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ABSTRACT 

Vehicle automation allows drivers to disengage from driving causing a potential decline in 

their alertness. One of the major challenges of highly automated vehicles is to ensure a timely 

(with respect to safety and situation awareness) takeover in such conditions. For this purpose, 

the current study investigated the role of an in-vehicle digital voice-assistant (VA) in 

conditionally automated vehicles, offering spoken discourse relating specifically to contextual 

factors, such as the traffic situation and road environment. The study involved twenty-four 

participants, each taking two drives (counterbalanced): with VA and without VA, in a driving 

simulator. Participants were required to takeover vehicle control following the issuance of a 

takeover request (TOR) near the end of each drive. A parametric duration model was adopted 

to find the key factors determining takeover time (TOT). Paired comparisons showed higher 

alertness and higher active workload (mean NASA-TLX rating) during automation when 

accompanied by the VA. Paired t-test comparison of gaze behavior prior to takeover showed 

significantly higher instances of checking traffic signal, roadside objects, and the roadway 

during the drive with VA, indicating higher situation awareness. The parametric model 

indicated that the VA increased the likelihood of making a timely takeover by 39%. There was 

also some evidence suggesting that male drivers are likely to resume control 1.21 times earlier 

than female drivers. The study findings highlight the benefits of adopting a digital voice 

assistant to keep the drivers alert and aware about the recent traffic environment in partially 

automated vehicles.   
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1 INTRODUCTION 

Recent advances in vehicle automation allow drivers to disengage from driving and become a 

passive monitor of the system, thereby bringing the potential risks of passive fatigue and 

associated road safety concerns to the forefront of current research (Matthews et al., 2018). The 
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shift in driver responsibility from an active operator to a passive observer in an automated 

vehicle (AV) leads to the loss of active task engagement, thereby compromising drivers’ 

alertness required to intervene in critical moments (Körber et al., 2015; Matthews et al., 2018; 

Neubauer et al., 2012; Sheridan and Parasuraman, 2002; Vogelpohl et al., 2018). Such a decline 

in alertness, caused by ‘task-disengagement’ or ‘low workload’ conditions during automated 

driving, induces a passive fatigue state, resulting in lack of task motivation and tiredeness 

(Matthews et al., 2018, 2012; May and Baldwin, 2009; Saxby et al., 2013).  

As a consequence of passive fatigue, the drivers may lose awareness of the current traffic 

situation (Samuel et al., 2016). This is specifically a problem in partially autonomous vehicles 

(level 2 or level 3 automation according to SAE International, 2018), in which the system will 

issue a takeover request (TOR) to the driver in situations that fall outside of its capability. In 

addition, drivers of level 4 automated vehicles may actively choose to take over control at some 

point (SAE International, 2018). An additional concern is that drivers in level 3 and level 4 

automated cars are able to engage in secondary non-driving related tasks (NDRT) (SAE 

International 2018), and these may further disengage or fatigue the driver. Ensuring a safe and 

timely takeover of vehicle control is therefore one of the major challenges for highly automated 

driving. Consequently, it is suggested that some form of system feedback is required during 

periods of automation, to maintain driver alertness with appropriate situation awareness, prior 

to taking over vehicle controls (Wu et al., 2019).   

1.1 Automation and alertness 

Automation in vehicles can lead to prolonged periods of driver inactivity resulting in significant 

loss of alertness, with some studies recording a significant increase in symptoms of fatigue 

after only 15-20 minutes of automated driving in an AV (Gonçalves et al., 2016; Neubauer et 

al., 2012; Vogelpohl et al., 2018; Wu et al., 2019). Gonçalves et al. (2016) noticed that after 

only 15 minutes of automated driving there was significant increase in the degree of sleepiness 

among the majority of drivers, indicated using the Stanford Sleepiness Scale (SSS; Hoddes et 

al., 1973). Neubauer et al. (2012) found significant correlations between the fatigue ratings and 

lower task engagement during automation– indicated by the Dundee Stress State Questionnaire 

(DSSQ; Matthews et al. 2002). Saxby et al. (2013) also observed that automation led to lower 

workload ratings on NASA-TLX scale (Hart and Staveland, 1988; Matthews et al., 2013) 

resulting in passive fatigue. Wu et al. (2019) reported a significant increase in eye blink 

durations and Karolinska Sleepiness Scale ratings, (KSS; Åkerstedt and Gillberg, 1990) 

indicating fatiguing effects after 30-minutes of automated driving, and these effects were 

irrespective of the driver’s age. Vogelpohl et al. (2018) noticed same level of fatigue among 

drivers after 20 minutes of monotonous automated driving, as compared to 40-50 minutes of 

manual driving. Collectively, these studies suggest that a period of automated driving lasting 

20 minutes or longer is sufficient to significantly lower task engagement and cause a significant 

decline in driver alertness. 

1.2 Takeover time  

Partially automated vehicles have a specific domain of automated operations, beyond which 

they require human intervention. This is conveyed through pre-defined alerts, referred to as a 

takeover request (TOR) made to the driver. The takeover time (TOT) is the response time of 
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drivers to the TOR. It includes both the time it takes a driver to make an assessment of the 

traffic situation, i.e. regain their situation awareness (SA) (Vlakveld et al., 2018), and 

demonstrate their readiness to drive by re-engaging with the driving controls (Gold et al., 2018, 

2013). Many studies have used the ability to respond to emergency situations or hazard 

perception as a good proxy measure of situation awareness during the takeover process (Gold 

et al., 2013; Samuel et al., 2016; Zeeb et al., 2015). In this context, the general approach is to 

determine the takeover time and its quality by measuring the driver’s behavior in response to a 

hazard scenario occurring immediately after takeover, for example, by decelerating or changing 

lanes to avoid a braking vehicle ahead (Gold et al., 2013; Neubauer et al., 2014; Samuel et al., 

2016; Wu et al., 2019; Zeeb et al., 2015). The majority of these simulator studies found that 

drivers “comfortably” completed the process of taking over controls post TOR in less than 10s  

(Gold et al., 2013; Gonçalves et al., 2016; Mcdonald and Alambeigi, 2019; Vlakveld et al., 

2018; Vogelpohl et al., 2018; Wan and Wu, 2018). However, in the case of a potential collision 

event, the response is often reflexive, typified by sudden, emergency braking  (Gold et al., 

2018; Zeeb et al., 2015). This does not necessarily indicate that drivers are fully prepared to 

control their vehicle and engage with other road users. To more accurately measure the time to 

resume manual driving when a TOR is issued, it would therefore seem prudent to avoid 

situations inviting a reflexive response, and instead select a more authentic or routine driving 

scenario. This approach was taken by Merat et al. (2014), who reported that an average time to 

respond to resume steering and brakes in response to TOR was between 10 and 15 seconds, 

where the drivers responded at their ease in the absence of any hazard detection event at TOR. 

A brief review of relevant studies is presented in Table 1. 

1.2.1 Factors influencing takeover time 

Several studies have found different factors influencing takeover time after highly automated 

driving (Gold et al., 2013; Louw et al., 2017; Merat et al., 2014; Zeeb et al., 2016, 2015). In 

general, the response time of drivers is influenced by various factors. For instance, older drivers 

are known to respond slower than younger drivers (e.g. Scullin and Bliwise 2015). However, 

a quantitative review by Zhang et al. (2019) revealed no significant effect of age on takeover 

time and concluded that the probability of compensatory effects of driving experience 

alleviated cognitive decline due to age (Shinar et al., 2001; Smith et al., 2009). In general, 

previous studies indicate a difference in reaction time between males and females (Lings, 1991; 

Mehmood and Easa, 2009; Warshawsky-livne and Shinar, 2002).  Gomez et al. (2019) found 

that females tended to exhibit more exploratory visual behavior, including longer fixations and 

scan path lengths during a task, and this could potentially lengthen the takeover time. 

Nevertheless, Zeeb et al. (2015) studied the process of takeover using driver’s visual behavior 

and found that age, gender, mileage and experience with driver assistance systems did not 

influence visual behavior. Even so, these demographic factors are often reported to influence 

the response time of fatigued drivers (Dozza, 2013; Mahajan and Velaga, 2020; Smith et al., 

2009), highlighting the need to consider these in the context of taking-over control of an 

automated vehicle.  
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1.2.2 Visual behavior as an indicator of situation awareness 

Automation causes mental underload situations which can potentially result in passive fatigue 

and signs of sleepiness, and is therefore likely to reduce the visual attention of drivers 

(Vogelpohl et al., 2018; Zeeb et al., 2015). It therefore follows that responding to a takeover 

request in an AV may require additional time as drivers are required to regain self-alertness 

before building their situation awareness (SA) and responding to the TOR (Vogelpohl et al., 

2018; Zeeb et al., 2015). Visual, or gaze behavior can be a useful method to explore the process 

of allocating attention (Young and Stanton, 2002) (also, see Table 1). Factors such as the 

duration and frequency of glances spent checking the speedometer, the road ahead, and side 

and rearview mirrors, are associated with building situation awareness (Gold et al., 2013; 

Samuel et al., 2016; Vlakveld et al., 2018; Wright et al. 2016). Furthermore, actions such as 

placing hands on steering, placing feet on the pedals and looking at road ahead are indicative 

of motor readiness or readiness to drive (Gold et al., 2018, 2013; Zeeb et al., 2015). Gold et al. 

(2013), Neubauer, Matthews, & Saxby (2014) and Merat et al. (2014) reported driver’s 

involvement in checking rear and side mirrors to gain situational awareness in response to a 

TOR (the TOR was followed by a collision event in these studies). Vogelpohl et al. (2018) 

reported that the first glance to speedometer (contained in the dashboard) was reported at 14 to 

15 seconds after the TOR under passive fatigue conditions. Gonçalves, Happee and Bengler 

(2016) provided a TOR with a limiting time budget of 5 seconds (triggered by a SSS sleepiness 

rating of 5 or more), although eye-based sleep indicators or frequency of checking mirrors did 

not provide any evidence of drowsiness due to automation. Collectively, this highlights the 

need to develop systems to keep the drivers engaged and updated with driving and the traffic 

environment specifically during periods of automation, thereby improving the takeover 

response. 

1.2.3 Modelling takeover time 

The literature suggests various covariates which affect the takeover time and performance (safe 

or unsafe) (also, see Table 1). To determine the contribution of different factors (driver 

demographics and specifically, gaze behavior) and their impact on the time to motor readiness 

in a takeover situation, it would be beneficial to model the takeover time. Zeeb et al. (2015) 

adopted an integrated model approach to emphasize that primarily cognitive processes such as 

gaze behaviour determine the takeover time. However, the study findings were limited to an 

emergency scenario presented at takeover and did not accommodate for the effect of other 

covariates such as gender, driving experience etc. as discussed previously. Existing studies in 

transportation research have widely used a parametric duration modelling approach to model 

the response time of drivers in emergency situations (Choudhary and Velaga, 2017a; Haque 

and Washington, 2014; Mahajan and Velaga, 2020; Yadav and Velaga, 2019). This is used to 

determine the conditional probability of the elapsed time until the duration of an event of 

interest, provided the event does not end in this duration (Washington et al., 2003). The 

advantage of using such a modelling approach is that it accounts for the effect of various 

covariates on the response time. 
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Table 1 Literature review of takeover time and passive fatigue and related measures. 

Citation Variables studied 
Sample 

size 
Instrument used Measures 

Analysis 

technique 
Findings 

(Gold et al., 

2013) 

Warning time for TOR (5s 

versus 7s) 

Hazard scenario  

37 (AV) 

and 13 

(manual) 

Gaze detection in 

TOR scenario 

• RT: Acceleration, brakes, 

Steering  

• Checking mirrors (glances) 

t-test 

comparison 

With shorter TOR-time, the subjects react faster with 

excessive use of brakes and reduced mirror checks etc. 

(Wu et al., 2019) 

Emergency event after 6s of 

TOR to test RT  

(Verbal TOR) 

 

115 

EOG 

KSS 

Eye blink duration 

 

• Minimum time to control 

either pedals or steering 

t-test 

ANCOVA  

The signs of fatigue reported after 4-6 min of automated drive 

and 15 minutes of automated driving indicated by KSS and 

avg. eyeblink duration. Emergency event raised alertness. 

(Neubauer et al., 

2012) 

• Hazard scenario 

• Optional automation  

93(AV) 

and 91 

(NA) 

DSI, DSSQ and 

NASA-task load 

index  

• SDLP (at 30s for 2 min) 

• RT to avoid collision: brakes, 

Steering 

t-test 

ANOVA 

• Based on analysis of DSSQ, drivers experienced fatigue and 

stress after 10 minutes of drive.  

• Optional automation did not improve driver’s alertness or 

performance. 

(Merat et al., 

2014) 
Fixed transfer versus 

Variable transfer  
37 

Eye tracking and 

head movement 

• SDLP  

• Frequency of SRR ≥1⁰ 

• Gaze: percentage road center 

PRC: 

ANOVA 

Values in 1st min of manual control, SDLP and gaze focus 

showed a lag of 10-15s while steering control lagged 35-40s 

in resuming control after automation stopped. So the TOR 

shall be >40s prior to control transfer. 

(Gonçalves et 

al., 2016) 

Between-subjects study: 

Reference group (G1) Vs 

drowsy group, G2 

(Drowsiness (SSS>5) 

triggered TOR) 

16 (G1) 

+15 (G2) 

Eye tracking 

Facelab 5.1  

• SWA and acceleration 

• Mirror checking 

ANOVA 

Mean 15 minutes of automated drive can cause drowsiness 

among drivers. 

(Vogelpohl et 

al., 2018) 

• Sleep deprived and time 

of day 

• Long drive and monotony 

60 

(15 in 4 

groups)  

Facial, eyebased 

indicators reported 

by observer 

• KSS post drive 

• RT to disengage automation, 

hazard (braking, steering or 

overtaking) 

• Situation awareness:  

ANOVA 
• AV caused medium to high level fatigue among 50% drivers 

after 20 min while it took 40-50min in non-AV to reach 

comparable fatigue level in same ratio of drivers. 

• Fatigue increased the RT (5-8s) to TOR in AVs 

(Vlakveld et al., 

2018) 

Comparison of TOT (4s vs 

6s) 

21(4s) 

+ 

22(6s) 

Eye-tracking 

• Glance frequency at latent 

hazards (SAR) 

• Time to disengage-auto 

ANOVA 
Group with longer TOT (6s) gazed at more number of latent 

hazards than 4s group. 

(Samuel et al., 

2016) 

Latent hazard scenario at 

TOR 
 Eye tracking • RT 

logistic 

regression 

Longer TOT (8s and 12s) improved latent hazard perception 

of drivers comparable to manual driving condition. 

(Zeeb et al., 

2015) 
 

Hazard scenario 

(Verbal message and Visual 

icon) 

 

N= 89 

(54M, 35 

F) 

Eye-tracking 

• Frequency and duration of 

glances  

• AOI analysis 

• RT to hazard 

k-means 

clustering 

ANOVA 

• Accidents were more among drivers with more proportion 

of time spent off-road. 

• Mileage, experience, age or use of adaptive cruise control 

and lane keeping assist did not affect gaze behavior at TOR. 
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1.3 Conversation to counter passive fatigue 

Various studies have claimed the alerting effects of engaging in an active conversation for the 

drivers while driving (Large et al., 2018; Neubauer et al., 2014; Young, 2013). However, very 

few studies have been conducted to extend such benefits (i.e. of engaging in conversation) to 

mitigate the effects of passive fatigue during automated driving, and in particular, the impact 

on the time to gain motor readiness. For instance, Saxby, Matthews, & Neubauer (2017) 

engaged drivers in short 30 second telephone conversations with the experimenter to share their 

‘experience of a traffic collision’ with the aim of keeping drivers alert. However, such content 

evidently distressed the drivers and negatively influenced their post takeover driving 

performance. Thus, they suggested that a longer conversation on more suitable topics might 

prove more effective in maintaining driver alertness during automated driving. In addition, it 

has been found that intermittent conversation tends to increase drivers’ workload and alertness 

to an appropriate level during monotonous automated driving conditions, compared to 

continuous talking which may distract the drivers (Atchley et al., 2013). The majority of these 

studies used cell phone conversations. However, there is an inherent risk of distraction and 

performance deficits caused by cell phone conversations (Choudhary and Velaga, 2017b, 

2017c, 2017a). Alternatively, a few studies have proposed the use of a digital voice assistant 

(VA) or a natural language interface conversing with the driver throughout the journey 

(Antrobus et al., 2018; Large et al., 2018, 2017, 2016). These studies found that short 

intermittent conversations with a digital VA improved driver alertness and avoided potential 

driving performance decrements due to low alertness (Large et al., 2018). Large et al. (2016) 

showed that normal conversations about calendar reminders, news, radio or music etc. with the 

VA were less cognitively demanding than a cell phone conversation but were equally effective 

in maintaining the alertness of drivers during fatigued manual driving conditions. Drews, 

Pasupathi and Strayer, (2008) found that a naturalistic conversation between the driver and 

their passengers about the surrounding traffic mitigated the distracting effect of conversation. 

In such a case, employing a natural language interface – conceptualised as a voice assistant, 

could replace the passenger, and provide timely feedback to the driver about recent or 

upcoming traffic situations during automated driving. Such information may help the driver to 

effectively maintain driver alertness throughout the journey and may additionally reduce the 

takeover time as drivers will already be aware of relevant aspects of the driving situation. 

1.4 Study motivation and hypothesis 

Some studies have highlighted the need of a system in future vehicles that can provide 

intermittent feedback about the traffic situation around the drivers to help them resume control 

(Drews et al., 2008; Merat et al., 2014; Vlakveld et al., 2018). Using this approach, this study 

aimed to examine how a digital voice assistant can help in mitigating passive fatigue induced 

by automation and in improving situation awareness at takeover. In addition to providing 

traffic-related information, the nature and content of the conversation were also inspired by 

previous studies using a natural language interface (Antrobus et al., 2018; Large et al., 2018, 

2017, 2016). In this study, however, it is hypothesized that intermittent, traffic-related 

conversation with a voice assistant (VA) will reduce delays in takeover time caused by passive 

fatigue and disengagement from driving during highly automated driving. Nevertheless, 
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providing traffic narrative at the point of takeover is likely to distract the driver and could 

influence their driving performance and should therefore be avoided. According to the previous 

studies already discussed, gaze behavior, such as frequency or duration of checking mirrors 

and the road ahead, are indicators of building/updating awareness of the surrounding traffic 

and driving situation. Therefore, we hypothesize that the traffic status updates provided by VA 

prior to the TOR, will help redirect drivers’ attention to the road, traffic or traffic signages, as 

per the messages, which can be confirmed through their gaze behavior. Thirdly, there are other 

factors influencing the takeover process, including driver demographics. The previous studies 

had investigated the influence of each of these factors (age, experience, gender, involvement 

in secondary tasks, etc.) in isolation. However, in reality, such factors act simultaneously to 

influence the takeover process. Further, the effectiveness of a voice-based system – such as 

that proposed here, also depends on the ease and interest of drivers to use such technology. 

Therefore, this study focuses on modelling the takeover time to quantify the relative 

contribution of all such covariates, thereby evaluating the effectiveness of a VA in assisting 

takeover after automated driving.  

1.4.1 The present study 

Based on these, the study aims to address the following questions:  

1) Can engaging in intermittent conversations with a digital voice assistant avoid (or 

mitigate) the loss of alertness during automation? 

2) Can verbal traffic cues redirect drivers’ visual attention and help in building their 

situational awareness prior to takeover? 

3) How does the presence of VA (directly or indirectly in terms of cognitive processes 

such as gaze behavior, driver age, gender or accustomed to use of other assistants), 

influence the time to gain motor readiness when a TOR is prompted by the system? 

The methodology adopted to achieve the desired aims in this study is discussed in the following 

section. 

2 METHOD 

The study was conducted using a high-fidelity, fixed-base driving simulator at the University 

of Nottingham Human Factors laboratory (Figure 1a). This driving simulator comprises an 

Audi TT car located within 270 degrees field of view provided by a curved screen and overhead 

HD projectors. Three inobtrusive cameras were installed at different positions inside the car to 

capture drivers’ hand and feet movements as well as any physical signs of sleepiness during 

the experiments (yawning, extended blinks etc.). This simulator has been used in various 

previous relevant studies (Antrobus et al., 2018; Large et al., 2018, 2017, 2016), and is capable 

of providing an experience of driving level 3 automated vehicle.  

2.1 Participants 

Participants were invited to take part using flyers displayed around the University campus. 

They were required to be active and experienced drivers, without requiring any corrective eye-

glasses to drive (to ease collection of eye-tracking data), and shall not suffer from any sleep-
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related disorder or excessive daytime sleepiness. Participants’ suitability was evaluated using 

a pre-study questionnaire. In line with similar previous studies, excessive daytime sleepiness 

was determined using the Epworth Sleepiness Scale (ESS; M.W. Johns 1990) i.e. ESS score 

≥16  (Philip et al., 2002; Miletin and Hanly, 2003; Lomelí et al., 2008). None of the volunteers 

reported any sleep-related disorder or excessive daytime sleepiness. However, one volunteer 

was excluded for not having a valid driving license and two volunteers were excluded as they 

wore correcting glasses. In addition, participants were instructed to refrain from consuming 

caffeine, mints or alcohol for a few hours immediately prior to the study, and to take adequate 

sleep the day before the study – participants were also reminded of the latter requirements 24 

hours before they were due to attend, in line with previous studies on driver fatigue (Centofanti 

et al., 2017; Hilditch et al., 2017; Otmani et al., 2005; Smith et al., 2009; Zhang et al., 2016).  

Thirty-one eligible participants volunteered for the study. Unfortunately, three participants 

failed to arrive for the experiment and four stopped partway through due to suspected simulator 

sickness. The data from the remaining twenty-four participants (10 females and 14 males) is 

included in the analysis. Participants were aged between 22-60 years (mean = 30.13, SD = 

8.39) and driving experience ranged from 2 to 33 years (mean= 10.5, SD = 6.89). All the drivers 

were thanked for their participation with a £20 gift voucher. The study protocol was approved 

by the Faculty of Engineering Research Ethics Committee, University of Nottingham, and all 

participants provided written informed consent before taking part. To encourage more natural 

behaviour during automation, participants were not pre-informed about the actual/precise aim, 

i.e., to study ‘the passive fatigue due to automation’. As per the approved study proposal, the 

actual aim of the study was only revealed at the end of the study. Therefore, each participant 

also signed a written consent form at the end of the study to confirm their understanding and 

receipt of compensation voucher. 

2.2 Experimental Set-up 

The study involved a within-subject design with two driving sessions – one with and one 

without the voice assistant. A bespoke scenario was created using STISIM Drive 3 software. 

The route represented a transition from an initial two miles of two-lane urban road to a standard 

UK dual carriageway (Figure 1b) and back to a similar urban scene. The speed limit was posted 

between 30-40mph in the urban scene and 50-70mph in the dual carriageway, in line with 

normal UK road conventions. The same driving scenario was used in both the sessions with 

minor changes in the environment such as different buildings, types of cars etc. The roadside 

environment was intentionally sparse, with limited additional traffic, to minimise auditory and 

visual stimuli and increase monotony. Each drive lasted approximately 30 minutes in the 

driving simulator with approximately 25 minutes of automated drive – considered to be 

sufficient to induce passive fatigue based on similar research settings (Wu et al., 2019; 

Neubauer et al., 2012; Gonçalves, Happee and Bengler, 2016 and Vogelpohl et al., 2018).  
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a.  

b.  
 

Figure 1 a. Driving Simulator set up and b. general design view of dual carriageway 

All participants drove in both the driving conditions (with and without VA), which were 

counterbalanced to avoid order effects on takeover performance (Sarkies et al., 2019). In 

addition, the surroundings including buildings, types of cars etc. were changed in the two drives 

particularly when the drivers entered the two-lane urban road again prior to takeover event to 

avoid prediction of the TOR at any location based on identifiable surroundings or landmarks. 

A general layout of the study protocol and experiment design in each drive is illustrated in 

Figure 2. 

2.2.1 Drive with Voice Assistant (VA) 

During one of the two drives (which were counterbalanced), drivers were provided with the 

VA, which instigated and enabled natural language interactions. The aim was to keep the driver 

engaged during the drive and thereby avoid fatigue. VA was designed to provide useful 

information to the drivers, such as surrounding traffic feedback, route navigation, event 

reminders or offering to play some music or radio during the drive (refer Table 2). The VA 

introduced itself and its capabilities to the driver prior to the start of the drive. Drivers could 

either respond to or initiate discussion with VA using natural, conversational language. To 

achieve this, a comprehensive set of pre-recorded spoken messages were embedded in the 

STISIM scenario, and these were played as required by the experimenter during the 

experiment. Drivers could also initiate a conversation with VA. In situations where drivers 

initiated conversation concerning topics for which no specific responses had been recorded, for 

example, requesting a piece of music or information about a particular topic, VA responded 

with an error message, such as “sorry! no network connectivity at the moment to perform this 

task”, “sorry! This function is not available currently”. In practice, these messages were rarely 

used. 

Observer’s set-up 

Driving simulator 
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a. Experiment protocol for the study involving two drives with each participant  

  

b. Representation of a general layout of each drive (with or without VA) conducted on the driving 

simulator 

Figure 2 A schematic representation of the study protocol including two drives 

The first conversation topic was played after 5-minutes from the start of the drive, based on the 

expected onset of fatigue symptoms after 5 to 7 minutes of automation (Wu et al., 2019). Each 

participant received the same opening gambits. However, the follow up statements differed 

slightly based on each individual’s response. VA began a new conversational exchange or topic 

at intervals of no more than 3 minutes to avoid prolonged periods absent of speech and to keep 

the drivers alert i.e. either a question or new information was conveyed to the drivers at a 

maximum interval of 180s. However, since the conversations were inspired from traffic and 

environment and the drivers could also initiate the conversation to their willingness, therefore, 

there could be a few conversations at intervals shorter than 3 minutes. The duration of most of 

these conversational exchanges lied between 30 and 60 seconds, as recommended by Saxby et 

al. (2017).  

The conversation was primarily designed to provide traffic and road-environment related 

information (examples presented in Table 2), such as upcoming changes to speed-limits, but 

also included general conversation, as used in previous, similar studies (e.g. Large et al., 2018). 

The general conversations (refer to category 1 and 2 in Table 2) were not included at any fixed 

locations. For example, the entertainment related conversation was sometimes initiated by the 

drivers and VA responded. However, the traffic/road environment related conversations were 

always triggered by the experimenter based on nearby traffic signages or information sign 

boards. For example changing speed limits near (i.e. either just before or after the posted sign) 

a speed limit board, route information (refer Column 3b, Table 2) was played near a route 

information board or sometimes in response to driver’s query ‘where are we currently?’, fatigue 

related conversation (refer column 3a, Table 2) were triggered by the experimenter near to a 
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variable message sign (VMS) displaying the warning: ‘Tiredness Kills’, and the follow up 

conversation regarding facilities at service station was conveyed prior to the ‘service station’ 

sign board. In a random section of the roadway with no/low traffic, a vehicle in the adjacent 

lane slowly shifted to the driver’s lane, to which the automated vehicle maintained a safe gap. 

However, the VA asked to confirm that the driver was comfortable with the same choice of 

speed (refer conversation 3c, Table 2). These conversational exchanges were intentionally 

placed near signages, so that the driver was able to confirm the information conveyed by VA 

– with the aim of helping the driver build trust in the device. Also, the driver’s response to any 

question would determine the extent of follow up questions and length of conversation. For 

example, if the driver responded ‘No’ to playing music, the conversation would shift to offer 

to play a talk-based radio station instead and may subsequently end sooner. As the 

conversations were pre-recorded messages, each conversation was therefore limited to last 

between 30 to 60 seconds depending on the driver’s response. There was no conversation 

initiated during the final minute of automation, i.e. 60 seconds prior to the TOR, although VA 

had already informed drivers about the upcoming change in the posted speed-limit and the 

approaching pedestrian crosswalk. 

Table 2 Examples of VA’s opening gambits 

Category Statements 

1. Event reminders 

(calendar) 

“I have set a reminder you are currently ahead of schedule. I've also looked at your 

to-do list and messages. There are currently no messages left for you” 

2. Entertainment “Would you like me to play some music or radio for you? …Would you like me to play 

anything in particular? ... I can save your preferences; would you like to save it in 

your favourites? ...Okay! Saving in favourites. Playing music. [Music playing]” 

3. Traffic/ Road 

(a) Fatigue/Rest “You have been driving for a long time today, Would you like to stop for refreshments 

or rest? …There is a service station at the next right exit approaching in 10 

minutes. …There are refreshments and lodging facilities also nearby, would you like 

me to make any reservations?” 

(b) General journey “We are currently headed towards ‘A5250’. The posted speed limit is ‘60’ miles per 

hour. Weather expected is clear and sunny in next 2 hours.” 

(c) Road-traffic 

feedback 

“You are too close to the leading car. Are you comfortable with the speed or Would 

you like to slow down?”… “Reducing speed. You are now driving at ‘55’ miles per 

hour.”… “There is a pedestrian crosswalk ahead. Please be engaged in the drive or 

would you like to slow down?” 

 

2.2.2 Takeover event 

Prior to the test drives, participants undertook a practice drive so that they were familiar with 

the transfer of control from ‘manual’ to ‘automation’, and vice-versa. The instruction to transfer 

control was conveyed with a voice message followed by three consecutive beeps indicating the 

precise moment of the transfer of control, thereby avoiding any visual distraction. Drivers were 

presented with multiple instances of takeovers during the practice drive to gain some 

experience of switching controls in the automated vehicle. During the test drives,  participants 

were pre-informed that they may be required to resume manual control at a certain point, but 

otherwise, should relax (Wan and Wu, 2018). After completing 1-minute into the drive, 
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automation was engaged at a fixed point at 0.75 miles (1.2km) in each test scenario. Towards 

the end of the drive – after approximately 21.6 miles (35km) – participants received a takeover 

request (TOR). In the real world, a partially automated vehicle is likely to present a takeover 

request in sudden or unanticipated situations (though not necessarily a “hazard” situation).  

Therefore, to emphasize the need of a timely response to the prompted TOR without imposing 

a critical hazard, a construction zone was created on the roadside (without significantly 

intervening with the traffic flow i.e. no lane change was required). This occurred at about 61m 

(200ft) from the onset of TOR and comprised a gravel pile spilling near the left road edge 

(Figure 3). A distance of 61m (200ft) was selected through various pre-trials to allow the 

drivers ample time to respond to TOR. Also, it was sufficiently larger than the required braking 

distance under normal conditions (thereby avoiding the need for emergency braking) when 

approaching with a speed of 40mph. The construction zone was followed by two consecutive 

traffic signs displaying changing speed limit at approximately 30m (100ft), a pedestrian 

crossing sign at 61m (200ft), and a red-light traffic signal with a pedestrian cross-walk was 

presented at about 92m (300ft) from the construction zone, i.e. 152 m (approximately 500ft) 

from the point of TOR. The drivers were naturally expected to resume control and apply their 

brakes in response to the signal. For a device like VA to present traffic feedback and 

information, it must be a part of an integrated, intelligent transportation system, which would 

also include maps and navigation abilities. Therefore, during the drive with VA, drivers 

received a prior notification a few minutes before the TOR, that they were approaching a 

pedestrian cross-walk, whereas the construction zone at the roadside was presented as a 

sudden/unanticipated event to present a more realistic need to takeover control. 

With the intention to measure driver situation awareness, visual allocation of driver attention 

to various components in one scene were analysed near the takeover. Therefore, the traffic 

signs, signal, construction zone (roadside objects) etc. were created as components of the 

driving scene at the takeover event. The required data to understand the takeover process 

(situation awareness and alertness) were collected at the takeover event. Manual driving 

behaviour and performance following the traffic signal was not analysed as it was assumed that 

drivers had regained alertness by the fact that they had successfully stopped at the traffic signal. 

 

Figure 3 Scenario at takeover request (design view in STISIM at 100ft or 30.5m after onset of TOR)  

Construction 

zone 

Signage 
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2.3 Measures 

A range of subjective and objective measures were obtained to assess the changes in driver 

alertness due to automation and their consequent performance in response to the TOR in each 

drive.  

2.3.1 Visual characteristics 

SMI ‘natural gaze’ eye-tracking glasses were used to collect visual behavioral data at a 

sampling rate of 30 Hz. The visual characteristics or eye-tracking data was collected as: 1) 

objective measures of alertness such as pupil diameter, eye blink frequency and eye-blink 

durations and 2) glance behavior as a measure of situation awareness, as employed in other 

similar studies (Gold et al., 2013; Gonçalves et al., 2016; Jamson et al., 2013; Körber et al., 

2015; Large et al., 2018; Lu et al., 2017; Merat et al., 2014; Vlakveld et al., 2018). An increase 

in the frequency of eye blinks or pupil diameter are common indicators of fatigue or drowsiness 

while driving (Gonçalves et al., 2016; Large et al., 2018; Merat et al., 2014; Wu et al., 2019). 

Thus, the influence of VA on driver alertness during automation could be determined by 

comparing these measures for the two drives. 

In order to determine drivers’ awareness of the road environment (i.e. their ‘situation 

awareness’), immediately prior to the TOR, glance duration and frequency were calculated for 

defined areas of interest (AOIs) using semantic gaze mapping (with BeGaze 3.7 software); a 

glance is defined as a fixation lasting for 200ms or over (Kapitaniak et al., 2015). The following 

AOIs were selected which were expected to be influential in determining the situation 

awareness of drivers: external mirrors (side-view mirrors), rear mirror, road ahead of the driver 

(windshield), roadside objects (obstacles), speedometer, traffic signs and signal in line with 

similar studies (Gold et al., 2013; Körber et al., 2015; Lu et al., 2017; Merat et al., 2014; 

Vlakveld et al., 2018). The remaining glances at areas other than the defined AOIs, such as 

glancing at car-interiors, inside car cameras, etc. were categorised as “others”.  Visual behavior 

was analysed during the 60 seconds prior to the red-light stop signal, which appeared 

approximately 195m (640ft) following the onset of TOR voice message (similar to a study by 

Zeeb et al. 2015).  

Previous studies have used both count and duration of glances to study the allocation of visual 

attention on various components of driving scene or their contribution to situation awareness, 

such as, traffic signs (Babi et al., 2020; Campagne et al., 2005; Martens and Fox, 2007), 

external or rear view mirrors (Gold et al., 2018; Lu et al., 2017; Zeeb et al., 2015), in-vehicle 

systems (Kohl et al., 2020; Starkey et al., 2020), monitoring the road ahead (NHTSA, 2006; 

Noble et al., 2021) and other areas of interest. Larger glance duration indicates higher 

processing time to understand any given stimuli (Martens and Fox, 2007) such as visual 

messages, information signs etc. or may even indicate distraction (longer glances (>2s) away 

from the forward roadway) (NHTSA, 2006; Simons-Morton et al., 2014). Glance frequency on 

the other hand suggests frequency of scanning the road environment or its components 

(NHTSA, 2006). Unfamiliar objects (for example the construction zone at the roadside in this 

study) or unfamiliar traffic signs may need longer processing time which can be achieved either 

through frequent glances of short duration or through few glances of longer fixations (Babi et 

al., 2020; Campagne et al., 2005; Martens and Fox, 2007). However, less frequent yet longer 
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fixations away from the road may also disengage the drivers from the primary task of 

monitoring the roadway (Kohl et al., 2020). Therefore, both the proportion of glance duration 

and the frequency of glances at various AOIs were recorded and analysed in this study to 

determine the differences in glance behavior due to VA. 

2.3.2 Subjective sleepiness and workload ratings 

As indicated in Table 1, previous studies have used different indicators of driver fatigue such 

as self-reported subjective scales, physiological or eye-tracking metrics in combination with 

each other to indicate driver fatigue or changes in alertness (Gonçalves et al., 2016; Merat et 

al., 2014; Vogelpohl et al., 2018; Wu et al., 2019). Therefore, in addition to the visual indicators 

of fatigue, drivers rated their level of alertness using the Karolinska Sleepiness Scale (KSS) 

and cognitive workload using NASA-TLX workload index, (Large et al., 2018; Matthews et 

al., Neubauer et al., 2018; Neubauer et al., 2012). KSS is a subjective scale which records the 

self-perceived value of alertness on scale of 1 (extremely alert) to 9 (extremely sleepy, sleep 

onset soon). The subjective ratings on KSS are closely associated with physiological indicators 

of fatigue i.e. EEG and EOG activity /drowsiness (see Lal and Craig, 2001 for a review). Wu 

et al., 2019 showed that KSS ratings and eye blink duration were highly correlated to each 

other and indicated increasing fatigue due to automation. NASA-TLX allows the drivers to rate 

the workload based on six factors i.e. mental, physical, temporal, performance, effort and 

frustration experienced by the them during a task on a increasing scale of 1 to 21(Hart and 

Staveland, 1988).  

The subjective KSS ratings were collected on three occasions during each drive: firstly, prior 

to each drive, secondly, towards the end of automated drive (prior to TOR) and finally, after 

resuming manual drive. To avoid any interference by the experimenter during the drive, the 

latter two ratings were both collected at the end of each drive. Both of these ratings were 

collected based on drivers’ memory of alertness felt by them just before takeover and at the 

end of experiment after 5 minutes into the manual driving post takeover. As both ratings were 

collected at the end of the drive, it is possible that some drivers failed to accurately recall their 

level of alertness immediately prior to the takeover. However, the intention in adopting this 

approach was to avoid interrupting the drive as this would have had the unintended 

consequence of increasing alertness. It is also worth noting that the takeover was fixed in that 

it did not require the drivers to reach any pre-decided level of change in alertness to trigger the 

TOR and therefore, no such rating was collected partway through automation. The three ratings 

were then compared within each drive and across the two drives – with and without the VA. 

The experimenter also noted the relevant symptoms of sleepiness e.g. frequency of yawning 

and incidents of micro-sleeps (or ‘nodding off’) behind the wheel, when automation was 

engaged.  

2.3.3 Time to takeover request (TOR)  

The response time to the TOR was measured as the time to resume driving controls. In practice, 

this was calculated as the time from the start of the stimulus (i.e. end of TOR voice message 

and start of beeps) to the time at which drivers acquired motor readiness i.e. hands on steering, 

feet on pedals and looking ahead (or eyes on the road). The time to resume steering and pedals 

were determined using frame-by-frame analysis of videos captured during the drive at a frame 
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rate of 30 fps, whereas the time to resume glances on road was noted from the eye tracking 

videos played at the same frequency of 30Hz. Both the videos were also matched with each 

other for confirmation by displaying the frame number on each video. The response times (RT) 

were calculated as the difference in frame number corresponding to TOR and resuming of 

control. The difference represented the time in frames which was converted to seconds by 

dividing the difference by 30. By convention, readiness to drive is achieved when all the three 

actions are complete. Therefore, the maximum of the three response times was taken as the 

time to takeover (TOT). It is feasible (though not expected in the current study) that some 

drivers may resume all three actions in preparation for the TOR. In such instances, their data 

would have been excluded from the final analysis. However, no such instances were observed 

in the current study. To determine the influence of different factors on takeover time, the 

response time to motor readiness at TOR is modelled using a parametric duration model. 

2.3.4 Post-drive Questionnaire 

Finally, a questionnaire was used to collect driver demographics and investigate how frequently 

they used various, existing voice-assistants, such as Google, Siri, Alexa etc. Previous studies 

suggest that experience of  using/adopting various in-car driving assistant systems (DAS) such 

as lane keep assist, adaptive cruise control, etc. are likely to influence the takeover time and 

acceptance of highly automated vehicles among drivers (Brookhuis et al., 2001; Molnar et al., 

2018; Zeeb et al., 2015). In this study, it was assumed that such an acceptance and trust in the 

automated vehicle may encourage the drivers to completely relax during the period of 

automation. Similarly, any driver with prior experience of using various voice assistance 

technologies are likely to be more comfortable using VA compared to other drivers. Previously, 

Zeeb et al. (2015) used a 5-point Likert scale (1=no experience, 5=regular use) to rate the pre-

user experience of DAS. Therefore, a similar scale was used in this study to collect the ratings 

on pre-user experience of drivers with various types of existing voice assistant technologies 

such as Google, Siri, Alexa etc. A higher rating would reflect higher exposure to such 

technology and likely to increase the acceptance of a system such as VA proposed in this study 

(Brookhuis et al., 2001; Molnar et al., 2018).  

3 ANALYSIS AND RESULTS 

The following section initially presents a summary of the dataset and participants’ subjective 

responses to help contextualise results. This is followed by the comparative analysis of 

alertness measures (subjective ratings, visual behaviour) and situation awareness measures 

across the two drives. Finally, we introduce a parametric duration model of takeover time to 

study the effect of using VA, including driver characteristics collected through questionnaire 

and the visual behavior parameters as covariates in the model. 

3.1 Dataset 

Driver demographics and descriptive statistics are summarized in Table 3.  
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Table 3 Descriptive statistics of subjective data through questionnaires and visual indicators of 

sleep/fatigue 

Categorical Variables (N=24) Categories Frequency Mean  SD (±) 

Gender 
Male = 0 14   

Female = 1 10   

Likeliness to sleep in an 

automated vehicle if it is allowed 

very likely =4 6 

2.63 1.498 

somewhat likely =3 9 

neither likely nor unlikely = 2 2 

somewhat unlikely = 1 2 

very unlikely = 0 (reference) 5 

Continuous Variables (N=24) Min Max Mean SD (±) 

Age (in years) 22 59 30.1 8.4 

Average annual mileage (miles/year) 150 15000 4315.1 4114.1 

No. of years of holding a valid driving licence 2 33 10.5 6.9 

Average duration of sleep/day (in hours/ day) 5.00 9.00 7.2 0.9 

Frequency of using VAs while in car (max.20) 4 14 6.8 3.2 

Subjective Rating (N=24)  Min Max Mean SD (±) 

NASA TLX workload scale 

during automated drive 

without VA 6 72 35.5 13.8 

with VA 8 64 41.0 12.0 

Visual indicators of sleepiness/fatigue (N=23)     

Average eye blink duration 

during automation (ms) 

without VA 233.5 700.0 388.2 120.8 

with VA 217.6 700.0 365.3 103.4 

Average pupil diameter in mm 

during automation 

without VA 1.7 5.4 3.6 0.8 

with VA 2.2 5.1 3.8 0.7 

Average eye blink frequency 

during automation (blinks/s) 

without VA 0.0 0.9 0.4 0.2 

with VA 0.0 0.8 0.5 0.2 

 

3.1.1 Prior use of various voice assistance systems  

The likeliness of using a voice assistant in future vehicles might depend on drivers’ frequency 

and prior experience of using various types of existing voice-assistance systems, such as 

Google, Siri, Alexa etc. Most of the drivers already had some experience using voice-based 

assistants for either route navigation or as a music player (Figure 4), but did not use these to 

stimulate any conversations, for example, voice-based web search etc. In this study, individual 

responses to the frequency of using a voice assistant in the examples given (as listed in Figure 

4 and as used in the conversations designed in this study) is rated on a Likert scale (1=never to 

5=always) (Zeeb et al., 2015). These were summed to provide a single covariate indicating the 

frequency of using VAs rated on a linear scale varying from 1-20. The mean rating is thus 

summarized in Table 3. 
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Figure 4 Frequency of using Voice Assistants such as Google, Alexa, Siri etc in different ways 

(proportion of participants in each response category is indicated corresponding to the specific use).  

3.2 Alertness measures 

Paired samples t-tests and Wilcoxon signed rank tests were used to analyse the effect of 

interacting with VA on driver alertness towards the end of automation (i.e. just prior to TOR), 

compared with the drive absent of the VA.  

3.2.1 Subjective alertness and workload  

The mean KSS and combined NASA-TLX workload ratings (Figure 5), were compared using 

paired-samples t-tests. The t-tests showed a significant increase in mean KSS scores towards 

the end of automation (i.e. just prior to TOR) from pre-drive in both the drives (Figure 5a). The 

t-tests are indicated in Figure 5a.  This indicates the fatiguing effects of automation, which 

persisted post-takeover as indicated by the KSS ratings, specifically in the absence of VA. 

However, the mean KSS rating just pre-TOR (i.e. post-automation) was significantly lower in 

the drive with VA (t(23) = 3.391, p<0.005) indicating higher alertness in presence of VA. 

Further, the combined NASA-TLX workload ratings were significantly higher at pre-TOR (i.e. 

just prior to TOR) when the drivers were accompanied by VA (t(23) = -2.448, p<0.05). 

Participants reported higher workload – suggesting higher alertness – during the drive with the 

VA, confirming that automation for long periods lowers cognitive workload and makes the 

drivers vulnerable to symptoms of passive fatigue. 
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a. Higher mean KSS scores (vertical bars represent standard deviation) post-automation just prior to 

TOR indicating loss of alertness (*represents significant values i.e. p<0.005) 

  

b. Increase in mean NASATLX workload ratings during automation in the drive with VA 

Figure 5 Mean KSS rating and NASATLX workload ratings compared across two drives 

3.2.2 Objective alertness (eye-based) measures 

The visual characteristics data for one of the participants was unavailable due to technical 

malfunctioning of eye-tracking glasses during one of the drives. Thus, paired comparisons of 

visual indicators of fatigue during automation were conducted for the remaining 23 participants 

across the two drives. Among the eye blink duration (ms), frequency of blinking (blinks/s) and 

pupil diameter (mm), only average pupil diameter was found to be significantly different 

between the two drives (t(21) = -2.263, p<0.05). Larger pupil diameter (in mm) was observed 

during the drive with VA (Mean=3.77, SD = ±0.69) compared to drive without VA 

(Mean=3.58, SD = ±0.81), suggesting the former drivers were more alert.  

3.3 Situation awareness near TOR 

The AOI data are summarized in Figure 6 for the two drives. The proportion of time spent 

glancing at each AOI was calculated from the total glance duration of each participant. The 

time spent and glance frequency data for each AOI is then compared using a non-parametric 

Wilcoxon signed rank test across the two drives. Only four pairs showed significant differences 

as indicated in Figure 6.  
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Figure 6 a. Proportion of time spent calculated from total glance duration and b. Glance frequency 

both averaged over all participants in each drive. The AOI statistics are compared using paired 

Wilcoxon signed rank test across two drives at takeover (* the pairs with significant differences in the 

two drives are indicated with their p-values) 

Participants spent significantly more time glancing at the rear-view mirrors in the drive without 

VA (Mean= 3.55%, SD =±5.74%) compared to the drive with VA (Mean = 0.73%, SD = 

0.85%). Comparison of glance frequency showed that drivers directed significantly more 

glances to the road in front, roadside objects (construction zone or parked vehicles on roadside) 

and upcoming traffic signal lights during the drive with VA, compared to the drive without 

VA, suggesting that they were more alert and engaged with the driving task when accompanied 

by the VA. 
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3.4 Modelling takeover time (TOT) 

In this study, the voice assistant is intended to help the driver stay alert during automation and 

gain situation awareness at takeover. The results of the visual behavior and AOI statistics 

provide preliminary evidence that the drivers were more engaged with the road environment 

and more alert during the automated drive with VA which is likely to influence the takeover 

time. Therefore, a statistical modelling approach was adopted to quantify the contribution of 

these factors on takeover time. The parametric duration model, or survival analysis approach, 

is traditionally used in traffic accident research to study the response time of drivers to 

accidents incorporating the influence of other covariates (Choudhary and Velaga, 2017a; 

Haque and Washington, 2015, 2014; Mahajan and Velaga, 2020; Washington et al., 2003; 

Yadav and Velaga, 2019).  

3.4.1 Parametric duration model 

Parametric duration modelling is a probabilistic approach to analyse the conditional probability 

of the elapsed time until the event of interest, provided the event continues to time, t 

(Washington et al., 2003). In this study, the event is defined as “gaining motor readiness as 

shown by hands-on-wheel, feet on pedals and eyes on road” and the length of time to gain 

complete motor readiness in response to TOR is the duration variable (T). ‘T’ represents a 

continuous random variable with probability density function (PDF), f(t), given by equation 

(1) and cumulative distribution function (CDF) F(t) (Washington et al., 2003). F(t) is 

sometimes also referred to the failure condition, given by the probability of resuming manual 

driving before some specified time, t, in this study. Hence, the remaining probability of 

resuming manual control after the time ‘t’ is called the survivor function, S(t) i.e. the 

probability of failing to resume manual driving before the construction zone appeared.  

𝑓(𝑡) =  
𝑑𝐹(𝑡)

𝑑𝑡
=  

𝑑𝑃(𝑇<𝑡)

𝑑𝑡
=

𝑑 {1−𝑃(𝑇≥𝑡)}

𝑑𝑡
=

𝑑{1−𝑆(𝑡)}

𝑑𝑡
         (1) 

The hazard function, h(t) which is also called the instantaneous failure rate, gives the 

conditional probability that the event will occur between the time t and (t+dt) provided the 

event has continued for ‘t’ or more duration (Haque and Washington, 2014; Washington et al., 

2003).  

 h(t) =
f(t)

[1−F(t)]
=

f(t)

S(t)
         (2) 

Parametric duration modelling is commonly adopted with proportional hazards (PH) 

assumption. The PH model is appropriate to use if the hazard ratio is constant over time for an 

individual. It assumes that the covariates act multiplicatively on some underlying baseline 

hazard function i.e. the explanatory variable only affects the chance of failure and not the 

failure time directly. Therefore, in this study the aim is to understand the underlying process of 

takeover or the survival time, which is affected by different covariates, rather to merely predict 

the takeover completion. Therefore, an alternative approach of accelerated failure time (AFT) 

model was used where the failure time is assumed to follow a distribution and the covariates 

directly influence the failure time without assuming a constant hazard ratio. In the baseline 

survivor function, all the exposure variables are kept at zero. An AFT model allows the 

covariates to rescale (accelerate) time directly in the baseline survivor function (Washington et 
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al., 2003). Adopting an AFT approach allows us to capture the direct influence of an exposure 

variable on the mean survival time. Thus, the estimated parameters in the results directly show 

the effect of a covariate on mean response time. According to Washington et al. (2003), the 

natural log of duration variable, ln(T), is linearly related to the covariates:  

ln(𝑻) =  𝛽𝑿 +  𝜀          (3) 

where ‘X’ is a set of covariates, β is vector of estimated parameters and ε = error term in the 

AFT model. The AFT model and conditional hazard function are given by: 

𝑆(𝑡|𝑿) = 𝑆0[𝑡 ⋅ 𝐸𝑋𝑃(𝛽𝑿)],          (4) 

h(t|𝐗) = h0[𝑡 ⋅ 𝐸𝑋𝑃(𝛽𝑿)]EXP(β𝐗)        (5) 

where S0 and h0 are respectively the baseline survivor and hazard function.  

To use the parametric duration model, we assume a distribution followed by a hazard function. 

Here, as the probability of completing the takeover is likely to increase over time showing a 

positive duration dependence. Thus, the Weibull distribution is suitable to model the takeover 

time data with monotone hazard rate (due to positive duration dependence event) that increases 

exponentially with time. The Weibull-distribution with scale-parameter (P > 0) and location-

parameter (λ > 0) is given by (Washington et al., 2003): 

𝑓(t) = h(t)EXP[−(λt)p] ; 𝑖𝑓 𝑃 > 1 𝑤ℎ𝑒𝑛 ℎ𝑎𝑧𝑎𝑟𝑑 𝑖𝑠 𝑚𝑜𝑛𝑜𝑡𝑜𝑛𝑜𝑢𝑠𝑙𝑦 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔            (8) 

In the Weibull duration model, the hazard function and survival function are expressed as: 

h(𝒕) = (λP) (λt)𝑃−1          (9) 

S(𝒕) = 𝐸𝑋𝑃 (−λt𝑃)                    (10) 

The present study involved the modelling of takeover time at the prompt of a TOR after 

automation in two driving conditions. As discussed in the literature (section 1.2), all the 

variables listed in Table 3 were used as explanatory variables in the model except for visual 

behavior component. The visual behavior components were taken from the AOI analysis. 

Among all the components shown in Figure 6, checking traffic signs, checking mirrors and the 

road ahead are significant components of safe driving (Gold et al., 2013; Samuel et al., 2016; 

Vlakveld et al., 2018; Wright et al. 2016). Overall, the glances at various AOIs contribute 

towards situation awareness which are likely to influence the takeover time. The preliminary 

analysis shows a significant effect of VA on driver alertness, NASA-TLX workload rating and 

situation awareness. Therefore, a correlation analysis was conducted to identify the 

independent variables which were significantly associated with takeover time (Field, 2009; 

Pallant, 2010). The KSS rating, pupil diameter and NASA-TLX workload rating just prior to 

the TOR were found to be significantly correlated with the drive condition (with or without 

VA) (Appendix-1). Therefore, drive condition was retained as an explanatory variable in the 

model. Among the glance behavior metrics, the frequency of glances at different AOIs were 

found to be significantly correlated with their respective proportion of total glance duration 

(refer variables 4 to 18 in Appendix-1). The glance proportion at rear mirror, signal light and 

roadside vehicles were also found significantly correlated with the drive condition, road ahead 

and traffic signs, respectively (Appendix-1). Therefore, variables showing relatively higher 
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correlations with the dependent variable i.e. takeover time were retained as explanatory 

variables in the model.  

The study involved repeated observations across the two drives with the same participants – 

this can cause intra-group correlations and heterogeneities. The Weibull AFT model with 

gamma frailty (analogous to the random effects model) or clustered heterogeneity (standard 

error is adjusted for possible correlations due to repeated measures) can be used to avoid the 

effect of such heterogeneities and erroneous interpretation of parameter estimates in the model 

(Haque and Washington, 2014). Both the Weibull AFT models were developed using Stata SE-

16 (at 95% significance level). The frailty parameter, theta (θ = 0), indicated that the variance 

of gamma heterogeneity was negligible and insignificant (χ2 = 0, p = 1.00). The models were 

estimated by the standard maximum likelihood methods. The standard errors are robust to 

heteroscedasticity to address the auto-correlation problem due to repeated trials involving same 

individuals (Alan Agresti, 2002; Castillo-Manzano et al., 2016; Fitzharris et al., 2017; Mahajan 

and Velaga, 2020; Papke, 1996; Pylkkönen et al., 2015). Among all comparable models with 

the covariates (variables related to glance behavior, driver demographics, drive condition, 

workload and frequency of using voice assistants), the final model with clustered heterogeneity 

was chosen with minimum Akaike’s information criteria (AIC) and Bayesian information 

criteria (BIC) values (Haque and Washington, 2014; Washington et al., 2003). The scale 

parameter p = 4.1 (>1) confirms that the survival rate is decreasing with time (i.e. hazard rate 

or probability of taking over before reaching the obstacle increased with time). Table 4 

summarizes the estimated coefficients or exponential of coefficients (hazard ratio) which 

directly represents the relative change in survival time duration with unit increment in the 

covariates (StataCorp, 2013). 

The model results provide an insight into the process of gaining situation awareness during a 

takeover, with parameters such as, duration of checking exterior mirrors, road in front, 

speedometer and traffic signs. The model shows that participants were likely to resume control 

39% faster in the drive with VA compared to the other drive. Also, the model results show that 

female drivers are likely to take 1.21 times longer time to resume motor readiness as compared 

to their male counterparts. In addition, individuals who indicated that they frequently used 

different types of existing VAs are likely to take 8% less time to resume control. The model 

results also show that longer glances at different components of driving scene prior to the TOR 

will help in reducing the probability of delays in takeover. Driver age and willingness to sleep 

in automated vehicles did not influence the takeover time significantly. 
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Table 4 Weibull AFT (with clustered heterogeneity) model estimates with takeover time (TOT) as 

dependent variable 

Variable Exp (B) 
Coefficient 

(B) 

Std. 

Error 
z p-value 

1. Drive condition (Without VA*)          

With VA 0.61 -0.5 0.203 -2.47 <0.05 

2. Age 1.00 -0.004 0.006 -0.72 ns 

3. Female (vs Male) 1.21 0.19 0.119 2.01 <0.05 

4. Mileage 1.00 0.00 0.000 -3.23 0.001 

5. Using VAs 0.92 -0.081 0.021 -3.76 <0.001 

6. Sleeping in auto-car 1.00 0.003 0.035 -0.08 ns 

 %Glance duration (or %time spent)     

7. External Mirrors 0.90 -0.106 0.039 -2.71 <0.05 

8. Road ahead 0.97 -0.03 0.008 -3.66 <0.001 

9. Speedometer 0.96 -0.04 0.008 -4.47 <0.001 

10. Traffic signs 0.88 -0.132 0.028 -4.78 <0.001 

      Intercept   5.27 0.909 5.8 <0.001 

Log psuedolikelihood -7.03 - p<0.001   

Scale parameter-p 4.1 1.43   

theta 2.16E-08 0.00     

Model fitness comparison N df AIC BIC 

• with clustered heterogeneity 24 12 38.07 52.2 

• with gamma frailty 24 13 40.06 55.38 

 

Note: ns: not-significant; VA: Voice assistant 

To gain further insights into the model results, separate survival curves (Figure 7, 8 and 9) are 

plotted substituting parameter estimates in Table 4 corresponding to each covariate in Eq. (10). 

The probabilities were calculated for the two driving conditions (with and without VA) at 

different times. All other variables were either kept at their reference category (if categorical 

variable) or corresponding means were substituted (for continuous variables) (refer Table 3 

and Figure 6). 

  

Figure 7 Survival curves for the two test conditions i.e., probability of not responding early to the 

TOR early 
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Figure 8 Reduction in probability of delayed takeover with higher frequency of using different types 

of voice assistants 

 

Figure 9 Effect of gender on probability of delayed response to takeover request 

4 DISCUSSION 

This study aimed to explore whether conversations with a digital voice assistant could help to 

keep a driver alert during automation and provide useful traffic information to assist the 

takeover process. The study findings are discussed as follows in response to the target questions 

raised in Section 1.4.1.  

4.1 Effect of VA on driver alertness 

Automation relieves the driver from the task of assessing the traffic scenario and taking 

required physical actions for driving, which results in low-workload conditions. Therefore, we 

hypothesized that providing a digital voice assistant will improve driver cognitive workload – 

to an appropriate level – through intermittent conversations. The increase in mean KSS ratings 

from pre-drive to post-automation (i.e. prior to TOR) indicates that automation significantly 

reduced driver’s workload and caused passive fatigue. The paired comparisons show a 

significant increase in driver workload (as indicated by pre-TOR NASA-TLX workload 
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ratings) due to the conversational exchanges with VA, suggesting improved alertness during 

automation. This is supported by both the subjective alertness measure i.e. lower mean KSS 

rating and objective measures, such as higher pupil diameter, during the drive with VA. Larger 

pupil-diameter indicates higher alertness during the drive with VA (Kapitaniak et al., 2015; 

Large et al., 2018; Wang and Xu, 2016). The significant correlation between alertness measures 

and NASA-TLX workload ratings also suggest that that the regular conversational interludes 

made by the VA interrupted the monotony of the automated drive increasing driver workload 

and thereby improving driver alertness. In combination with this, providing traffic–related 

conversations, such as informing drivers of the speed limit, upcoming intersections etc. kept 

the drivers more engaged with the driving environment. It is also noteworthy that none of the 

drivers were observed sleeping during the drive with VA, whereas six drivers had short 

episodes of “nodding off” when not accompanied by VA, and were notably startled by the 

takeover request.  

4.2 Effect of VA on glance behavior 

The AOI eye tracking analysis showed the differences in allocation of visual attention in 

response to the traffic feedback provided by VA near the TOR, supporting our second 

hypothesis. The VA pre-informed drivers about the new speed limit and an approaching 

pedestrian crossing, to engage them with the driving scene and act with caution. The paired 

comparison of AOI statistics between the two drives showed that for similar proportion of 

glance duration in the two drives, significantly higher number of glances were associated with 

checking exterior mirrors, concentrating on the road ahead and checking upcoming traffic 

signal during the drive with VA. The frequent glances at these specific objects also relate to 

the verbal message delivered by VA, during the one-minute prior to TOR, which shows that 

verbal cues can direct drivers’ visual attention in the driving scene. For instance, information 

about the pedestrians and changing speed limit might have encouraged the drivers to confirm 

the information provided by VA by reconciling this with the driving scene. Secondly, this 

information might have led to increased mirror-checks and additional focus made by drivers 

on the road ahead to prepare themselves for any required action such as decelerating or braking 

at the traffic signal or to avoid colliding with pedestrians. Previous studies have also associated 

increased mirror checks with gaining situation awareness at takeover (Gold et al., 2018; Zeeb 

et al., 2016, 2015). Contrary to Vogelpohl et al. (2018), who reported a delay of 14-15s in the 

first glance to speedometer post-TOR in the absence of any traffic signs or a VA, the drivers 

in this study tended to shift their gaze immediately to the speedometer after the posting of a 

new speed limit sign. Such behavior was observed during both the drives in this study, 

irrespective of the fact that automation was engaged, and drivers were not engaged in manual 

driving. Therefore, the constant checking of speed limit and other traffic signs in both the drives 

might be an artefact of the simulated driving environment and explain why there was no 

difference in glances (duration or frequency) at the speedometer or traffic signs between both 

the drives. However, allocating glances to confirm the behavior of the automated vehicle in 

response to information obtained from traffic signs or by VA, may also suggest a lack of trust 

and acceptance by the drivers (both for automation and the digital assistant), although this may 

change over time, as drivers’ experience with such systems increase (Brookhuis et al., 2001; 

Molnar et al., 2018; Zeeb et al., 2015).  



26 

 

Another interesting finding was the higher proportion of glance duration at the rear-view mirror 

in the absence of VA. During the one-minute period of AOI analysis, the driver was driving in 

the urban scenario, which included dynamic traffic surroundings, such as pedestrians, and 

unique buildings on the roadside. The need to frequently scan the rear-view mirrors arises 

during manoeuvres such as turning, changing lanes, merging, high traffic or during any hazard 

event requiring sudden braking or deceleration. Such cues were absent in the rear view and 

there was no following vehicle close to the participant’s vehicle or any event which could have 

occupied their attention in the rear-view mirror for an extended period of time. Even though 

the frequency of glances at the rear mirror were similar in both the drives, however, the longer 

glances at the rear mirror in the drive without VA indicate a longer off-road time and 

disengagement from forward roadway. In the video recordings of experiments, three 

participants indicated that they were observing the vehicles or other objects in the scenario 

disappearing in the far view of rear mirrors out of curiosity. This was an artefact of the 

simulation software used. A few other participants also shared similar opinion about virtual 

driving scenario. However, as this was not included in the post drive questionnaire (please refer 

Mahajan et al. (2021) for more details on subjective analysis of post study feedback), therefore 

a precise count of such opinions was not recorded in the current study. Previous studies have 

associated checking the rear-view mirror as a positive step towards gaining situation awareness 

prior to take-over in hazard situations (Gold et al., 2018; Lu et al., 2017; Zeeb et al., 2015). 

However, NHTSA (2006) suggested that short off-road glances (<2s) at rear-view mirrors or 

familiar traffic signs are sufficient to scan the driving scene to reduce the risk. Therefore, in 

the drive without VA i.e., without any vocal alerts to redirect their gaze back on the road, 

drivers may have spent longer glances checking the virtual environment displayed in the rear-

view mirror. 

4.3 VA and the takeover process 

4.3.1 Influence of VA on takeover time 

In order to improve our overall understanding of the takeover process, and more specifically, 

how VA can directly (driving with VA) or indirectly (through changing gaze behavior) 

influence drivers’ response to a TOR, a parametric duration modelling approach was adopted. 

The parametric duration model shows conclusively that intervention with the VA helped 

drivers to gain readiness to resume manual controls quicker compared to the other condition 

(without VA). The survival graph in Figure 7 shows the probability of a delayed response to 

takeover times is much higher, relatively, during the drive without VA compared to the drive 

with VA. A timely takeover was defined with respect to a construction zone in roadside. When 

asked to take over control, drivers were expected to check the surrounding environment prior 

to the construction zone and resume driving controls to avoid the risk of the car veering into 

the construction zone. During the drive with VA, drivers were more alert, and the evidence 

suggests that they noticed the construction zone following the takeover request. Moreover, they 

had prior information of an intersection signal ahead and an upcoming change in the speed 

limit. The intention in providing this information was to prepare them for driving, even before 

the takeover request was issued. However, during the drive without the VA, drivers were not 

only fatigued and sleepy, but had been provided with no information relating to impending 
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traffic signals or changing speed limits etc. Therefore, it is suspected that the process of 

becoming alert and building situation awareness would have been responsible for delaying the 

takeover process during this drive. 

4.3.2 Influence of gaze behavior on takeover time 

The conversation relating to traffic and the road environment provided information which 

appears to have influenced drivers’ gaze behavior, encouraging them to scan the driving scene, 

including traffic signs, their speedometer, mirrors etc., thereby maintaining their situation 

awareness and supporting a quicker response to the takeover request. Zeeb et al. (2015) also 

claimed that gaze behavior is a significant indicator of cognitive process at the TOR, and this 

determines the takeover time. A few previous studies associated the increase in glance duration 

at traffic signs, mirrors etc. indicating higher processing time to understand and respond to 

stimuli such as traffic signs (Babi et al., 2020; Martens and Fox, 2007). Although there was no 

significant difference in driver glance duration at most of the AOIs during the one-minute 

leading to the TOR, across the two drives, however, the glance frequencies (at road ahead, 

mirror checks and signal) were relative higher in the drive with VA. Therefore, providing 

drivers with access to such information even before the TOR (as provided by VA in this study) 

may reduce their processing time at TOR. This may explain why the increase in glance 

durations at the road in front, exterior mirrors, speedometer and traffic signs in the model 

support the positive influence of scanning various components of driving scene prior to the 

TOR, thereby reducing the probability of any delays in responding to TOR.  

4.3.3 Pre-user experience of VAs and takeover time 

It was apparent that drivers who indicated that they frequently used other voice-based digital 

assistants felt more comfortable using VA, and this may have encouraged them to engage more 

in conversations (which might also be in terms of attentive listening). Despite the lack of 

exposure and availability of various advanced driver assistance technologies to many of the 

participants, they expressed their intention to use similar voice-based driver assistant systems 

in the future. The results of the study suggest that this is likely to have a positive impact on 

factors such as alertness as was assumed by Zeeb et al. (2015). This is also shown by the 

survival curves plotted in Figure 8, using hypothetical rating on pre-user experience of various 

voice assistants by the drivers. As suggested in Figure 4 and section 3.1.1, a hypothetical 

increase in rating from 5 (i.e., very rare use of any voice assistant) to 20 (very often or regularly 

using different types of voice assistants) represents an increase in adoption of such technology. 

This suggests that higher exposure to using such systems could potentially increase their 

effectiveness in assisting the drivers to takeover controls after automation even further.  

4.3.4 Other factors influencing takeover time 

According to the model results, female drivers are likely to take longer to take over control (or 

to demonstrate motor readiness) than male drivers (Figure 9). Such a finding is interesting and 

could reflect a more cautious approach amongst female drivers, who may spend more time 

exploring and assessing the driving scene at the TOR. Similar results were reported by (Gomez 

et al., 2019; Lings, 1991). Among the various non-driving activities that drivers could perform 

during automation, sleeping might also be a voluntary action rather than just induced by the 
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automation (Wan and Wu, 2018). In this study, 15 out of 24 drivers responded that they would 

likely sleep in an automated vehicle, if it were possible (Table 3). Nevertheless, willingness to 

sleep also suggests high trust and acceptance in the technology. According to the model results, 

such willingness to sleep in an automated vehicle did not affect the probability of delays in 

takeover time (Table 4).  

5 CONCLUSION 

Extended periods of highly automated driving can disengage drivers from the driving task and 

reduce their alertness. The study explored the use of a digital voice assistant (VA) which could 

act as a driving coach/assistant during periods of highly automated driving. The study findings 

highlight the following benefits of adopting a futuristic digital voice assistant in partially 

automated vehicles: 

i. The VA could counter the effects of passive fatigue during highly automated drive, 

supporting our hypotheses. 

ii. Traffic-related information delivered by the VA can direct driver’s visual attention to 

traffic signs, exterior mirrors or road-ahead and assist in building situation awareness 

required during a takeover event. 

iii. The takeover time reduced significantly during the drive with VA, with appropriate 

situation awareness. The pre-allocation of visual attention to different components of 

driving environment due to verbal messages from VA also contributed to reducing the 

takeover time.  

Further, the parametric model of takeover time highlighted, amongst other findings, gender-

based differences in takeover time of drivers. This approach can be extended to find the effects 

of other relevant variables such as driver age, exposure to various in-car driver assistance 

systems, which may influence drivers’ acceptance and trust towards automated vehicles as well 

as towards systems like VA. The study also revealed that in the absence of technological 

interventions, drivers may choose to sleep in highly automated vehicles. This highlights the 

need for driver-assistance systems similar to the one proposed here to ensure that drivers are 

prepared to takeover control with appropriate alertness and awareness of the current traffic 

situation.  

In practice, for a voice assistant to have the capacity to receive and disseminate such 

information may depend on the efficacy and availability of intelligent transportation systems. 

Also, the VA would need to be coordinated with the other driving assistance systems in the 

vehicle such as controlling speed, drifting lanes etc. to follow the final decisions of either 

driver/VA. The short, intermittent conversations of 30-60s, conducted at an approximate 

interval of 3 minutes, were found to be effective in this study. The conversation also included 

a few general conversation topics such as event reminders, entertainment etc. which may 

promote frequent use of such technology to build trust and adaptation of users towards such 

technology to make it successful. Future research could investigate the detailed interface design 

requirements and enhancing the connectivity and interoperability of such systems. As a final 

note, the study demonstrated the positive effects of using a voice assistant providing regular 
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conversation during periods of automation. However, such effects are likely to be transient, 

and therefore more research is required to investigate the lasting effects of such interventions.  

5.1 Limitations and Future Scope 

Finally, it is important to recognise the limitations of our study which should be taken into 

account before generalizing from the results. Firstly, sample size was limited. However, as 

indicated in Table 1, many related studies have used a small sample size previously (Gonçalves 

et al., 2016; Vlakveld et al., 2018; Vogelpohl et al., 2018; Wu et al., 2019). Also, due to the 

smaller proportion of each gender group, the gender-based findings should be interpreted with 

caution. Further, excluding the participants based on various criteria such as excessive day-

time sleepiness symptoms or sleep disorders may limit the generalization of findings over the 

entire population. The sleep duration or consumption of caffeine, mints etc. prior to the study 

were not supervised or monitored by the experimenter in this study. The minor standard 

deviations (0.3 to 0.35) in the mean KSS ratings measured pre-drive or during the drives 

suggest that the participants possibly did not violate these instructions. However, it might be 

preferable to monitor such conditions to validate results. The study included a small variety of 

short conversation topics mostly focused on providing traffic information (to avoid 

misinterpretations/miscommunication in lengthy conversations). Alternate studies may explore 

the engaging or distracting effects of involving follow up conversations on one single topic.  

Building on the results, further research could explore different strategies for allocating visual 

attention, for example, identifying where the voice assistant should direct drivers’ attention. 

Future studies can also observe the gradual change in alertness and visual behavior during the 

entire period of automation to gain further insights into effectiveness of VA. Another area 

worthy of further investigation is that of driver age. Younger drivers are expected to be more 

tech-savvy and therefore more likely to use voice-based technologies than older drivers – who 

may subsequently not receive the benefits highlighted in the study.  
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Appendix -1. Correlation coefficients between potential independent variables and dependent variable  

Variable 1 2 3 4 5 6 7 8 9  10 11 12 13 14 15 16 17 18 19 20 21 

1. Test Condition 1                                          

2. NASATLX 

rating Pre-TOR 

0.314

* 
1               

 
                        

3. KSS score Pre-

TOR 

-

.376*

* 

-

.318* 
1             

 

                        

Glance frequency at: 

4. G_RearMirror -- -- 
0.343

* 
1           

 
                        

5. G_ExteriorMirro

rs 
-- -- -- 

0.343

* 
1         

 
                        

6. G_Roadside .338* -- 
-

.318* 
.305* 

0.314

* 
1       

 
                        

7. G_Road ahead .314* -- 
-

.302* 
-- -- 

.655*

* 
1     

 
                        

8. G_TrafficSigns -- -- -- -- -- 
.713*

* 

.558*

* 
1   

 
                        

9. G_Speedometer -- -- -- -- -- -- 
.594*

* 

.427*

* 
1 

 
                        

10. G_Signal .306* -- -- -- -- -- 
.498*

* 
-- -- 

 
1                       

11. G_Other -- -- 
-

.304* 
-- -- -- -- -- -- 

 
-- 1                     

% Total glance duration at: 

12. RearMirror 
-

.328* 
-- -- 

.774*

* 
-- -- -- -- -- 

 
-- -- 1                   

13. ExtMirrors -- -- -- .369* 
.675*

* 
-- -- -- -- 

 -

.307* 
-- 0.314* 1                 

14. Roadside -- -- -- 
.417*

* 
-- 

.787*

* 
.373* 

.772*

* 
-- 

 
-- -- -- -- 1               

15. Road ahead -- 
0.343

* 
-- 

-

.476*

* 

-- -- -- 

-

.466*

* 

-

.396** 

 

-- -- -.441** -- 

-

.552*

* 

1             

16. TrafficSigns -- -- -- 
0.343

* 
-- 

.389*

* 

-

0.58*

* 

.774*

* 
0.419* 

 

-- -- -- -- 
.683*

* 
-- 1           

17. Speedometer -- -- -- -- -- -- -- -- 

-

0.641*

* 

 

-- -- .344* -- -- -- -- 1         
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18. Signal -- -- -- -- -- -- -- -- -- 

 
.671*

* 
-- -- -- -- 

-

.413*

* 

-- -- 1       

19. Others -- -- -- -- -- -- -- -- -- 

 

-- 
.952*

* 
-- -- -- 

-

0.343

* 

-- -- -- 1     

20. Pupil diameter 

Right (mm) 

0.228

* 

-

0.301

* 

-

0.343

* 

0.343

* 
-- -- -- -- -- 

 

-- -- -- -- -- -- -0.343* -- -- -- 1   

21. Takeover time 

(TOT) 

-

0.305

* 

-

0.261

* 

-

0.206 
-- 

-

0.252

* 

-

0.221

* 

0.201

* 
-- -- 

 

-- -- -- 

-

0.316

* 

-- 

-

0.307

* 

-0.313* -0.261* 

-

0.215

* 

-- -- 1 

‘*’ coefficients significant at 0.05 level; ‘**’ coefficients significant at 0.01 level; ‘--’ not significant; ‘G_XX’ represents the frequency of glances 

at XX component of driving scene. 


