Investigation of the effects of thermal annealing on the structural, morphological and optical properties of nanostructured Mn doped ZnO thin films

Fouaz Lekoui1*, Rachid Amrani2,3, Walid Filali4, Elyes Garoudja4, Lyes Sebih2, Imad Eddine Bakouk2, Hocine Akkari5, Salim Hassani1, Nadia Saoula1, Slimane Ouassalah6, Hind Albalawi7, Nourah Alwadai7 and Mohamed Henini8

1Division milieux ionisés & Laser, Centre de Développement des Technologies Avancées, Cité 20 Août 1956, Baba Hassen, Alger, Algérie
2Département des sciences de la matière, Université Alger1 Ben youcef Benkhedda, Alger, Algérie
3LPCMME, Département de physique, Université d’Oran ES-Sénia, Oran, Algérie
4Plateforme Technologique de Micro-fabrication, Centre de Développement des Technologies Avancées, Cité 20 Août 1956, Baba Hassen, Alger, Algérie
5Département de Génie Industriel, Faculté de Technologie, Université Batna 2 Chahid Mostefa Ben Boulaïd, rue Chahid Boukhlaouf. M. El Hadi, Batna 05001, Algérie
6Division Microélectronique & Nanotechnologies, Centre de Développement des Technologies Avancées, Cité 20 Août 1956, Baba Hassen, Alger, Algérie
7Physics Department, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
8School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK

*flékoui@cdta.dz

Abstract
The control of the optical properties of ZnO nanostructured thin films by using different dopant elements paves the way for the development of potential materials for photonic and optoelectronic applications. In this work manganese (Mn) doped ZnO thin films were fabricated by rapid thermal evaporation method on a glass substrate having the same Mn content level of ~10% and annealed at different temperatures. XRD analysis showed that the annealed layers have hexagonal wurtzite structure, however, the unannealed layers showed only Zn peaks without any preferential direction. The elemental analysis of the films has been investigated by XPS, which revealed the presence of Mn and oxygen atoms for all layers. In addition, it was observed by FIB-SEM that the morphology of thin films changed with the annealing temperature. For an anneal at 500°C nanoneedles appeared. Raman spectroscopy showed E₁ (TO) mode in the sample annealed at 500°C which was attributed with the formation of nanoneedles structures. The optical transmission of the annealed films was in the range of 75 - 77% and the optical bandgap varied from 3.97 to 3.72 eV. These variations are related to the structural and morphological changes of the thin films with annealing temperature.

Keywords MZO layers; Rapid thermal evaporation; Annealing temperature; Structural and optical properties; Nanoneedles; PSO algorithm.
1. Introduction

Zinc oxide (ZnO) has become an important material in wide different fields, due to its unique properties [1-4]. It is an intrinsic n-type semiconductor with a wide direct band gap of 3.37 eV and a large excitonic binding energy of 60 meV [5]. In addition, doping of ZnO with metallic elements results in an enhancement of its properties depending on the application field, such as silver (Ag) and aluminum (Al) for transparent conductive oxide (TCO) [6-8], magnesium (Mg) for breath analysis devices [9], mixture with another oxide like TiO$_2$ for Organic Blended Solar Cells Layers [10] and manganese (Mn) for Diluted Magnetic Semiconductors (DMS) or antibacterial thin films [11, 12].

Several works have studied Mn-doped ZnO thin films with various deposition techniques, namely chemical and physical methods such as spin coating [13], sol-gel [14], radio frequency magnetron sputtering [15], thermal evaporation [16] and pulsed laser deposition [17]. These techniques play a crucial role on the structural, morphological, optical or electrical characteristics of the layers.

The Mn-doped ZnO (MZO) system has attracted many researchers due to the high solubility of Mn in ZnO host material. The radii of Zn$^{2+}$ (0.74 Å) and Mn$^{2+}$ (0.80 Å) are very similar, and therefore Mn$^{2+}$ can easily substitute Zn$^{2+}$ sites without altering the original nature of ZnO structure [18]. However, this substitution influences the structural parameters and creates stress in the lattice, which affects the morphological and optical properties of ZnO. The doping concentration of Mn has a significant influence on the optical properties of ZnO [19, 20]. Thermal annealing strongly influences the solubility of Mn$^{2+}$ ions into ZnO host matrix due to the presence of oxygen vacancies and the formation of secondary phases, which affect the optical properties of the thin films.

This study will report on the effect of thermal annealing temperature on the structural, morphological and optical properties of ZnO-Mn thin films deposited by rapid thermal evaporation of a mixture of ZnO and Mn powders. The ZnO lattice parameters “a” and “c”, the crystallites size “D”, the amount of oxygen through the O1s peak and the phonons vibration modes were investigated using X-rays diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman analysis, respectively. The morphological evolution of the nanostructured films were investigated by focused ion beam scanning electron microscopy (FIB-SEM). The optical properties of the thin films were analyzed by using optical transmission spectra obtained by a UV-Vis-NIR spectrophotometer. The optical constants such as the refractive index and absorption coefficient can be extracted from the transmission
spectrum using the envelope method [21]. However, this method is useful only when the interference fringes are observed. In the present work, a novel method based on the Particle Swarm Optimization (PSO) algorithm [22] is applied in order to extract the most important optical constants using transmission spectrum without interference fringes. These optical constants will be then investigated as function of annealing temperature.

2. Experimental procedures

MZO thin films were deposited on ordinary glass substrates (stairway) of 1 mm thickness and 25×75 mm² surface area using thermal evaporation method. The thermal evaporation unit is homemade system, developed at our establishment. The crucible is heated by Joule effect to an appropriate temperature. The ZnO and Mn powders with a mixture mass ratio of (90:10) % and 99% purity for each powder were purchased from SIGMA-ALDRICH. The substrates were first cleaned in ultrasonic bath with acetone that was followed by a further clean in ethanol for 5 minutes. The deposition process was carried out at a low pressure of ~10⁻⁶ mbar by heating a crucible until reaching the sublimation temperature of ZnO powder of ~1600°C (flash deposition of a few seconds). The samples were then annealed under atmospheric pressure at three different temperatures 300, 400 and 500°C for one hour.

The structural and morphological properties were investigated by XRD, Raman spectroscopy, FIB-SEM, using Philips X’PertMP diffractometer (Cu-Kα, λ=1.54 Å) EA 125 Omicron, Lab Ram H-Resolution from Horiba Jobin Yvon and Helios Nano Lab TM 650, respectively. In addition, the elementary XPS characterization involved the use of a dual Mg/Al anticathode X excitation source without a monochromator. The main Kα emission lines of Mg and Al are 1253.6 eV and 1486.6 eV, respectively. The analyzer is a 125 mm radius hemisphere (EA 125 Omicron) with electrostatic optics that offers different focusing and magnification conditions. The excitation energy was set as 50 or 20 eV depending on the desired resolutions and counting rates. The optical transmittance of the deposited layers was investigated by OPTIZEN 3220UV spectrophotometer in UV-Visible-NIR range (200–1000 nm). From the transmittance curves, the optical constants were extracted by using a heuristic method based on PSO algorithm. Details about this method are given in the next section.

3. Particle Swarm Optimisation

Particle Swarm Optimization is a well-known and efficient optimization algorithm developed by Eberhart and Kennedy [22, 23]. It is an evolutionary computational strategy
mainly inspired from the social comportment of bird flocking [24]. In this algorithm, each
bird is called ‘particle’ and it is considered as a single solution within the search space. The
whole birds fly with a specific velocity that directs them to find the global best solution. PSO
mechanism is started by generating a set of random solutions and then updating them at each
generation (cycle) till reaching the best optimal solutions. Moreover, PSO has been widely
applied to solve a wide variety of difficult optimization problems [25-27]. In PSO, the full
population of particles is called swarm, while the ith particle at the kth cycle is defined by the
subsequent parameters:

- A present position within a search space of D dimension \(X_i^k = (x_1^k, x_2^k, ..., x_s^k, ..., x_D^k) \),
 where \(x_s^k \) is in the range \([l_s, u_s]\), \(l_s \) and \(u_s \) denotes respectively the lower and upper
 variation boundaries of the sth particle.
- A present velocity \(V_i^k \) defined by \((v_1^k, v_2^k, ..., v_s^k, ..., v_D^k)\) and bounded by maximum
 and minimum velocity vectors \(V_{\text{min}}^k \) and \(V_{\text{max}}^k \), respectively.

At each cycle, all particles may adjust the velocity vector on the basis of their personal best
solution achieved so far \(P_{\text{best}} \) and the entire swarm’s global best solution \(G_{\text{best}} \).

The update of particles position and velocity is achieved as follows [22, 23]:

\[
V_i(k + 1) = wV_i(k) + c_1r_1(P_i(k) - X_i(k)) + c_2r_2(G(k) - X_i(k))
\]
(1)

\[
X_i(k + 1) = X_i(k) + V_i(k + 1)
\]
(2)

where \(X_i \) and \(V_i \) are the ith particle’s position and velocity, respectively. \(w \) is the inertia
weight. \(k \) is the iteration number. \(c_1 \) and \(c_2 \) are the acceleration constants and are usually
employed to set the manner in which a particle will move. \(r_1 \) and \(r_2 \) are two random numbers
in the range \([0,1]\). \(P_i \) is the ith particle’s personal best position. \(G \) is the swarm’s global best
position.

The subsequent points summarize the main steps of PSO algorithm:

1. Initialize the particles by random velocity and positions
2. Compute the fitness function for each particle
3. Find and update \(P_{\text{best}} \) and \(G_{\text{best}} \)
4. Compute and update particles’ velocity and positions
5. Repeat steps 2 to 4 until the stopping condition is met (sufficiently lower value of
fitness or maximum number of cycles is reached)
It is important to point out that PSO is always influenced by several control parameters, including the problem dimension, number of particles (swarm size), acceleration coefficients and number of iterations. In this work, PSO algorithm was used to investigate the optical properties of ZnO-Mn thin films.

4. Results and discussion

4.1. XRD analysis

Figure 1 shows XRD spectra of as-grown and annealed ZnO-Mn layers. The annealing process was carried out at different temperatures, namely 300, 400 and 500°C. For the as-grown samples no peaks associated with ZnO and Mn were observed. However, Zn peaks at different directions were detected (002), (100), (101), (102) and (004), (JCPDS number 00-004-0784). During the evaporation process, the ZnO powder changes from a solid to a vapor state and the ZnO molecule is decomposed into Zn + O according to the equation:

$$
\text{ZnO} \rightarrow \text{Zn} + \frac{1}{2} \text{O}_2
$$

[28]. A large part of the released oxygen was pumped out by the pumping unit and the small amount of oxygen trapped by zinc during its condensation is not sufficient to form a ZnO phase detectable easily by the diffractometer [29-31]. We notice the appearance of ZnO (103) and very low intensity peaks which correspond to ZnO (100) and (002). After annealing, the zinc oxidation begins to be visible at 300°C and it becomes stronger with the increase in temperature at 500°C. One can see the appearance of ZnO wurtzite phase peaks according to the directions (101), (002), (100), (JCPDS Card No. 36-1451) and other peaks according to the following crystallographic directions: (110), (103) and (112). There are no peaks associated to Mn and MnO phases. Also, it is noticed that (101), (002) and (100) peaks shifted to lower angles, from 31.737°, 34.379°, 36.215° for pure ZnO to 30.67°, 34.356°, 36.14° for our MZO films. This indicates an increase of the lattice parameters [32, 14], which is probably due to the substitution of Zn²⁺ (ionic radius = 0.074 nm) with larger radius Mn²⁺ (ionic radius= 0.080 nm), leading to larger ‘a’ and ‘c’ lattice parameters [33, 34].
For more insight on these structural modifications, the lattice parameters ‘a’ and ‘c’ are calculated based on Bragg relation [35]:

\[n\lambda = 2d_{hkl} \cdot \sin\theta_{hkl} \]

(3)

where \(h, k \) and \(l \) are Miller indices, \(\theta_{hkl} \) is the diffraction angle, \(d_{hkl} \) and \(n \) are the inter-planar distance and diffraction order (\(n=0,1,2... \)), respectively.

In hexagonal wurtzite structure of ZnO, the inter-planar distance \(d_{hkl} \) is given by [36]:

\[\frac{1}{d_{hkl}^2} = \frac{4}{3} \left(\frac{h^2 + k^2 + hk}{a^2} \right) + \frac{l^2}{c^2} \]

(4)

when \(n = 1 \), at the first order of approximation, the values of lattice parameters ‘c’ and ‘a’ are expressed by [37]:

\[c = \frac{\lambda}{\sin\theta_{hkl}} \]

(5)

\[a = \frac{\lambda}{\sin\theta_{hkl} \sqrt{3}} \]

(6)
The distance between planes was found by using [38]:

\[d = \frac{\lambda}{2 \sin \theta} \]

For further understanding of the structural changes, the crystallites size D, micro strain \(\tau \) and dislocation density \(\delta \) were determined by using the following formulas [39, 40]:

\[D = \frac{0.9 \lambda}{FWHM \cos \theta} \]
\[\tau = \frac{FWHM}{4 \tan \theta} \]
\[\delta = \frac{1}{D^2} \]

where FWHM, \(\theta \) and \(\lambda \) are full width at half maximum of XRD spectra, Bragg diffraction angle and wavelength of X-rays, respectively. To determine these parameters, (002) and (101) peaks for the annealed and as-grown MZO films, respectively, were selected. The strains toward c-axis \(\varepsilon_c \) and a-axis \(\varepsilon_a \) were calculated from the formula [41, 42]:

\[\varepsilon_c = \frac{(c-c_0)}{c_0} \times 100\% \]
\[\varepsilon_a = \frac{(a-a_0)}{a_0} \times 100\% \]

The bond length was calculated as follows [43]:

\[l = \sqrt{a^2/3 + (1/2 - u)c^2} \]

where ‘a0’ and ‘c0’ are lattice parameters of pure ZnO. \(u \) is defined as positional parameter of the wurtzite structure that is given by [44]:

\[u = a^2/3c^2 + 0.25 \]

The bond angles \(\alpha \) and \(\beta \) are given by [45]:

\[\alpha = \frac{\pi}{2} + \cos^{-1} \left[\left(\frac{4}{3} + 4 \frac{c^2}{a^2} \left(\frac{1}{2} - u \right)^2 \right)^{-1} \right] \]
\[\beta = 2 \sin^{-1} \left[\left(\frac{4}{3} + 4 \frac{c^2}{a^2} \left(\frac{1}{2} - u \right)^2 \right)^{-1} \right] \]

The values of lattice constants, inter-planar distance, micro strains, positional parameter, bond length and bond angles of MZO films obtained from XRD spectra are
depicted in Table 1. FWHM, crystallites size, lattice strain and dislocation density are listed in Table 2.

Table 1.

Lattice constants ‘a’ and ‘c’, interplanar distance d, micro strains ε_c and ε_a, positional parameter u, bond length l and bond angles α, β of MZO films.

<table>
<thead>
<tr>
<th>Annealing Temperature</th>
<th>c (nm)</th>
<th>a (nm)</th>
<th>Ratio c/a</th>
<th>d (nm)</th>
<th>ε_c</th>
<th>ε_a</th>
<th>l (nm)</th>
<th>u</th>
<th>α (°)</th>
<th>β (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>300°C</td>
<td>0.5138</td>
<td>0.3366</td>
<td>1.5264</td>
<td>0.2568</td>
<td>-0.0128</td>
<td>0.036</td>
<td>0.201954</td>
<td>0.39306</td>
<td>105.7873</td>
<td>112.8905</td>
</tr>
<tr>
<td>400°C</td>
<td>0.5153</td>
<td>0.3377</td>
<td>1.5259</td>
<td>0.2575</td>
<td>-0.0099</td>
<td>0.039</td>
<td>0.203284</td>
<td>0.393159</td>
<td>105.7413</td>
<td>112.9064</td>
</tr>
<tr>
<td>500°C</td>
<td>0.5174</td>
<td>0.3393</td>
<td>1.5249</td>
<td>0.2588</td>
<td>-0.0059</td>
<td>0.044</td>
<td>0.203518</td>
<td>0.393348</td>
<td>105.7319</td>
<td>112.9374</td>
</tr>
</tbody>
</table>

Table 2.

FWHM, crystallites size D, lattice strain and dislocation density δ.

<table>
<thead>
<tr>
<th>Annealing Temperature</th>
<th>FWHM (radian)</th>
<th>D (nm)</th>
<th>τ</th>
<th>δ (lines/nm2) (10$^{-3}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>As-grown</td>
<td>0.015</td>
<td>9.92</td>
<td>0.009429</td>
<td>10.16</td>
</tr>
<tr>
<td>300°C</td>
<td>0.0098</td>
<td>14.86</td>
<td>0.007794</td>
<td>4.53</td>
</tr>
<tr>
<td>400°C</td>
<td>0.0097</td>
<td>14.91</td>
<td>0.007738</td>
<td>4.49</td>
</tr>
<tr>
<td>500°C</td>
<td>0.0068</td>
<td>21.50</td>
<td>0.005449</td>
<td>2.16</td>
</tr>
</tbody>
</table>

Figure 2 (a) and (b) shows the variation of FWHM, crystallites size and lattice parameters with annealing temperature. The value of ‘c’ is smaller than that of pure ZnO ($c_0 = 0.5205$ nm), which gives negatives values of micro strain along ‘c’ axis. This indicates that MZO films have tensile forces towards ‘c’ axis [46]. The lattice parameters ‘a’ and ‘c’ increase with increasing annealing temperatures. This may be due to an increase of the solubility of Mn atoms in the ZnO host lattice caused by the annealing process. Consequently, this generates more stress along ‘c’ and ‘a’ axis [47]. The FWHM and lattice strain of MZO films decrease as annealing temperature increases, providing evidence of an improvement of the crystalline quality of the layers [48]. The crystallites size of Mn-doped ZnO films changes from 9.92 nm (as-grown layers) to 21.5 nm (annealed at 500°C). This increase in crystallites size is due to an increase in the oxidation of the layers as a function of the annealing temperature. The smallest crystallites size is observed in the as-grown samples. This could be due to the low amount of incorporated oxygen, which makes a fine microstructure. However, at high annealing temperatures the crystallites become larger with higher probability of oxidation [49].
As can be seen from Table 1, the values of bond length l, position parameter u and bond angles (α, β) increase as annealing temperature increases. The values of position parameter u are larger than the theoretical value (0.375) of pure ZnO. This can be accounted by the non-linearity of spontaneous polarization [50]. The increase in bond length l of MZO films with annealing temperature is probably due to the increase of Mn$^{2+}$ solubility in the ZnO host lattice. It is also found that the bond angles α and β values are lower and higher than the ideal value of pure ZnO structure (109.47°), respectively. These differences are due to the differences in ionic radius and electronegativity between Mn and Zn atoms [51].

4.2. XPS analysis

XPS analysis was conducted to investigate the chemical composition and oxidation state of MZO thin films without and with annealing at 300, 400 and 500°C. The carbon 1s peak (290 eV) is used to calibrate the binding energies of XPS data. Figure 3 shows the XPS spectra of Zn2p and Mn2p of all layers, which confirm the presence of Zn and Mn elements in the films. The peaks of Zn2p$_{1/2}$ and Zn2p$_{3/2}$ are located at 1050 eV and 1027eV, respectively. The separation energy between both peaks (\sim23 eV) is detected. This indicates the existence of divalent oxidation state of Zn in as-grown and annealed films [52, 53]. However, there is a shift in the binding energy of Zn2p$_{1/2}$ and Zn2p$_{3/2}$, which can be attributed to the substitution of Zn$^{2+}$ by Mn$^{2+}$ ions and the formation of Zn-Mn bonding structure [54]. Figure 3 (b) shows that all samples, as-grown and annealed, have two peaks related to Mn, namely Mn2p$_{3/2}$ and Mn2p$_{1/2}$. The Mn2p$_{1/2}$ has a binding energy of 658.5 eV, which indicates the presence of Mn$^{2+}$.
valence state in the substitution of Zn\(^{2+}\) ions. The difference in binding energy between Mn2p\(_{3/2}\) and Mn2p\(_{1/2}\) (~12.2 eV) confirms the oxidation state in the layers and the possibility of MnO\(_2\) molecules existence [55, 56].

![Fig. 3. XPS analysis of as-grown and annealed MZO films: (a) Zn2p and (b) Mn2p spectra of all samples.](image)

Figure 4 illustrates the deconvolved peaks of the as-grown and annealed MZO layers. Firstly, we remark the presence of oxygen for the as-grown samples, which confirm our XRD analysis. Indeed, the small amount of oxygen in the film is insufficient to form ZnO phases detectable by XRD. The O1s peak of annealed layers shows a spectral contribution that was successfully disentangled by Gaussian fitting analysis, resulting in two components at 535.7 eV and 537 eV. The peak at lower binding energy was assigned to O\(^{-}\) ions in Zn-O bonding of the wurtzite structure. Conversely, the peak at 537 eV was associated with O\(^{-}\) and O\(^{2-}\) ions in oxygen deficient regions in the ZnO matrix [57]. These defects play a crucial role in optical and luminescence properties of ZnO [58, 59]. With the increase of annealing temperature, the broad O1s peaks becomes more and more intense with a larger area, evidencing an increase of oxidation of the films and a decrease of the oxygen vacancies, as can be seen from the evolution of peak at 537 eV [60].
Fig. 4. XPS patterns of deconvolution O1s spectra for MZO samples: (a) as-grown and annealed at (b) 300°C, (c) 400°C, and (d) 500°C.

4.3. Surface Morphology

Figure 5 shows the morphological evolution with annealing temperature. The surface morphology was analyzed by FIB-SEM. In the literature, several approaches have been proposed to analyze the SEM images of thin films surfaces [61]. In our case, the authors have used the ImageJ software to analyze and calculate nanoparticles sizes. As can be seen from figure 5(a), the as-grown MZO films featured nanoparticles with irregular forms. The size of those nanoparticles changes from ~30 to ~70 nm. Figure 5(b) indicates that MZO films annealed at 300°C show a microsphere-like morphology, decorated with nanoparticles. Furthermore, with the increase of annealing temperature to 400°C, it is clearly that these microspheres become denser, and the nanoparticles disappeared. At 500°C, the surface morphology was completely changed, where the microspheres were transformed to
nanoneedles, which are randomly distributed on the whole surface. These nanoneedles have a length around ~ 295 nm, and widths at the bottom and top of ~60.3 nm and ~ 25.8 nm, respectively. Similar nanostructures have been reported at this annealing temperature [62, 63].

![Fig. 5. FIB-SEM micrographs of a) as-grown MZO and annealed at b) 300°C, c) 400°C and d) 500°C.](image)

4.4. Raman analysis

Figure 6 shows the Raman spectra of as-grown MZO samples and those annealed at 300, 400 and 500°C, which are deconvolved by Lorentzian distribution function. It is predicted that eight Raman modes of phonons symmetry exist for ZnO wurtzite structure [64], namely the singly and doubly degenerate modes of E_1, E_2, A_1 and B_1. In addition to these
modes, there are acoustic and optical modes: \(\Gamma_{\text{aco}} = A_1 + E_1 \) and \(\Gamma_{\text{opt}} = A_1 + (2 \times B_1) + E_1 + (2 \times E_2) \). \(B_1 \) is a known as a silent mode which cannot be observed in Raman spectra, while the others are actives modes [65]. A_1 (LO = longitudinal optical) mode was detected in all samples with a slight shift towards higher frequency. However, A_1 (TO = transverse optical) mode was detected with a shift towards the lower frequency. The A_1 phonon is polarized parallel to the c-axis of the wurtzite structure of ZnO, and the shift in frequency of this peak is due to the incorporation of Mn atoms in ZnO host lattice.

The E_2 (high) band is present in all samples, indicating the conservation of ZnO structure post-incorporation of Mn and thus confirming the XRD analysis results of the annealed samples. However, for the as-grown samples, the structure of ZnO was not observed by XRD but only by Raman. This could probably be due the resolution of the used diffractometer, and therefore a more detailed structural analysis is needed using High Resolution XRD (HR-XRD). Unlike XRD, Raman is sensitive to the degree of crystallinity in a sample. E_2 (high) peaks in all samples are smaller than that of pure ZnO. The frequency position of E_2 (high) phonons in our samples are shifted to higher frequency than that of pure ZnO (~ 437 cm\(^{-1}\)). This indicates the presence of tensile strain in the lattice and exactly in the perpendicular plane to the c-axis. This result is in good agreement with previous XRD studies [66, 67]. This interpretation could be supported by the observed peak at ~558 cm\(^{-1}\) which is present in all samples. According to Yadav et al [68], it is due to the activation of B_1 silent Raman modes (theoretical value is 520 cm\(^{-1}\)) resulting from the manganese substitution on oxygen sites, and/or Zn-O bond breaking caused by complex defects. These will induce a microscopic structural disorder in the Zn sub-lattice, causing the Raman modes activation around the Brillouin zone. The phonon modes are summarized in Table 3 and Table 4.

Table 3.

Peak analysis of Raman spectra of MZO layers

<table>
<thead>
<tr>
<th>Peaks</th>
<th>E_2 (L) (cm(^{-1}))</th>
<th>A_1 (TO) (cm(^{-1}))</th>
<th>E_1 (TO) (cm(^{-1}))</th>
<th>E_2(high) (cm(^{-1}))</th>
<th>E_1 (LO) (cm(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretical</td>
<td>101</td>
<td>380</td>
<td>407</td>
<td>437</td>
<td>583</td>
</tr>
<tr>
<td>As-grown samples</td>
<td>-</td>
<td>316</td>
<td>-</td>
<td>473</td>
<td>-</td>
</tr>
<tr>
<td>Samples annealed at 300°C</td>
<td>-</td>
<td>299</td>
<td>-</td>
<td>463</td>
<td>-</td>
</tr>
<tr>
<td>Samples annealed at 400°C</td>
<td>-</td>
<td>318</td>
<td>-</td>
<td>478</td>
<td>-</td>
</tr>
<tr>
<td>Samples annealed at 500°C</td>
<td>-</td>
<td>317</td>
<td>467</td>
<td>484</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 4.
The rest of the identified Raman peaks of MZO layers

<table>
<thead>
<tr>
<th>Identification</th>
<th>references</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disorder caused by Mn$^{2+}$ atoms (larger radius than that of Zn$^{2+}$)</td>
<td>[69, 70]</td>
</tr>
<tr>
<td>Multi phonon modes of ZnO</td>
<td>[71]</td>
</tr>
</tbody>
</table>

From figure 6, the observed peaks around (884, 886, 888 and 887 cm$^{-1}$) for all spectra could be attributed to Mn compounds (ZnMnO$_x$), such as ZnMnO$_3$ found by Toloman et al [70] at annealing temperature of 900°C. XPS analysis shows a probable presence of MnO$_2$ molecule. This compound was not observed by XRD analysis because its phase is certainly too weak to be detected. The increase in oxidation of the samples observed from XPS analysis is due to annealing performed in open air, which could possibly lead to an increase in the number of MnO$_2$ molecules. The large peaks at ~781 cm$^{-1}$ especially for the annealed samples are attributed to processes involving a combination of LA + TO phonons of A$_1$ symmetry of ZnO [72].

Table 5 show the FWHM values of E_2 (high) bands for different samples. These values are higher compared to those reported for example by Wang et al [73] (FWHM=16 cm$^{-1}$ for 2% Mn). This indicates that the samples have a low crystallinity. Our obtained results are in good agreement with those of Wang et al [72]. In fact, for a 5% Mn incorporation, the ZnO structure was destroyed and the peak becomes broader, which is reminiscent of that of an amorphous thin film. However, narrower FWHM and lower peak intensities at ~558 cm$^{-1}$, which are observed as the annealing temperature increases, indicate that the crystallinity of the samples is improved as confirmed by XRD analysis.

Table 5.
FWHM variation of E_2 (high) peak of MZO layers

<table>
<thead>
<tr>
<th>Samples</th>
<th>As-grown samples</th>
<th>Samples annealed at 300°C</th>
<th>Samples annealed at 400°C</th>
<th>Samples annealed at 500°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>FWHM</td>
<td>129 cm$^{-1}$</td>
<td>126 cm$^{-1}$</td>
<td>92 cm$^{-1}$</td>
<td>39 cm$^{-1}$</td>
</tr>
</tbody>
</table>
Fig. 6. Raman spectra with deconvolution of ZnO-Mn thin films (a) as-grown and annealed at (b) 300°C, (c) 400°C and (d) 500°C.

The peak at 467 cm$^{-1}$ [E_1(TO)] was observed only in the sample annealed at 500°C (Fig 6.d). It is worth pointing out that this sample displayed a different surface morphology as shown in the FIB-SEM micrograph in Figure 5(d), where the formation of needle-like nanostructures is clearly seen. In addition, the surface is decorated by nanoneedles without any preferential orientation and with a larger grain size than the other three samples (as-grown and annealed at 300°C and 400°C. Khan et al [73] observed the aforementioned peak in a sample with similar nanostructures and attribute it to the apparition of the E_1(TO) symmetry of ZnO.
4.5. Optical Properties

Figure 7 shows the optical transmission spectra of as-grown ZnO-Mn thin films and those annealed at 300, 400 and 500°C. These spectra were obtained by varying the wavelength in the range 200-1000 nm. The transmittance drops sharply in the UV region due to the fundamental absorption. It can be observed that the transmittance of as-grown films is less than 7% for all wavelengths, meaning that the films are practically opaque. However, the transmittance increases abruptly until reaching values between 72 and 77% with annealing. This increase in transmittance after annealing is due to the increase in the oxidation rate of ZnO, as discussed in the XRD and XPS analysis sections. In fact, an increase in the oxidation of the films with annealing temperature increasing has been reported before [74].

![Optical transmittance spectra of as-grown and annealed ZnO-Mn thin films.](image)

In this work, the only use of transmittance spectra is sufficient to determine the ZnO-Mn thin film thickness and optical constants. Toward this end, the authors have treated the problem of thickness and optical constants determination in mathematical point of view. Indeed, it was considered as a minimization issue in which the function to be minimized (cost function) is defined by the Root-Mean-Square-Error (RMSE) between measured and estimated transmittance spectra. The obtained results accuracy is guaranteed by the
sufficiently lowest value of RMSE that leads to a good fitting between both experimental and estimated spectra.

In this work, this function is called \(h(\mu) \) and it is given as follows:

\[
h(\mu) = \sqrt{\frac{\sum_{i=1}^{W} [T_{\text{exp}}(i) - T_{\text{est}}(i, \mu)]^2}{W}}
\]

(17)

where \(T_{\text{exp}} \) and \(T_{\text{est}} \) denote experimental and estimated transmittance data, respectively. \(\mu \) is the optimal parameters vector. Length of data included into the transmittance characteristic vector is denoted as \(W \). The estimated transmittance spectrum was obtained by replacing the identified parameters \((d, n)\) in the following theoretical model of transmittance [75]:

\[
T = \frac{Ax}{B - Cx \cos \varphi + Dx^2}
\]

(18)

where

\[
A = 16n_s(n^2 + k^2)
\]

(19)

\[
B = [(n + 1)^2 + k^2][(n + 1)(n + n_s^2) + k^2]
\]

(20)

\[
C = [(n^2 - 1 + k^2)(n^2 - n_s^2 + k^2) - 2k^2(n_s^2 + 1)]2 \cos \varphi
- k[2(n^2 - n_s^2 + k^2) + (n_s^2 + 1)(n^2 - 1 + k^2)]2 \sin \varphi
\]

(21)

\[
D = [(n - 1)^2 + k^2][(n - 1)(n - n_s^2) + k^2]
\]

(22)

\[
\varphi = \frac{4\pi nd}{\lambda}
\]

(23)

\[
x = \exp(-\alpha d)
\]

(24)

In Equations (18-24), \(n_s \) and \(n \) are the substrate and thin film refractive indexes, respectively; \(d \) is the deposited film thickness; \(\alpha \) is the absorption coefficients, \(\lambda \) is the wavelength and \(k \) is the extinction coefficient. To obtain the refractive index values, the Cauchy dispersion model have been used and it is given as [75]:

\[
n(\lambda) = \alpha_1 + \frac{\beta_1}{\lambda^2}
\]

(25)
where $\alpha_1, \beta_1, \alpha_2$ and β_2 are four fitting parameters.

The main idea is to determine first the optimal values of $\alpha_1, \beta_1, \alpha_2, \beta_2$ and d that minimize the cost function $h(\mu)$ based on the PSO algorithm. Then the refractive index will be computed by using Equation (25).

It important noting that first, the PSO algorithm will be applied in the region of medium and weak absorptions of the transmittance spectrum in order to determine the optical thickness (d) and Cauchy dispersion model parameters ($\alpha_1, \beta_1, \alpha_2, \beta_2$). The values of n are then calculated from Equation (25) in the whole wavelength range. To prove the efficiency of this method, the PSO algorithm has been applied to the transmittance spectrum of ZnO-Mn thin films annealed at 300, 400 and 500°C. A detailed description will be illustrated for the sample annealed at 500°C. Moreover, as discussed in Section 3, the PSO algorithm has several control parameters to be fixed by the user. During this work, these values have been experimentally chosen by test/error strategy. This means that the efficiency of PSO algorithm has been tested for several values and only the best ones are selected. In this work, the authors have selected the following parameters:

1. Problem dimension = 5 (number of parameters to be determined)
2. Number of particles = 150 (swarm size)
3. Acceleration coefficients = 2
4. Inertia weight = 0.4
5. Number of iterations = 1500

The first stage consists of applying the PSO algorithm only in the weak and medium absorption zones. Figure 8 shows the measured and calculated (using PSO-based determined

$$k(\lambda) = \alpha_2 + \frac{\beta_2}{\lambda^2}$$

\[(26) \]
parameters) transmittance spectra in these zones. Table 7 summarizes the identification results and the reached RMSE value.

Table 7.
The determined parameters and the reached RMSE value

<table>
<thead>
<tr>
<th>Parameters</th>
<th>α_1^*</th>
<th>β_1^*</th>
<th>α_2^*</th>
<th>β_2^*</th>
<th>d^*</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>2.05</td>
<td>4.09×10^{+4}</td>
<td>2.31×10^{-3}</td>
<td>2.15×10^{+4}</td>
<td>118.36</td>
<td>6.2×10^{-3}</td>
</tr>
</tbody>
</table>

![Graph showing transmittance and wavelength](image_url)

Fig. 8. Measured and estimated transmittance spectrum.

A good fitting between measured and estimated transmittance spectra has been observed in Figure 8. In addition, the results shown in Table 7 clearly demonstrate the high performance of the PSO algorithm to accurately determine the optical film thickness and Cauchy dispersion parameters. This accuracy is evidenced by the small RMSE value (6.2×10^{-3}).

Using parameters in Table 7, the refractive index can be re-written as:

$$n(\lambda) = 2.05 + \frac{4.09 \times 10^{+4}}{\lambda^2}$$ \hspace{1cm} (27)

This equation is used to extrapolate n for the entire wavelength range. The estimated values of n are depicted in Figure (9).
By making λ tends towards infinity in the Cauchy relation model expressed by equation (27), the static refractive index can be determined. The obtained values are 2.12, 2.04 and 2.055 for the samples annealed at 300, 400 and 500°C, respectively. It is worth mentioning that a thickness of \sim118 nm was determined optically. The values of the refractive index at $\lambda = 600$ nm are found to be 2.148, 2.070 and 2.081 for the samples annealed at 300, 400 and 500°C, respectively.

The optical absorption coefficient α is determined in the area of high absorption using the relationship [76]:

$$\alpha = -\frac{1}{d} \ln\left(\frac{B}{A}\right)$$

The refractive index in this region is obtained by extrapolation of the index values obtained in the region of low absorption by Cauchy dispersion relationship.

Figure 10 presents the variation of α as a function of the energies of the incident photons. It is clearly seen that the values of α are greater than 10^4 cm$^{-1}$, confirming that the probability of direct electronic transitions is very high, as reported previously [77].

It emerges from Figure 10 that the absorption coefficient gradually increases with increasing photon energy $hv \leq 3.3$ eV, and then increases sharply for $hv = 3.3$-3.9 eV. This sharp increase, which is the result of the transition of electrons from the valence band to the conduction band, helps in determining the absorption threshold more accurately, and consequently the energy band gap value.
Using the absorption coefficient α, the energy band gap (E_g) of the MZO thin films can be determined. ZnO-Mn films have a direct gap, and therefore the following formula can be used to calculate E_g of MZO thin films [78]:

$$\alpha \nu = A' \sqrt{\nu - E_g}$$ \hspace{1cm} (29)

where A' is a constant, and ν is the incident photon energy. E_g is generally obtained by extrapolation of the linear part of $(\alpha \nu)^2$ versus ν plot to $\alpha \nu = 0$, as shown in Figure 11 for the samples annealed at 400°C. Figure 12 shows the variation of E_g values for different annealed samples. E_g gradually decreases from 3.97 eV to 3.72 eV with temperature increase from 300 to 500°C. Compared with E_g value of pure ZnO ($E_g \approx 3.37$ eV), MZO films have higher E_g values. This can be attributed to the structural modification and deformation of ZnO via Mn incorporation into the host lattice.
Fig. 11. Example of extrapolation of linear part of $(\alpha h\nu)^2$ versus $h\nu$ plot to $\alpha h\nu = 0$ to determine E_g of the samples annealed at 400°C.

Fig. 12. Variation of E_g as function of the annealing temperature.

5. Conclusion

In this work, a systematic investigation of structural, morphological and optical properties as function of annealing temperature of MZO thin films was carried out. The samples were prepared by rapid thermal evaporation of ZnO and Mn powders mixture. XRD analysis revealed that MZO layers after annealing crystallize in hexagonal wurtzite phase with an increase in lattice parameters and crystallites size. XPS analysis showed the presence of Mn atoms, which caused a degradation of the structure and the quality of the thin films. The
Mn atoms that are not substituted on Zn$^{2+}$ sites cause the formation of impurity phases as Zn-Mn or MnO$_2$. FIB-SEM images showed that the morphology of the MZO thin films was affected by the annealing process. For a 500°C thermal anneal, nanoneedles were formed without any preferential orientation. Raman measurements have also shown an additional mode E$_1$ (TO) at 467 cm$^{-1}$ associated with the apparition of nanoneedles. The as-grown samples were found to be opaque with a very low transmittance. However, the average optical transmittance for the annealed MZO layers after annealing was enhanced with values above 77%. The optical constants n, α and the thickness d were successfully identified and determined from the transmittance spectra using the PSO algorithm. The energy band gap E$_g$ was computed for different annealing temperatures. The obtained results showed that E$_g$ decreases from 3.97 to 3.72 eV with increasing annealing temperature from 300 to 500°C. Finally, this study allows a better understanding of MZO material properties, in order to well use it in different fields of application, particularly in solar cells and antibacterial activities.

Acknowledgments

We are grateful for Prof Francisco de Paula Martín Jiménez, from university of Malaga (Spain) for his assistance during FIB-SEM analysis. Grateful are also addressed to Rémi Lazzari Alain from Institut de nanosciences de Paris (INSP) (France) and Naitbouda Abdelyamine from CDTA (Algérie) for their helpful in XPS and Raman analysis.

References

[34] J. Anghel, A. Thurber, D.A. Tenne, C.B. Hanna and A. Punnoose. Correlation between saturation magnetization, bandgap, and lattice volume of transition metal (M = Cr, Mn, Fe, Co, or Ni)

