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Abstract—Computer aided diagnosis for mammogram images
have seen positive results through the usage of deep learning ar-
chitectures. However, limited sample sizes for the target datasets
might prevent the usage of a deep learning model under real
world scenarios. The usage of unlabeled data to improve the
accuracy of the model can be an approach to tackle the lack of
target data. Moreover, important model attributes for the medical
domain as model uncertainty might be improved through the
usage of unlabeled data. Therefore, in this work we explore the
impact of using unlabeled data through the implementation of a
recent approach known as MixMatch, for mammogram images.
We evaluate the improvement on accuracy and uncertainty of
the model using popular and simple approaches to estimate
uncertainty. For this aim, we propose the usage of the uncertainty
balanced accuracy metric.

Index Terms—Uncertainty Estimation, Breast Cancer, Mam-
mogram, Semi-Supervised Deep Learning, MixMatch

I. INTRODUCTION

According to the International Agency for Research on
Cancer (IARC), breast cancer remains as the leading cause
of cancer death in women worldwide [1]. In 2019, for the US
alone, it was estimated that around 268,600 women would be
diagnosed with invasive breast cancer, and out of them 41,760
were expected to die [2].

Such aggravating statistics contribute to emphasize the im-
portance of an early diagnosis, as this allows a rapid response
which highly increases the efficacy in the treatment of the
disease [2]. Nevertheless, this is not always possible, as regions
with scarce medical professionals and low economic resources
lack the ability to appropriately carry out preemptive and
uniform mammogram screening tests to their populations.

Over the last decade deep learning has proven to be a viable
approach for this problem, leveraging effective computer aided
diagnosis tools. Deep learning has been applied for the detec-
tion and classification of diseases by the analysis of medical

images of patients suffering from conditions like cancer [3]
and more recently, COVID-19 [4].

Nevertheless, despite its proven success it is well known that
deep learning techniques still face great disadvantages. One of
them being the vast amount of correctly labeled data needed
in order to train models by classic supervised techniques [3].
This represents an especially difficult challenge in the medical
domain, as highly trained professionals are required to spend
long periods of time dedicated to carefully labeling the data.

Semi-supervised and self-supervised deep learning tech-
niques have recently gained popularity, as these approaches
take advantage of cheaper unlabeled data to train deep learning
models [4]–[6]. For medical imaging, still the advantage of
semi-supervised learning can be considered under-reported,
with authors often focusing only on accuracy gains [4].

Model uncertainty estimation is of special interest in the
medical domain, as it is related to model explainability.
Enforcing model reliability and accountability is relevant for
health professionals. For this reason, it is of great interest to
assess the impact that semi-supervised learning can have in
model uncertainty estimation.

In this work we focus on the measurement and improvement
of uncertainty estimations for deep learning models trained
to identify breast cancer on whole mammogram images.
Specifically, we aim to improve uncertainty estimations by
using unlabeled data under regimes with very limited number
of labeled observations for training.

II. STATE OF THE ART

A. Uncertainty Estimation

Uncertainty estimation relates to model explainability as it
consists on the capability of the model to estimate how reliable
is its output. This can be of special interest in the medical
domain, where the decisions taken by a model can have direct



consequences in the life of patients. As such, this subject has
been widely studied in the literature [7]–[10].

In this work we focus on uncertainty estimation methods
that are practical and straightforward to implement. Specif-
ically, the Softmax and Monte Carlo Dropout (MCD) ap-
proaches were tested. These solutions do not require model
architectures to be modified, nor to re-train models.

For classification related tasks, the usage of a Softmax
activation function in the output layer of a deep learning model
can serve as a basic method for uncertainty estimation [11].
Given a model f and the array of outputs yj = fθ(xj) and
model parameters θ, for a given input observation xj , the
Softmax function estimates a density function p of the form:

pi =
exp (yi,j)∑
k exp (yk,j)

(1)

Where unit i of the Softmax output for a given input ob-
servation xj can be interpreted as the model “certainty” for
class i. The entropy over p can also be used as a less naive
estimation. However, the Softmax method alone can lead
to poor representations of model uncertainty due to typical
overconfidence in neural networks’ predictions [12], [13].

The MCD approach aims at having more robust estimations
while still being simple to implement [12], when compared
to the usage of Softmax for uncertainty estimation. MCD is
based on a Bayesian interpretation of the model’s parameters.
It estimates the distribution of the model outputs through M
stochastic evaluations of the model ym,j = fθ′

m
(xj) for

a given input xj . The model parameters θ′ are randomly
modified, usually with dropout procedure, with the objective
of measuring the stability of the output for each evaluation
m. Then, for a given input xj the dispersion of its output is
calculated as:

σ2
model (xj) =

1

M

M∑
m=1

K∑
k=1

(ym,j,k − ȳj,k)
2
. (2)

Where ym,j refers to the output of each perturbed model for
observation xj and ȳj,k is the model output average for the M
model evaluations. Dispersion estimation can be accumulated
for all the output units k = 1, ...,K or alternatively only the
unit with the highest output can be used.

B. Semi-Supervised Deep Learning

Semi-supervised learning techniques have proved to be
viable solutions to the shortage of labeled data [5]. This has led
to such techniques to become especially appealing for appli-
cations in contexts like the medical domain, where the lack of
publicly available and properly labeled training data continues
to be a great issue [14]. Different semi-supervised methods for
deep learning architectures have been proposed recently. In [5]
a detailed survey on semi-supervised methods can be found,
and in [15] a review on its usage for medical applications was
developed. MixMatch is among the most recent and successful
semi-supervised approaches. As presented by the authors in

[16], this approach combines intensive data augmentation,
pseudo-labelling, and unsupervised regularization.

More specifically, MixMatch starts by generating pseudo-
labels from previously augmented unlabeled training data
(with affine transformations, e.g. image flipping and mirror-
ing), by averaging and subsequently sharpening the model
“guesses” for the aforementioned augmented observations
[16].

MixMatch uses both unlabeled and labeled datasets, S̃u =
(Xu, Ỹ ), where Xu correspond to the unlabeled observations
and Ỹ = {ỹ1, ỹ2, ..., ỹnu} are their pseudo-labels, and Sl =
(Xl, Yl), correspond to the labeled observations along with
their respective labels.

Then, both labeled and unlabeled data sets (Sl, S̃u) are fur-
ther augmented with the MixUp algorithm [17]. The technique
creates new observations, generated by linearly interpolating
already existing data. This process results in the augmented
data sets S′l and S̃′u.

Finally, the resulting data is used to train a model by
minimizing the following loss function [16]:

L(S, θ) =
∑

(xi,yi)∈S′
l

Ll(θ, xi, yi)+

γr(τ)
∑

(xj ,ỹj)∈S̃′
u

Lu(θ, xj , ỹj)
(3)

Where S = (S′l , S̃
′
u), and θ refer to the model weights. Ll

is a supervised loss term, implemented with a cross-entropy
loss, and Lu is an unlabeled loss term, implemented with
an Euclidean distance. γ serves as a regularization coefficient
for the unlabeled loss term, along with the ramp-up function
r(τ), which increases its value as the epochs τ increase. Our
implementation of r(τ) was set to τ/3000.

It is important to note that unlabeled data also affects the
term Ll, as both Sl and S̃u are used to generate S̃′u as well
as S′l via the MixUp approach [16].

Recent studies have linked the usage of unlabeled data to
improvements in the uncertainty of deep learning models.
The authors in [18] implemented a regularization approach
based on the use of unlabeled data and yielded better uncer-
tainty estimations for structured data. Furthermore, concepts
implemented in semi-supervised learning techniques, specif-
ically on MixMatch [16], have been known to improve the
uncertainty estimation of models. These include: consistency
regularization of self-supervised learning [19] and the MixUp
data augmentation algorithm [20], both implemented in the
MixMatch approach.

C. Deep Learning for Mammogram Analysis

The analysis of mammograms for breast cancer detection
constitutes a popular research topic in the literature [3], [21].
Works in this area can be roughly divided into plain mam-
mogram image classification or in segmentation of specific
anomalies (masses, microcalcifications, tissue deformations,
etc.). In this work we focus on the former, as we aim to classify
images of patients as malign (cancerous) or benign.



Professionals in radiology follow specific standards in the
process of examining mammogram images. One of such is
using the BI-RADS scale developed by the American College
of Radiology [22], in order to report the results of a mammo-
gram as precisely as possible. The BI-RADS scale is based
on the level of suspicion of findings in an image. It ranges
from 0 to 6 as: 0 for exam not conclusive, 1 for no findings,
2 for benign, 3 for probably benign, 4 for suspicious, 5 for
high probability of malignancy and 6 for proved cancer (via
biopsy).

Given this standard and how it is common for recent datasets
to be labeled according to it, some works have experimented
with multiclass classification, as in [23] and in [24]. However,
most research seems to focus on binary classification (benign-
malign), as BI-RADS classification can be considered prone
to label noise, with a high abstraction level of the categories,
making the problem particularly challenging [25].

Moreover, research in this area mainly concentrates on the
classification of pre-annotated regions of interest, such as
anomalies like masses or calcifications [3], [26]. For instance,
in [27]–[29] convolutional neural networks for mass classifica-
tion in mammograms have been implemented, achieving state
of the art results [29].

A considerably smaller amount of research has focused on
the analysis and classification of whole mammogram images.
While this represents a task of great interest in the field
of computer aided diagnosis, it is still faced with many
challenges. One of them being that the size, number and type
of anomalies present in a single image can vary greatly.

In order to tackle these problems, some authors have im-
plemented solutions like the one explained in [21] based on
Region Based Convolutional Neural Networks (R-CNN) and
their variants (Fast R-CNN and Faster R-CNN). However,
these approaches need great amounts of finely labeled data,
almost on the level of pixel annotations [26], which are harder
to obtain and not usually generated in the every-day work of
radiologists.

The authors in [26] propose a similar approach, where
deep learning models are trained to classify “patches” of the
original mammogram images. More convolutional layers are
then added to the trained models in order for them to be able
to process full images and are further fine-tuned. This “end-
to-end” approach is reported to achieve positive results.

Works presented by the authors in [23] and [24] have
achieved substantial results in multiclass classification of
whole mammograms. This while relying heavily on pre-
processing and data augmentation techniques.

Research on Semi-supervised Deep Learning (SSDL) for
mammogram classification is far more scarce. In [30] a semi-
supervised model using transductive learning is implemented
for the patch-wise classification of masses in two classes,
benign and malign. The authors used the Digital Database for
Screening Mammography database (DDSM). No study on the
impact of the labeled dataset size or comparison with other
methods was done.

More recently, in [31], a semi-supervised segmentation
model for mammogram lesions was proposed. The model is
based on a co-training approach for pseudo-label estimation
using two models based on a support vector machine. No
comparison with recent SSDL approaches was done, with no
statistical analysis of the results of the other two approaches
tested (region growing and watersheds).

In this work we test simple off-the-shelf classification mod-
els, to limit the interaction of additional aspects on the matter
at hand in this work. To our knowledge, this work is the first to
apply the MixMatch semi-supervised approach to this domain
and to study the impact of its usage in uncertainty estimation.
We focus on the classification of whole mammogram images
with BI-RADS labels, as in real-world clinics this type of data
is considerably easier to get. Implementing a model to a spe-
cific clinic with a particular mammogram sampling equipment
and technicians can result in a better model performance than
using other larger datasets with data acquired with different
equipment and technicians. This problem is referred as domain
adaptation [32], where in this case the domain might remain
the same, but the distribution of the datasets might change.
Finally, for the comparison of the tested uncertainty estimation
approaches, we propose the usage of the uncertainty balanced
accuracy as a metric.

III. CONTRIBUTIONS

Contributions to the state of the art are made through this
work in the following aspects:
• We explore the impact of semi-supervised deep learning

approach known as MixMatch, on the accuracy and
reliability of uncertainty estimations for whole mammo-
gram binary classification, using common deep learning
architectures.

• We evaluate and compare the performance of three differ-
ent uncertainty estimation techniques for both supervised
and semi-supervised models for the binary classification
of whole mammogram images.

• We propose the uncertainty balanced accuracy to ease the
comparison of uncertainty estimation approaches in real
world usage scenarios.

IV. PROPOSED METHOD

This work proposes the improvement of uncertainty estima-
tion for deep learning models through the usage of unlabeled
data with the MixMatch approach (as depicted in section
II-B). The study involves the binary classification of whole
mammogram images.

Three simple and popular uncertainty estimation methods
were tested as follows:
• The Softmax function as depicted in Equation 1 is used

in this work for uncertainty estimation (also known as
model calibration). The maximum Softmax value for the
output layer of a model serves as uncertainty estimation
uj for a given input xj . This was implemented as
uj = argmax

i
pi, were p is the corresponding Softmax

distribution output.



• The complete set of values for a Softmax output given an
input xj can also be used for uncertainty estimation. This
is done by calculating the entropy over the corresponding
output distribution p of Softmax. This was implemented
as uj = − 1

α

∑
i pi log(pi), were α is a normalization

coefficient.
• MCD as described in Equation 2, uses the distribution

from multiple evaluations of dropout-enabled models for
the same input xj . Either the entropy of such distribution
or its second statistical moment (standard deviation) can
be used. The latter was chosen and implemented as uj =
σmodel(xj).

A similar approach to the one in [33] was implemented
to evaluate and compare the results for the tested uncertainty
estimators. Authors in [33] proposed several quantitative met-
rics based on an approach known as “uncertainty confusion
matrix” that consists on grouping uncertainty estimations for
each of a model’s predictions according to their “correctness”
and “confidence”. The correctness of a prediction can be
attained by comparing it with its ground truth label, while
the confidence can be estimated by comparing the prediction’s
uncertainty estimate with a threshold.

Thus, predictions can be classified into one of four groups:
correct and certain (true certainty (TC)), incorrect and un-
certain (true uncertainty (TU)), correct and uncertain (false
uncertainty (FU)), and incorrect and certain (false certainty
(FC)). According to these groups the following metrics can
then be calculated, as described in [33]:
• Uncertainty sensitivity or USen, corresponds to the per-

centage of uncertain predictions out of all incorrect
predictions. A value closer to 1 means a lower model
confidence on misclassified observations. It is calculated
as:

USen =
TU

TU + FC
(4)

• Uncertainty Specificity or USpe, is the percentage of
certain predictions out of all correct predictions. Values
closer to 1 stand for a higher model confidence on cor-
rectly classified observations. It is calculated as follows:

USpe =
TC

TC + FU
(5)

• Uncertainty Precision or UPre, corresponds to the per-
centage of incorrect predictions out of all uncertain
predictions. A value closer to 1 means a lower model clas-
sification accuracy on uncertain predicted observations.
Its calculation is depicted as follows:

UPre =
TU

TU + FU
(6)

• Uncertainty Accuracy or UAcc, corresponds to the per-
centage of favourable outcomes out of all predictions. It
is calculated as follows:

UAcc =
TU + TC

TU + TC + FU + FC
(7)

In addition to these, we propose the implementation of
another metric:
• Uncertainty Balanced Accuracy or UBAcc, corresponds to

an average of USen and USpe for a given model. It offers a
better insight to the overall confidence of a model in both
its correct and incorrect predictions, and can be useful to
detect situations in which a high USen or USpe value is
reached due to a model being, respectively, certain or
uncertain about almost every prediction. It is calculated
as follows:

UBAcc =
USen + USpe

2
(8)

As such UBAcc represents an average of a model’s confidence
in its correct and incorrect predictions. This metric can be
of special interest in the medical domain, as a value closer
to 1 would mean that uncertainty estimations for a model
could be better trusted. This is of high importance to decide
if a prediction should be submitted for a second opinion
by a human professional or not, as high uncertainty could
be associated with incorrect predictions and low uncertainty
with correct predictions. Additionally, we note that in some
cases the use of UBAcc can be preferred to the single use
of UAcc, as the latter could be prone to optimistic results if
the proportion of correct-incorrect predictions is unbalanced.
This is inherently the case in models with high classification
accuracy.

V. EXPERIMENTS

A. Dataset

The INbreast dataset was used for the experiments depicted
in this work. Published at [34], INbreast is a mammographic
database comprised of multiple full-field digital mammograms
of a wide variety of patients with anomalies like masses and
calcifications. Each image labeled according to the BI-RADS
scale, from category 1 to 6.

In our work, we focused on binary classification (malign,
benign) of mammograms. Therefore, the BI-RADS labeled
images from INbreast were divided into 2 groups. Following
a similar approach to [26], categories 1 and 2 are defined
as negative observations (benign). Categories 4, 5 and 6
are defined as positive observations (malign). Category 3
(probably benign) is ignored. This results in 287 negative and
100 positive observations.

B. Experiments

All the experiments described in this work were imple-
mented in Python using the FastAI and PyTorch libraries,
based on the MixMatch implementation found in [4].

The PyTorch implementation of the VGG 19-layer with
batch normalization was chosen as the architecture for both
supervised and semi-supervised models. Transfer learning with
pre-trained weights from ImageNet was used as in [24], [26],
[29].

Both supervised and SSDL models were trained and tested
across a total of 10 different randomly-generated subsets of



(a) BI-RADS 1 (b) BI-RADS 2 (c) BI-RADS 3

(d) BI-RADS 4 (e) BI-RADS 5 (f) BI-RADS 6

Fig. 1: Examples of mammograms according to their BI-
RADS classification in INbreast

data, with an average distribution of 70% of images for
training and 30% for testing on each subset, with obser-
vations from different patients for training and for testing.
Both types of models were trained on each data subset with
nl = 10, 20, 40, 60, with nl number of labeled observations
balanced with 50% for each class. Supervised models were
trained only with labeled images, while the SSDL models used
the remaining training images as unlabeled data.

Data augmentation was implemented in the train data in
the form of random flips and rotations through the FastAI
library, for both supervised and SSDL models. Due to memory
constraints, images were resized to 224x224 pixels, after being
converted from DICOM format to PNG.

Models were trained for 50 epochs each, with early stopping
in order to avoid overfitting. A learning rate of 0.00002, a
weight decay of 0.001 and a batch size of 10 images were
used. Hyper-parameters for MixMatch were set following the
authors’ recommendations in [16]: K = 2 transformations, a
sharpening temperature of T = 0.25, an alpha mix value of
α = 0.75 and unsupervised γ = 200.

Furthermore, the Softmax-based and MCD uncertainty es-
timation methods were evaluated for each model, using the
test data from their respective random subset of data. The
results for each individual input were averaged to obtain “per-
model” results. These values were then averaged across the
10 data subsets in order to obtain “per-amount-of-labeled-
observations” results. For the MCD method, a total of M =
100 evaluations were made for each test input, using a dropout
value of p = 0.5.

Finally, the described per-model results for the evaluated
uncertainty estimation methods were grouped according to
their “correctness” and “confidence” by, respectively compar-
ing them to their ground truth labels and to a specific threshold.
This was done in order to calculate the quantitative uncertainty
metrics described in the previous section.

Due to the different value ranges obtained for the uncer-
tainty estimation methods, normalization was applied to the
obtained results. This way the same threshold value required
for the metrics depicted in Equations 4, 5, 6, 7 and 8 could be
employed. MCD values were normalized using the maximum

and minimum values obtained over all test configurations. The
max Softmax values were also normalized to be in a range
from 1 to 0, and then their complements were calculated.

VI. RESULTS

Results of the described uncertainty estimation tests are
presented in Tables II, III and IV, as the mean and standard
deviation across each of the 10 random data subsets, for the
correct and wrong estimations of the models as well as the
difference between these, along with the number of labeled ob-
servations used for training. As a comparison reference, model
accuracy is similarly reported in Table I, averaged across
the 10 randomly-generated data subsets for each number of
labeled observations used for training.

As seen in Table I, SSDL models yielded moderately better
accuracy results in comparison to supervised models. This
occurs especially when using a very reduced number of labeled
observations, as higher accuracy gains were obtained with the
smallest number of labeled observations. The accuracy gain
decreases with larger values of nl.

A similar trend can be observed in results using the evalu-
ated uncertainty estimation methods. Tables II and III suggest
better uncertainty estimation results when using SSDL with
very few labeled observations. For instance, in Table II the
difference between the sample averages for both the MCD
uncertainty estimator with the SSDL and supervised model
decreases as the number of labeled observations nl increase.
A similar behavior can be seen for the rest of tested uncertainty
estimators in Tables III and IV. The sample averages difference
for the correct and incorrect samples are calculated in Tables
II, III and IV. For this attribute, the following trend becomes
evident: a higher incorrect to correct uncertainty difference is
seen with the SSDL model, when compared to the supervised
model. This happened for all the three tested uncertainty
estimation methods. However, as the standard deviation is
significant, we need to make further assessment of such results
using specific uncertainty estimation metrics.

As previously mentioned in Section IV, we measured USen,
USpe, UPre, UAcc, and UBAcc with SSDL and supervised models,
as depicted in Tables V and VI. The quantitative metrics for
uncertainty estimation were measured for all methods with a
threshold of 0.3, as advised in [33]. These results are presented
in Tables V and VI, with the mean and standard deviation of
each metric across each of the 10 random data subsets, for
every number of labeled observations used.

Tables V.a and V.b depict the uncertainty metrics for the
SSDL and supervised model with nl = 10 and nl = 20
number of labeled observations. For nl = 10 number of
labeled observations, the highest values were yielded by the
SSDL model, with the exception of the model uncertainty
sensitivity, which is dramatically better for the supervised
model. The balanced uncertainty accuracy UBAcc averages the
USen and the USpe, and still shows an advantage of the SSDL
model over the supervised approach. With nl = 20, the UPre
gets worse for the SSDL model when compared with the



supervised model, however the UBAcc still is higher for the
SSDL model.

For the models trained with more labeled observations,
Tables VI.a and VI.b show the results with nl = 40 and
nl = 60 number of labeled observations, respectively. With
nl = 40, still the SSDL presents higher sample averages than
the supervised model for UBAcc, UAcc and USpe, and lower
sample means for the rest of the metrics. With nl = 60, the
SSDL model presents lower sample means for UBAcc, UAcc and
USpe when compared to the supervised model, decreasing the
gain of SSDL over the supervised model.

Moreover, relatively high standard deviations are observed
for the majority of these results, thus Wilcoxon signed-rank
tests were applied in order to identify statistically significant
differences between results for SSDL and supervised models.
Tables V and VI show a visible trend where statistically
significant advantage of using SSDL is yielded as the number
of labeled observations approach to nl = 10.

The comparison between the tested uncertainty estimation
approaches using the proposed metric UBAcc and the rest of
the measurements performed, shows no significant difference
between the three tested approaches.

Differences between the reliability of each uncertainty es-
timation method are mixed, with no clear winner between
them. Overall results of metrics with MCD are quite similar
to those with Max Softmax. Results with normalized entropy
of Softmax tend to higher USen but lower USpe values than
the other methods, which can suggest a higher perceived
uncertainty over both correct and wrong predictions. Our
proposed metric, the UBAcc shows very similar values with
no statistically significant difference between the three tested
uncertainty estimation methods.

nl d.e. No SSDL SSDL
10 x̄ 0.6477 0.7007

s 0.0776 0.0558
20 x̄ 0.6606 0.7298

s 0.0639 0.0679
40 x̄ 0.6910 0.7524

s 0.0434 0.0488
60 x̄ 0.7245 0.7015

s 0.0252 0.1331

TABLE I: Accuracy results of the supervised and semi-
supervised models for data subsets with different number of
observations nl.

VII. CONCLUSIONS

In this work, we tested the impact on accuracy and un-
certainty estimation for deep learning models by using un-
labeled data through the MixMatch SSDL approach. For
this, three uncertainty estimation methods were evaluated:
MCD, Normalized entropy of Softmax and maximum value
of Softmax. An improvement with statistical significance was
observed for SSDL models over supervised models, for lower
number of labeled observations used for training. This was
first suggested by the improvements over the differences in

nl d.e. No SSDL SSDL
Correct Wrong Diff. Correct Wrong Diff.

10 x̄ 0.1758 0.1766 0.0008 0.0675 0.0854 0.0179
s 0.0120 0.0120 0.0416 0.0448

20 x̄ 0.1676 0.1681 0.0005 0.1145 0.1227 0.0082
s 0.0089 0.0110 0.0399 0.0332

40 x̄ 0.1538 0.1714 0.0175 0.0938 0.1131 0.0193
s 0.0224 0.0164 0.0377 0.0376

60 x̄ 0.1493 0.1685 0.0192 0.1200 0.1270 0.0070
s 0.0245 0.0159 0.0260 0.0194

TABLE II: MCD statistics of the supervised and semi-
supervised models for data subsets with different number of
labeled observations nl. Lower values indicate higher model
confidence.

nl d.e. No SSDL SSDL
Correct Wrong Diff. Correct Wrong Diff.

10 x̄ 0.9380 0.9461 0.0081 0.3644 0.4599 0.0955
s 0.0843 0.0819 0.2029 0.2146

20 x̄ 0.9106 0.9172 0.0066 0.6979 0.7415 0.0436
s 0.1429 0.1319 0.2780 0.2461

40 x̄ 0.7180 0.7952 0.0772 0.5335 0.6352 0.1017
s 0.2342 0.1778 0.2468 0.2361

60 x̄ 0.6679 0.7342 0.0663 0.7379 0.7814 0.0434
s 0.2399 0.1911 0.1949 0.1620

TABLE III: Normalized entropy of Softmax statistics of the
supervised and semi-supervised models for data subsets with
different number of labeled observations nl. Lower values
indicate higher model confidence.

nl d.e. No SSDL SSDL
Correct Wrong Diff. Correct Wrong Diff.

10 x̄ 0.5994 0.5934 0.0060 0.8913 0.8580 0.0333
s 0.0730 0.0705 0.0715 0.0847

20 x̄ 0.6157 0.6118 0.0039 0.7488 0.7249 0.0238
s 0.0936 0.0916 0.1300 0.1230

40 x̄ 0.7282 0.6929 0.0353 0.8314 0.7819 0.0495
s 0.1312 0.1102 0.0918 0.0988

60 x̄ 0.7544 0.7270 0.0274 0.7308 0.7108 0.0200
s 0.1295 0.1162 0.1145 0.1004

TABLE IV: Max Softmax statistics of the supervised and semi-
supervised models for data subsets with different number of
labeled observations nl. Higher values indicate higher model
confidence.

confidence between correct and incorrect predictions in SSDL
models that were detected.

Quantitative metrics based in “uncertainty confusion matri-
ces” were implemented in order to further assess the perfor-
mance of the three uncertainty estimation methods evaluated.
In addition, a new metric was proposed and evaluated, the
UBAcc. The UBAcc takes into account the very imbalanced
nature of the number of correct and incorrect predictions, as
the number of correct predictions tend to be higher when the
model accuracy increases, as is the case with the SSDL model
over the supervised one. The UBAcc is generally lower than the
measured UAcc in such cases, and represents a more realistic
measurement under heavy imbalanced situations. Nevertheless,
the SSDL models got a higher UBAcc, with the exception of the
model trained with the highest number of labeled observations
(nl = 60), and also correlates well with the higher correct to
incorrect average uncertainties difference, described in Tables



Method Metric SSDL NO SSDL
x̄ s x̄ s

MCD

USen 0.3960 0.2993 0.9803 0.0525
USpe 0.7073 0.2703 0.0158 0.0456
UPre∗ 0.3715 0.1299 0.3514 0.0779
UAcc 0.6142 0.1301 0.3540 0.0803
UBAcc 0.5517 0.0622 0.4980 0.0063

Max
Softmax

USen 0.3974 0.2978 0.9729 0.0856
USpe 0.7204 0.2514 0.0357 0.0999
UPre∗ 0.3889 0.0826 0.3549 0.0791
UAcc 0.6227 0.1172 0.3625 0.0868
UBAcc 0.5589 0.0502 0.5043 0.0081

Normalized
Entropy of

Softmax

USen 0.5531 0.2543 0.9958 0.0132
USpe 0.5622 0.2922 0.0029 0.0092
UPre∗ 0.3762 0.0804 0.3520 0.0774
UAcc 0.5602 0.1411 0.3523 0.0776
UBAcc 0.5576 0.0336 0.4994 0.0020

(a) nl = 10

Method Metric SSDL NO SSDL
x̄ s x̄ s

MCD

USen∗ 0.7080 0.3043 0.9607 0.0866
USpe∗ 0.3091 0.3358 0.0552 0.1166
UPre 0.2858 0.0624 0.3442 0.0682
UAcc∗ 0.4445 0.1688 0.3563 0.0845
UBAcc∗ 0.5086 0.0517 0.5080 0.0189

Max
Softmax

USen∗ 0.7601 0.3335 0.9210 0.1714
USpe∗ 0.2908 0.3590 0.0884 0.1890
UPre 0.2943 0.0563 0.3431 0.0673
UAcc∗ 0.4454 0.1780 0.3596 0.0903
UBAcc∗ 0.5254 0.0462 0.5047 0.0110

Normalized
Entropy of

Softmax

USen∗ 0.8587 0.2311 0.9760 0.0610
USpe∗ 0.2005 0.3114 0.0325 0.0686
UPre 0.2941 0.0535 0.3415 0.0640
UAcc∗ 0.3984 0.1644 0.3486 0.0723
UBAcc∗ 0.5296 0.0440 0.5043 0.0179

(b) nl = 20

TABLE V: Uncertainty metrics for all estimation methods,
with nl = 10 and nl = 20, using a threshold of 0.3. Rows
marked with ∗ indicate no statistic relevance in differences
between results of SSDL and supervised models.

II, III and IV. The UBAcc can be used to measure in a more fair
manner models with a considerably higher number of correct
predictions over incorrect ones.

In general, SSDL models achieved statistically significant
improvements in these metrics over a small number of labeled
observations (nl = 10), suggesting more accurate model
confidence estimations over supervised models. Nevertheless,
fluctuating results over USen and USpe values for different
amount labeled observations indicate that models find it diffi-
cult to simultaneously assert ideal high and low confidence
levels for correct and wrong predictions respectively. Thus
resulting in either high or low overall model uncertainties.

As practical conclusions of our work, the results obtained
through the experiments performed suggest a sensitive uncer-
tainty estimation accuracy gain of using SSDL, as long as
there is also an important accuracy gain when using unlabeled
data. The model trained with the highest number of labeled
observations (nl = 60), showed neither an accuracy gain or
better uncertainty estimation.

In the context of mammogram analysis, the usage of
unlabeled data to feed an SSDL algorithm as MixMatch,
can be attractive when a very small labeled target dataset
is available (for instance a small dataset from the clinic or
hospital which plans to use the deep learning model for

Method Metric SSDL NO SSDL
x̄ s x̄ s

MCD

USen 0.6236 0.2925 0.8672 0.1387
USpe 0.5149 0.2984 0.2442 0.2342
UPre∗ 0.3103 0.0680 0.3477 0.0585
UAcc 0.5448 0.1535 0.4363 0.1303
UBAcc∗ 0.5692 0.0325 0.5557 0.0593

Max
Softmax

USen∗ 0.6050 0.3138 0.7766 0.2349
USpe 0.5115 0.3412 0.3192 0.2983
UPre∗ 0.3067 0.0818 0.3512 0.0738
UAcc∗ 0.5395 0.1814 0.4607 0.1492
UBAcc∗ 0.5582 0.0440 0.5479 0.0598

Normalized
Entropy of

Softmax

USen∗ 0.7550 0.2673 0.9057 0.1242
USpe 0.3460 0.3113 0.1846 0.1882
UPre∗ 0.2815 0.0585 0.3358 0.0501
UAcc∗ 0.4489 0.1691 0.4074 0.1056
UBAcc∗ 0.5505 0.0502 0.5451 0.0540

(a) nl = 40

Method Metric SSDL NO SSDL
x̄ s x̄ s

MCD

USen∗ 0.7136 0.2172 0.8245 0.1496
USpe∗ 0.3266 0.2488 0.2752 0.2396
UPre∗ 0.3156 0.1443 0.3120 0.0525
UAcc∗ 0.4757 0.1164 0.4273 0.1392
UBAcc∗ 0.5201 0.0469 0.5498 0.0634

Max
Softmax

USen∗ 0.7946 0.2031 0.6949 0.2631
USpe∗ 0.2739 0.2606 0.3799 0.2935
UPre∗ 0.3234 0.1335 0.3081 0.0399
UAcc∗ 0.4561 0.1370 0.4681 0.1446
UBAcc∗ 0.5343 0.0398 0.5374 0.0421

Normalized
Entropy of

Softmax

USen∗ 0.9406 0.1296 0.8738 0.1282
USpe∗ 0.1060 0.1802 0.2191 0.2285
UPre∗ 0.3104 0.1329 0.3076 0.0487
UAcc∗ 0.3679 0.1428 0.4001 0.1361
UBAcc∗ 0.5233 0.0318 0.5464 0.0603

(b) nl = 60

TABLE VI: Uncertainty metrics for all estimation methods,
with nl = 40 and nl = 60, using a threshold of 0.3. Rows
marked with ∗ indicate no statistic relevance in differences
between results of SSDL and supervised models.

mammogram classification). Including a different and larger
dataset can be done through transfer learning or including it
as part of the labeled dataset. The former might be a better
option, as a possible distribution mismatch between the labeled
and the unlabeled dataset might lead to an accuracy decrease
for the SSDL model, as suggested in [35]. This leads us
to our future work, where the interaction between transfer-
learning, SSDL with distribution mismatch and uncertainty
estimation accuracy for mammogram analysis can be explored.
Also, as future work, we plan to analyze the impact of data
imbalance for mammogram classification using SSDL for both
model accuracy and uncertainty estimation. In our tests, data
imbalance revealed to have an important influence in the
accuracy of the SSDL model, as suggested in [36]. Also,
the impact of a distribution mismatch between the labeled
and unlabeled dataset in the uncertainty estimations can be
explored, as this is a frequent challenge in real world medical
imaging analysis.
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cation on Kabré supercomputer at the Costa Rica National
High Technology Center. It was also partially supported by
the Multidisciplinary Research Program eScience of the In-



stituto Tecnológico de Costa Rica. This work is also partially
supported by the Ministry of Economy and Competitiveness of
Spain under grant PPIT.UMA.B1.2017. It is also partially sup-
ported by the Ministry of Science, Innovation and Universities
of Spain under grant RTI2018-094645-B-I00. Additionally, it
is also partially supported by the Autonomous Government
of Andalusia (Spain) under grant UMA18-FEDERJA-084. All
of them include funds from the European Regional Devel-
opment Fund (ERDF). The authors thankfully acknowledge
the computer resources, technical expertise and assistance
provided by the SCBI (Supercomputing and Bioinformatics)
center of the University of Málaga. The authors also thankfully
acknowledge the grant of the Universidad de Málaga and the
Instituto de Investigación Biomédica de Málaga (IBIMA).

REFERENCES

[1] C. Wild, E. Weiderpass, and B. Stewart, “World cancer report: cancer
research for cancer prevention,” Lyon: International Agency for Research
on Cancer, 2020.

[2] American Cancer Society, “Breast cancer facts & figures 2019-2020,”
American Cancer Society, Inc., pp. 1–44, 2019.

[3] A. Hamidinekoo, E. Denton, A. Rampun, K. Honnor, and R. Zwiggelaar,
“Deep learning in mammography and breast histology, an overview and
future trends,” Medical image analysis, vol. 47, pp. 45–67, 2018.

[4] S. Calderon-Ramirez, R. Giri, S. Yang, A. Moemeni, M. Umana,
D. Elizondo, J. Torrents-Barrena, and M. A. Molina-Cabello, “Dealing
with scarce labelled data: Semi-supervised deep learning with mix match
for covid-19 detection using chest x-ray images,” IEEE Press, 2020.

[5] J. E. Van Engelen and H. H. Hoos, “A survey on semi-supervised
learning,” Machine Learning, vol. 109, no. 2, pp. 373–440, 2020.

[6] A. Taleb, W. Loetzsch, N. Danz, J. Severin, T. Gaertner, B. Bergner,
and C. Lippert, “3d self-supervised methods for medical imaging,” arXiv
preprint arXiv:2006.03829, 2020.

[7] R. Alizadehsani, M. Roshanzamir, S. Hussain, A. Khosravi, A. Koohes-
tani, M. H. Zangooei, M. Abdar, A. Beykikhoshk, A. Shoeibi, A. Zare,
et al., “Handling of uncertainty in medical data using machine learning
and probability theory techniques: A review of 30 years (1991-2020),”
arXiv preprint arXiv:2008.10114, 2020.

[8] C. Leibig, V. Allken, M. S. Ayhan, P. Berens, and S. Wahl, “Lever-
aging uncertainty information from deep neural networks for disease
detection,” Scientific reports, vol. 7, no. 1, pp. 1–14, 2017.
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