) in dashed lines in the u-aug-cc-pVQZ/AutoAux
basis.
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of the blue wells, is lower in u-aug-cc-pVDZ with a value of
0.010 than in u-aug-cc-pVQZ, where it has a value of 0.022.

5. CONCLUSIONS

This work has presented the first implementation and
application of self-consistent field single-determinant methods
to compute excited states in strong magnetic fields. In this
context, two different approaches have been investigated: an
energy-based scheme through the MOM/IMOM and a
variance-based one with the σ-SCF method. Furthermore, we
have presented the first development of the RI approximation
for the σ-SCF method.
In this work, the RI σ-SCF implementation allowed for the

use of larger basis sets than have been presented previously.69

These calculations highlighted severe limitations of variance-
based optimization methods, with many states becoming
inaccessible. This surprising limitation was traced to the
masking of states, in which the stationary point of W[Φ]
occurs within the variational well of another state. In particular,
if the states associated with these two overlapping wells are not
orthogonal, then, the variance optimization will always
converge to the state with lower variance. This behavior
becomes more common in larger basis sets, as more states are
accessible and many occur closer together in energy.
This effect was demonstrated for the simple case of the

hydrogen molecule in its triplet state, where all low-lying states
could be accessed in calculations using the u-aug-cc-pVDZ
basis but many states became masked in the u-aug-cc-pVQZ
basis. Unfortunately, these issues make the variance-based
calculations currently unreliable for determining excitation
energies. This was in addition to the previously reported
appearance of spurious non-physical solutions in variance-
based optimization, observed here in both basis sets.70

However, while the variance optimization step suffers from
the masking issue, the initial energy-targeting step still provides
an interesting method to generate initial-guess wave functions;
the adoption of this approach into other optimization methods
will be the subject of future work. The observations from this
work may also be of interest to the QMC community, where
variance-based optimization is more frequently used.
In contrast, the MOM/IMOM has been widely used, and

the present work shows further promising results for
computing excited states in the presence of external magnetic
fields. The MOM/IMOM was shown to be relatively reliable
for computing excited states in the different examples treated
in this work, and the results are in good agreement with those
of EOM-CCSD and FCI reference calculations for the largest
system, the methylidinium ion. Given the simplicity of the
MOM/IMOM scheme and its more favorable computational
cost, it provides an attractive approach to study excited states
in strong magnetic fields.
The present work has only used the MOM with the HF

energy functional, to facilitate a direct comparison with the σ-
SCF method. Accounting for correlation, either through post-
HF approaches or using current-DFT (CDFT), would be
straightforward and should provide a better quantitative
agreement with FCI/EOM-CC calculations. The inclusion of
correlation may be particularly important for the computation
of molecular properties, and further work will be carried out in
this direction. For example, work using a recent implementa-
tion of geometrical gradients for LAO integrals95 in
combination with the MOM is currently underway to allow

for the determination of equilibrium molecular geometries of
excited states under strong magnetic fields.

■ APPENDIX

σ-SCF Equations and RI Approximations
For the sake of brevity, the working equations are not
presented in Section 2 and are given in the present Appendix.
Note that in the following, an orthogonal basis set of AOs is
assumed. The σ-SCF method is based on two successive
optimizations: the energy-targeting step eq 11 and the
optimization of the variance eq 8. Since both functions are
related by

ω ω[Φ] = [Φ] + − ⟨Φ| ̂ |Φ⟩W S H( ) ( )2 (17)

only the form of S[Φ] is given in this Appendix. A key quantity
in the σ-SCF method for optimizing S[Φ] is obtained by
differentiating eq 8 with respect to the spin density matrix to
yield

∑
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∑
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(18)

where is referred to as a modified Fock matrix in ref 69, the
construction of which is simplified here by use of the
intermediate

∑= { + }σ σ σ σ σ σ σA D F Q Q F Dsr
ij

si ij jr si ij jr
(19)

RI σ-SCF Equations
The RI approximation has been widely used in electronic
structure theory and has notably been extended to the strong-
magnetic field regime to compute the energy96,97 and
geometrical derivatives.95 As discussed in the present work,
the computation of the square of the Hamiltonian and the
resulting 8-index summations make the variance-based scheme
an expensive approach. The RI approximation, in which two-
center charge distributions are expanded in an atom-centered
auxiliary basis, has been applied in this work in order to speed
up the σ-SCF method. Four-center integrals are approximated
by a contraction of three-center integrals with the inverse of
the Coulomb metric of the auxiliary functions98

∑| ≈ | [ ] |−pq rs pq U V rsJ( ) ( ) ( )
UV

UV
1

(20)
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with U and V being the atom-centered auxiliary basis and the
three-center integrals, respectively,

∬
ϕ ϕ χ

| =
*

| − |
pq U

r r r

r r
r r( )

( ) ( ) ( )
d d

p q U1 1 2

1 2
1 2

(21)

where ϕp represents the orbital basis functions (GAOs or
LAOs) and χU represents the atom-centered auxiliary basis
functions (always GAOs), and the Coulomb metric is defined
as

∬ χ χ
=

| − |
J

r r

r r
r r

( ) ( )
d dUV

U V1 2

1 2
1 2

(22)

From these definitions, the two-electron integrals may now
be approximated as

∑ θ θ| ≈pq rs( )
U

pq
U

rs
U

(23)

where

∑θ = | [ ]−pq U J( )pq
V

U
UV

1
2

(24)

The variance may then be expressed as
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where

∑Ξ = Λ Πσ σ σ
UV
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(26)
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(27)

and

∑= Π Πσ σ σ
smqn

V
sm
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V, ,

(28)

Here, the intermediates

∑ θΛ =σ σ*cmq
U

p
pm pq

U,

(29)

and

∑ θΠ =σ σ σc Qqm
V

ij
im qj ji

V,

(30)

have been introduced, which are expressed in terms of the
occupied orbitals m and n through the following decom-
position99

= ϵ = ϵ =σ σ σ σ σ σ σ σ σ† †c U D U U C C,rm rm m (31)

Following the same derivation, the modified Fock matrix of
eq 18 may be expressed as
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with

∑ ∑θΓ = {Λ Π + Λ Π }α α β β
rs
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U
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U
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V, , , ,

(33)

Table 3. Total Energy of the Hydrogen Molecule (rH−H = 1.4 bohr) Computed with σ-SCF

orbital basis

field auxiliary basis u-aug-cc-pVDZ u-aug-cc-pVTZ u-aug-cc-pVQZ

B = 0.0B0 AutoAux −1.12654790 −1.12224814 −1.11729081
aug-cc-pVDZ-RI −1.12669514 −1.12284898 −1.12190565
aug-cc-pVTZ-RI −1.12654123 −1.12232550 −1.11776278
aug-cc-pVQZ-RI −1.12651635 −1.12223376 −1.11732506
aug-cc-pV5Z-RI −1.12651586 −1.12222858 −1.11730639
aug-cc-pV6Z-RI −1.12651539 −1.12222708 −1.11729995
no RI −1.12651539 −1.12222573 −1.11728802

B∥ = 1.0B0 AutoAux −0.83149594 −0.83463055 −0.83314086
aug-cc-pVDZ-RI −0.83154325 −0.83492103 −0.83488737
aug-cc-pVTZ-RI −0.83149080 −0.83466376 −0.83340276
aug-cc-pVQZ-RI −0.83148236 −0.83462392 −0.83316076
aug-cc-pV5Z-RI −0.83148218 −0.83462168 −0.83314833
aug-cc-pV6Z-RI −0.83148200 −0.83462100 −0.83314552
no RI −0.83148200 −0.83462041 −0.83313992

B⊥ = 1.0B0 AutoAux −0.78794145 −0.79416432 −0.79265031
aug-cc-pVDZ-RI −0.78804026 −0.79442981 −0.79438798
aug-cc-pVTZ-RI −0.78796162 −0.79420660 −0.79286010
aug-cc-pVQZ-RI −0.78794913 −0.79417287 −0.79267054
aug-cc-pV5Z-RI −0.78794904 −0.79417059 −0.79266180
aug-cc-pV6Z-RI −0.78794880 −0.79417030 −0.79266179
no RI −0.78794881 −0.79416974 −0.79265620
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= +α βB A Asr sr sr (34)

∑ θ= Λσ σ
mspi

U
ms
U

pi
U,

(35)

and

∑ θ= Πσ σ
smpj

V
sm
V

pj
V,

(36)

Numerical Validation
Table 3 presents numerical applications of the RI equations
developed in this work on the singlet ground state of the
hydrogen molecule for three casesin the absence of a
magnetic field and with a magnetic field of 1B0 parallel and
perpendicular to the bond axis. The study is carried out using
the u-aug-cc-pVDZ, u-aug-cc-pVTZ, and u-aug-cc-pVQZ
orbital basis, while the size of the auxiliary basis for the RI
expansion is increased, from aug-cc-pVDZ-RI to aug-cc-pV6Z-
RI, and compared to the standard (non-RI) calculation for
each basis. A comparison with the AutoAux auxiliary basis88

used in this work is also presented for informative purposes. It
is clear that the RI calculations approach the non-RI values as
the size of the auxiliary basis increases, with the difference
decreasing to about 10−8 Eh with u-aug-cc-pVDZ/aug-cc-
pV6Z-RI, confirming the accuracy of the present implementa-
tion. The AutoAux auxiliary basis used throughout this work
offers accuracy, for a given aug-cc-pVNZ orbital basis,
comparable to that using an aug-cc-pV(N + 2)Z-RI basis.
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