Support information

Honeycombed activated carbon with greatly increased specific surface by direct activation of glucose for supercapacitors

Lu Zhanga,†, Lixing Zhanga,† Huazhi Gua, Yao Chena,*, George Zheng Chena,b,c

a The State Key Laboratory of Refractories and Metallurgy, College of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, PR China
b Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, Nottingham NG2 7RD, UK
c Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, The University of Nottingham Ningbo China, Ningbo 315100, People’s Republic of China

† Lu Zhang and Lixing Zhang contributed equally.

Email: y.chen@wust.edu.cn
Fig. S1. Chemical structure of D(+) glucose in (a) acyclic and (b) cyclic form.

Fig. S2. XRD patterns of (a) AC-2 and (b) AC-12h.
Fig. S3. (a) Nitrogen adsorption-desorption isotherm and (b) pore size distribution of AC-2.

Fig. S4. Specific capacitance and SSA of ACs via one-step method vs. C/O ratio of Deoxy-glucoses.
Fig. S5. EIS spectra of AC-2, AC-6h, AC-12h and AC-24h in three-electrode cells.

Fig. S6. Cyclic performance of AC-12h in two-electrode cell in KOH at 1 A g⁻¹.
Fig. S7. CV of AC-12h in 2 mol L⁻¹ KBr in three-electrode cell.

Fig. S8. CVs of two-electrode cells based on AC-12h with different ratios in 2 mol L⁻¹ KBr at scan rate of 5 mV s⁻¹.
Fig. S9. GCD curves of two-electrode cell and corresponding negatode and positrode based on AC-12h with ratio of 1:1 at specific current of 0.5 A g\(^{-1}\) in 2 mol L\(^{-1}\) KBr.

Fig. S10. CV of two-electrode cell based on AC-12h with ratio of 3:1 at scan rate of 100 mV s\(^{-1}\) in 2 mol L\(^{-1}\) KBr.
Fig. S11. GCD curves of two-electrode cell based on AC-12h with ratio of 3:1 at different specific current in 2 mol L$^{-1}$ KBr.

Fig. S12. Cyclic performance of two-electrode cell based on AC-12h with ratio of 3:2 in 2 mol L$^{-1}$ KBr.
<table>
<thead>
<tr>
<th>Deoxy-glucose 6h</th>
<th>C–C/C=C</th>
<th>C–O</th>
<th>C=O</th>
<th>O–C=O</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>21.25%</td>
<td>41.06%</td>
<td>10.68%</td>
<td>27.02%</td>
</tr>
<tr>
<td>Deoxy-glucose 12h</td>
<td>31.18%</td>
<td>32.14%</td>
<td>13.11%</td>
<td>23.57%</td>
</tr>
<tr>
<td>Deoxy-glucose 24h</td>
<td>26.00%</td>
<td>39.37%</td>
<td>15.71%</td>
<td>18.92%</td>
</tr>
</tbody>
</table>