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Abstract

Compensated convex transforms have been introduced for extended real valued functions
defined over Rn. In their application to image processing, interpolation and shape interrogation,
where one deals with functions defined over a bounded domain, one was making the implicit
assumption that the function coincides with its transform at the boundary of the data domain. In
this paper, we introduce local compensated convex transforms for functions defined in bounded
open convex subsets Ω of Rn by making specific extensions of the function to the whole space,
and establish their relations to globally defined compensated convex transforms via the mixed
critical Moreau envelopes. We find that the compensated convex transforms of such extensions
coincide with the local compensated convex transforms in the closure of Ω. We also propose a
numerical scheme for computing Moreau envelopes, establishing convergence of the scheme with
the rate of convergence depending on the regularity of the original function. We give an estimate
of the number of iterations needed for computing the discrete Moreau envelope. We then apply
the local compensated convex transforms to image processing and shape interrogation. Our
results are compared with those obtained by using schemes based on computing the convex
envelope from the original definition of compensated convex transforms.
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1 Introduction

This paper contains two parts. In the first part, we ‘localize’ the global notions of compensated
convex transforms defined over Rn, which were first introduced in [1, 2], by defining such transforms
over bounded convex closed domains in Rn so that their values in the domain agree with the globally
defined transforms applied to some special extensions of the function to Rn. The motivation for
such local definitions is mainly from applications to digital images and data arrays, where we have
to consider functions defined on a rectangular box. In the second part, we propose a new scheme
for the computation of Moreau envelopes and we prove its convergence. The scheme can be used
to compute the Moreau based definitions of the local compensated convex transforms which we
introduce in this paper or it can be useful on its own for general applications of Moreau envelopes.

The theory of compensated convexity transforms has been applied to, for example, digital image
processing and computational geometry. So far, applications of the theory include the design of
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multiscale, parametrized, geometric singularity extraction of ridges, valleys and edges from graphs
of functions and from characteristic functions of closed sets in Rn [3]. Several robust methods have
been developed to date, namely, for the extraction of the set of intersections between two or more
smooth compact manifolds [4, 5], for the extraction of the multiscale medial axis from geometric
objects [6] and for the interpolation and approximation of sampled functions [7]. By ‘robustness’
here we mean the Hausdorff stability, that is, the error between the outputs obtained for two data
samples is controlled by the Hausdorff distance between the two sampled input data sets.

In the applications mentioned above, the data domains are usually represented by boxes in Rn.
The numerical schemes used in [3, 4, 6, 7, 5] for the evaluation of the compensated convex transforms
relied on the availability of schemes for computing the convex envelope of a given function and
on the implicit assumption that the transforms coincide with the function at the boundary of
the data domain. In those works, we were applying such schemes mainly to demonstrate the
numerical feasibility of the transforms rather than (i) designing efficient numerical schemes for
their computation and/or (ii) analysing the effect of the boundary assumptions. In this paper we
also address the more practical question of accurately and effectively computing the compensated
convex transforms for functions defined on a bounded convex domain without using numerical
schemes that compute the convex envelope. In order to do so, we will explore the alternative
definitions of the compensated convex transforms based on the Moreau envelopes. One of the
advantages of this approach is that when it comes to the numerical implementation by the scheme
we propose, we obtain an estimate of the number of iterations which provides the exact discrete
Moreau envelope. This is different from the application of iterative schemes to compute the convex
envelope which can be shown to converge but for which no convergence rate is known to be available
[8].

Before we introduce our local versions of compensated convex transforms on a bounded closed
convex domain, we recall from [1] the notions of quadratic compensated convex convex transforms
in Rn. For a function g : Rn → R ∪ {∞} satisfying the growth condition g(x) ≥ −c0 − c1|x|2,
x ∈ Rn, for some constants c0, c1 > 0 with |x| =

√
x · x the Euclidean norm of x ∈ Rn and x · y

the inner product on Rn between x ∈ Rn and y ∈ Rn, the quadratic lower compensated convex
transform (lower transform for short) of g for λ > c1 is defined for x ∈ Rn by [1],

C lλ(g)(x) = co[g + λ| · |2](x)− λ|x|2 , (1.1)

where co[h] is the convex envelope of the function h : Rn → R ∪ {∞} bounded below. Given
g : Rn → R∪{−∞} such that g(x) ≤ c0 + c1|x|2, x ∈ Rn, the quadratic upper compensated convex
transform (upper transform for short) of g of module λ > 0 is defined for x ∈ Rn by

Cuλ(g)(x) = λ|x|2 − co[λ| · |2 − g](x) . (1.2)

The lower and upper transform can be, in turn, characterized in terms of the critical mixed Moreau
envelopes as follows (see Appendix A)

C lλ(g)(x) = Mλ(Mλ(g))(x) and Cuλ(g)(x) = Mλ(Mλ(g))(x) for all x ∈ Rn (1.3)

where, in our notation,

Mλ(g)(x) = inf
y∈Rn
{g(y) + λ|y − x|2},

and Mλ(g)(x) = sup
y∈Rn
{g(y)− λ|y − x|2},

(1.4)
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are the lower and upper Moreau envelope of g, respectively [9, 10, 11, 12, 13], defined as the inf-
and sup-convolution of g with quadratic perturbations, respectively.

In mathematical morphology [14, 15, 16], the Moreau lower and upper envelopes can be viewed
as ‘greyscale’ erosions and dilations by quadratic structuring elements [17, 18, 19]. Despite the
rich structure of these filters, the use of quadratic structuring functions has not however been fully
exploited compared, for instance, to the widespread use of the flat structuring elements [15, 16].
This is usually attributed to the fact that the gray–scale dilation and erosion operators based on
a flat structuring function are easy to implement (given that they reduce to a local maximum
and minimum filter) and result therefore in fast algorithms. By the definition in terms of the
compensated convex transforms it is possible however to offer not only an alternative interpretation
of the transforms (1.3) as ‘one-step’ morphological openings and closings, but also to provide an
easy evaluation of the geometric properties of such filters [3] and to obtain competetively fast
algorithms as we illustrate in this paper.

In variational analysis, by contrast, the lower compensated convex transform (1.1) is also known
as proximity hull [20, Example 11.4] and it has been redefined as quadratic envelope in [21]. But
it is only starting from [1, 4] that the relation of the proximity hull to the convex envelope, and to
the envelope of quadratic functions with given curvature established first in [3, Eq. (1.4)] and then
in [21], has been studied in a systematic manner and applied as such to image processing, shape
interrogation, and function approximation in [6, 22, 23] and to compressive sensing and low rank
approximation in [21].

Note that (1.1), (1.2) and their alternative representations (1.3) are given for extended real
valued functions. They can thus be applied to functions g, defined in proper subsets Ω of Rn by
defining, as a common practice in convex analysis [24], the following extensions of g in Rn \ Ω,

g∞ : x ∈ Rn 7→ g(x) =

{
g(x), x ∈ Ω

+∞, x ∈ Rn \ Ω ,
(1.5)

for the definition of C lλ(g∞), and

g−∞ : x ∈ Rn 7→ g(x) =

{
g(x), x ∈ Ω

−∞, x ∈ Rn \ Ω ,
(1.6)

for the definition of Cuλ(g−∞). However, such natural and direct definitions of local compensated
convex transforms for functions defined in Ω using (1.3) depend on values of the Moreau envelope
at points outside the domain Ω, while convex envelope based methods using (1.1) or (1.2) will rely
on an a-priori assumption about the boundary values of the transforms and on the application of
convex envelope based schemes which, as far as we know, are neither efficient nor accurate.

These problems lead us to design the following simple local compensated convex transforms based
on the mixed Moreau envelope definitions (1.3) of the compensated convex transforms without the
need of calculating values of the Moreau envelopes outside the bounded closed domain Ω. Before
introducing our local transforms, we introduce some notation and recall some definitions.

Let Ω be a non-empty bounded open convex subset of Rn. We consider bounded functions
f : Ω ⊂ Rn → R satisfying m ≤ f(x) ≤M in Ω for some constants −∞ < m ≤M < +∞. Without
loss of generality, and if not otherwise specified, we set m = infΩ f and M = supΩ f and define the
oscillation of f in Ω by

Of := M −m ≥ 0.

We consider the auxiliary functions, f−
Ω

and f+
Ω

that extend f from Ω to its closure Ω,

3



f−
Ω

: x ∈ Ω 7→ f−
Ω

(x) =

 f(x), x ∈ Ω,

inf
Ω
f, x ∈ ∂Ω ,

(1.7a)

and f+
Ω

: x ∈ Ω 7→ f+
Ω

(x) =


f(x), x ∈ Ω,

sup
Ω
f, x ∈ ∂Ω ,

(1.7b)

and the auxiliary functions f−Rn and f+
Rn that extend f from Ω to the whole space Rn,

f−Rn : x ∈ Rn 7→ f−Rn(x) =

 f(x), x ∈ Ω,

inf
Ω
f, x ∈ Rn \ Ω ,

(1.8a)

and f+
Rn : x ∈ Rn 7→ f+

Rn(x) =


f(x), x ∈ Ω,

sup
Ω
f, x ∈ Rn \ Ω .

(1.8b)

In practice, the extensions f−
Ω

, f+
Ω

of f to the boundary ∂Ω correspond to adding a frame of
one pixel wide layer on the boundary of the data array and defining f at each point of the frame
by the maximum value or the minimum value of the function.

For the function f−Rn and f+
Rn we then consider the following transformations which are well

defined for x ∈ Rn,

C lλ(f−Rn)(x) = co[f−Rn + λ| · |2](x)− λ|x|2,

Cuλ(f+
Rn)(x) = λ|x|2 − co[λ| · |2 − f+

Rn ](x) ,
(1.9)

and their characterization (1.3) in terms of the critical mixed Moreau envelopes:

C lλ(f−Rn)(x) = Mλ(Mλ(f−Rn))(x), Cuλ(f+
Rn)(x) = Mλ(Mλ(f+

Rn))(x) . (1.10)

For a bounded function g : Ω → R defined in the closure of a convex bounded open set Ω, we
also introduce for x ∈ Ω the notation Mλ,Ω(g)(x) and Mλ

Ω(g)(x) to denote the following inf- and
sup-convolutions of g with quadratic weights,

Mλ,Ω(g)(x) = inf
y∈Ω
{g(y) + λ|y − x|2} , (1.11a)

and Mλ
Ω(g)(x) = sup

y∈Ω

{g(y)− λ|y − x|2} , (1.11b)

which coincide with the restriction to Ω of Mλ(g∞) and Mλ(g−∞), respectively.
Motivated by the characterization (1.3) for compensated convex transforms, we now define the

local lower compensated convex transform of f in Ω, as

C lλ,Ω(f−
Ω

)(x) := Mλ
Ω(Mλ,Ω(f−

Ω
))(x) for x ∈ Ω , (1.12)
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and the local upper compensated convex transform of f in Ω, as

Cuλ,Ω(f+
Ω

)(x) := Mλ,Ω(Mλ
Ω(f+

Ω
))(x) for x ∈ Ω . (1.13)

An important feature of the special extensions f−
Ω

, f+
Ω

, f−Rn , f+
Rn of functions to Ω and to Rn is

that we have, for x ∈ Ω that

C lλ,Ω(f−
Ω

)(x) = C lλ(f−Rn)(x) and Cuλ,Ω(f+
Ω

)(x) = C lλ(f+
Rn)(x) . (1.14)

The equalities (1.14) do not hold, in general, if we had considered the extensions f∞
Ω

and f∞

[respect. f−∞
Ω

and f−∞] with f∞
Ω

[respect. f−∞
Ω

] that extends f over Ω by∞ [respect. −∞] on ∂Ω.
While our extensions can make the local versions equals to the global ones, the infinity versions
would not have this property.

After this brief introduction, in the next Section we present background results on convex analysis
and the theory of compensated convex transforms and we will also compare the definitions of the
compensated convex transforms for the different extensions of f over Rn by showing that for any
x ∈ Rn, there holds (Proposition 2.9)

C lλ,Ω(f−
Ω

)(x) ≤ C lλ,Ω(f)(x) ≤ C lλ(f∞)(x) ≤ f(x) ≤ Cuλ(f−∞)(x) ≤ Cuλ,Ω(f)(x) ≤ Cuλ,Ω(f+
Ω

)(x) ,

where C lλ,Ω(f) and Cuλ,Ω(f) are defined, respectively, for x ∈ Ω as

C lλ,Ω(f)(x) := Mλ
Ω(Mλ,Ω(f))(x) and Cuλ,Ω(f)(x) := Mλ,Ω(Mλ

Ω(f))(x)

by means of (1.11a) and (1.11b). The main theoretical results are stated in Section 3. Here, we
state that if Ω ⊂ Rn is a bounded convex open set and f : Ω → R a bounded function, then for
any x ∈ Ω (see Theorem 3.1)

C lλ,Ω(f−
Ω

)(x) = C lλ(f−Rn)(x) and Cuλ,Ω(f+
Ω

)(x) = C lλ(f+
Rn)(x) . (1.15)

Furthermore, we also show that there exists a constant κ(λ, f) which depends on λ and f such that
at points x ∈ Ω with dist(x, ∂Ω) > κ(λ, f), the values of C lλ,Ω(f−

Ω
)(x) and Cuλ,Ω(f+

Ω
)(x) depend

only on the values of f on Ω. For the special case of the characteristic function χK of a compact
set K ⊂ Ω, which represents ‘geometric shapes’ (binary data), we use the natural and simple
extension χΩ

K defined in (3.9), which is the restriction of the characteristic function χK to Ω, and χK
itself, rather than the extensions defined in (1.7) and (1.8), respectively. Under the condition that
dist2(x, ∂Ω) > 1/λ, we establish Cuλ,Ω(χΩ

K)(x) = Cuλ(χK)(x) (see also the remarks about Theorem
3.7 below). We present in Section 4 an algorithm that allows the numerical realization of the
Moreau envelope, whereas Section 5 contains numerical experiments which illustrate how to apply
our theoretical findings to carry out, for instance, image processing and computational geometry
tasks. As examples, we discuss the finding of ridges in the graph of a function (multiscale medial
axis map) and intersections of curves in a plane, image inpainting and salt & pepper denoising.
Section 6 concludes the paper with some final remarks whereas the Appendix contains the proofs
of the main results.

2 Notation and Preliminaries

This section presents a brief overview of some basic results in convex analysis and the theory of
compensated convex transforms that will be used in the sequel for the proof of the main results;
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for a comprehensive account of convex analysis, we refer to Refs. [24, 25], and to Refs. [1, 3] for an
account of the theory of compensated convex transforms.

Proposition 2.1. Let f : Rn → (−∞, +∞] be coercive in the sense that f(x)/|x| → ∞ as |x| → ∞,
and x0 ∈ Rn. Denote by Aff(Rn,R) the set of real–valued affine functions on Rn. Then

(i) The value co [f ] (x0) of the convex envelope of f at x0 ∈ Rn is given by

co [f ] (x0) = inf
x1,...,xn+1

{
n+1∑
i=1

λif(xi) :
n+1∑
i=1

λi = 1,
n+1∑
i=1

λixi = x0,

λi ≥ 0, xi ∈ Rn
}
.

(2.1)

If, in addition, f is lower semicontinuous, then the infimum is attained, that is, for some
1 ≤ p ≤ n + 1 there are λ∗k > 0, y∗k ∈ Rn for k = 1, . . . , p, satisfying

∑p
k=1 λ

∗
k = 1 and∑p

k=1 λ
∗
ky
∗
k = x0 such that the points (y∗k, f(y∗k)), k = 1, . . . , p, lie in the intersection of a

supporting plane of the epigraph of f , epi(f), and epi(f), and

co[f ](x0) =

p∑
k=1

λ∗kf(y∗k) . (2.2)

(ii) The value co [f ] (x0), for f taking only finite values, can also be obtained as follows:

co [f ] (x0) = sup {`(x0) : ` affine and `(y) ≤ f(y) for all y ∈ Rn} (2.3)

with the sup attained by an affine function `∗ ∈ Aff(Rn) if f is lower semicontinuous.

We will also introduce the following local version of convex envelope at a point.

Definition 2.2. Let r > 0 and x0 ∈ Rn. Denote by B(x0; r) the open ball centered at x0 with radius
r, and by B(x0; r) the corresponding closed ball. Suppose f : B(x0; r) → R is a bounded function
in B(x0; r). Then the value coB̄(x0;r) [f ] (x0) of the local convex envelope of f at x0 in B(x0; r) is
defined by

coB̄(x0;r) [f ] (x0) = inf
x1,...,xn+1

{
n+1∑
i=1

λif(xi) :

n+1∑
i=1

λi = 1,

n+1∑
i=1

λixi = x0,

λi ≥ 0, |xi − x0| ≤ r, xi ∈ Rn
}
.

Remark 2.3. If f is lower semicontinuous, then by using the second part of Proposition 2.1(i), we
see that the infimum is attained in B(x0; r). This means that for some 1 ≤ p ≤ n + 1 there are
λk > 0, yk ∈ Rn such that |yk − x0| ≤ r for k = 1, . . . , p, satisfying

∑p
k=1 λk = 1,

∑p
k=1 λkyk = x0

and

coB̄(x0; r)[f ](x0) =

p∑
k=1

λkf(yk) , (2.4)

thus, in this case, co[f ](x0) depends only on the values of f in B(x0; r).
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We recall also the following ordering properties for compensated convex transforms which can
be found in Ref. [1],

C lλ(f)(x) ≤ f(x) ≤ Cuλ(f)(x), x ∈ Rn , (2.5)

whereas for f ≤ g in Rn, we have that

C lλ(f)(x) ≤ C lλ(g)(x) and Cuλ(f)(x) ≤ Cuλ(g)(x), x ∈ Rn . (2.6)

Proposition 2.4. (Translation invariance property) For any f : Rn → (−∞, +∞] bounded below
and for any affine function ` : Rn → R, co[f + `] = co[f ] + `. Consequently, both Cuλ(f) and C lλ(f)
are translation invariant against the weight function, that is

C lλ(f)(x) = co
[
λ|(·)− x0|2 + f

]
(x)− λ|x− x0|2 ,

Cuλ(f)(x) = λ|x− x0|2 − co
[
λ|(·)− x0|2 − f

]
(x)

for all x ∈ Rn and for every fixed x0. In particular, at x0, we have

C lλ(f)(x0) = co[λ|(·)− x0|2 + f ](x0) , Cuλ(f)(x0) = − co[λ|(·)− x0|2 − f ](x0) .

For both theoretical and numerical developments, the following property on the locality of the
compensated convex transforms for Lipschitz functions and bounded functions plays a fundamental
role. The result for bounded functions is a slight modification of the locality property stated in
Theorem 3.10, Ref. [3]. For a locally bounded function f : Rn → R, we define the upper and the
lower semicontinuous closure f and f [24, 25], respectively, by

f(x) = lim sup
y→x

f(y) and f(x) = lim inf
y→x

f(y). (2.7)

We have the following result.

Proposition 2.5. Suppose f : Rn → R is bounded. Let λ > 0 and x0 ∈ Rn. Then the following
locality properties hold:

C lλ(f)(x0) = coB(x0;Rf,λ)[f + λ|(·)− x0|2](x0)

Cuλ(f)(x0) = − coB(x0;Rf,λ)[λ|(·)− x0|2 − f ](x0)
(2.8)

with Rf,λ = 3
√
Of/λ. If f is Lipschitz continuous with Lipschitz constant L ≥ 0, then Rf,λ = 4L/λ.

Remark 2.6. The values of Rf,λ given here have improved upon those obtained in Theorem 3.10,
Ref. [3].

By Remark 2.3, the convex envelope over B(x0;Rf,λ) which enters (2.8) is therefore given by

coB(x0;Rf,λ)[f + λ|(·)− x0|2](x0) =

p∑
k=1

λk(λ|yk − x0|2 + f(yk)) (2.9)

for some 1 ≤ p ≤ n+ 1, λk > 0, yk ∈ Rn for k = 1, . . . , p, satisfying
∑p

k=1 λk = 1,
∑p

k=1 λkyk = x0

and

|yk − x0| ≤ Rf,λ (2.10)

7



for all k = 1, . . . , p. Similar conclusion can be drawn for coB(x0;Rf,λ)[λ|(·)− x0|2 − f ](x0).
Next we state the locality properties for the Moreau envelopes.

Proposition 2.7. Let f : Rn → R.

(i) If f is bounded, then for any fixed x ∈ Rn, if yx, zx ∈ Rn satisfy

Mλ(f)(x) = inf
y∈Rn
{f + λ|y − x|2} = f(yx) + λ|yx − x|2,

Mλ(f)(x) = sup
y∈Rn
{f(y)− λ|y − x|2} = f(zx)− λ|zx − x|2,

(2.11)

then

|yx − x| ≤
√
Of/λ and |zx − x| ≤

√
Of/λ. (2.12)

(ii) If f is a Lipschitz function with Lipschitz constant L ≥ 0. Then for any fixed x ∈ Rn, if
yx, zx ∈ Rn satisfy

Mλ(f)(x) = inf{f(y) + λ|y − x|2, y ∈ Rn} = f(yx) + λ|yx − x|2,
Mλ(f)(x) = sup{f(y)− λ|y − x|2, y ∈ Rn} = f(zx)− λ|zx − x|2,

(2.13)

then

|yx − x| ≤ L/λ and |zx − x| ≤ L/λ . (2.14)

Remark 2.8. Proposition 2.7(i) was also established in [13, Lemma 3.5.7] whereas 2.7(ii) is partially
contained in [26, Theorem 4.2]. In Appendix A we give a new the proof of these results.

For completeness, we recall the following relationship between the lower and upper Moreau
envelope and the lower and upper compensated convex transform given by

Mλ(f) = −Mλ(−f) and C lλ(f) = −Cuλ(−f) , (2.15)

and the ordering properties of the Moreau envelope which we give next for the lower Moreau
envelope in the case of f ≤ g with f, g bounded from below,

Mλ(f)(x) ≤ f(x) and Mλ(f)(x) ≤Mλ(g)(x) for x ∈ Rn . (2.16)

The following result precises the connection among the compensated convex transforms for the
different extensions of f : Ω ⊆ Rn → R over Rn. We give this relationship only for the lower
compensated convex transform given that by (2.15) we can establish similar ones for the upper
transform.

Proposition 2.9. Let Ω ⊂ Rn be a convex open set and assume f : Ω ⊂ Rn → R to be bounded.
Denote by f : Ω ⊂ Rn → R the lower semicontinuous envelope of f defined by (2.7) at the interior
points x and by

f(x) = lim inf
y→x, y∈Ω

f(y) (2.17)

8



at the boundary points x ∈ ∂Ω. The following inequalities hold

C lλ,Ω(f−
Ω

)(x) ≤ C lλ,Ω(f)(x) ≤ C lλ(f∞)(x) ≤ f(x) ≤ f(x) (2.18)

for any x ∈ Rn.

Next we recall from [27] the definition of modulus of continuity of a function along with some
of its properties which will be used to analyse the numerical scheme that computes the Moreau
envelope.

Definition 2.10. Let f : Rn → R be a bounded and uniformly continuous function in Rn. Then,

ωf : t ∈ [0, ∞) 7→ ωf (t) = sup
{
|f(x)− f(y)| : x, y ∈ Rn and |x− y| ≤ t

}
(2.19)

is called the modulus of continuity of f .

Proposition 2.11. Let f : Rn → R be a bounded and uniformly continuous function in Rn. Then
the modulus of continuity ωf of f satisfies the following properties:

(i) ωf (t)→ ω(0) = 0, as t→ 0;

(ii) ωf is non-negative and non-decreasing continuous function on [0,∞);

(iii) ωf is subadditive: ωf (t1 + t2) ≤ ωf (t1) + ωf (t2) for all t1, t2 ≥ 0 .

(2.20)

A function ω defined on [0, ∞) satisfying (2.20) is called a modulus of continuity. A modulus of
continuity ω can be bounded from above by an affine function (see Lemma 6.1 of Ref. [27]), that
is, there exist some constants a > 0 and b ≥ 0 such that

ω(t) ≤ at+ b (for all t ≥ 0). (2.21)

We conclude this Section by recalling the following definitions.
Let C be a subset of Rn. We define the distance of x ∈ Rn from C as

dist(x,C) := inf
y∈C
|y − x| , (2.22)

the diameter of the set C as

diam(C) := sup
x,y∈C

|y − x| , (2.23)

the indicator function iC of C ⊂ Rn as the function defined in Rn such that

iC(x) :=

{
0, if x ∈ C;

+∞, otherwise ,
(2.24)

and the characteristic function χC of C ⊂ Rn as the function defined in Rn such that

χC(x) :=

{
1, if x ∈ C;

0, otherwise .
(2.25)

It is then not difficult to verify that for any x ∈ Rn

9



dist2(x, C) = inf
y∈Rn

{
iC(y) + |y − x|2

}
=

1

λ
Mλ(λiC)(x) . (2.26)

that is, dist2(·, C) is the inf -convolution of iC with ‖ · ‖2, and is proportional to the lower Moreau
envelope of λiC with parameter λ.

3 Main Results

The main results given in this section consist of two parts. In the first part, we establish the
relationship between the local Moreau envelopes of (1.7) and the global Moreau envelopes of (1.8),
and between the corresponding mixed Moreau envelopes. This relationship is a consequence of the
type of auxiliary functions under consideration. In the second part, we give conditions that ensure
that the local Moreau envelopes and the corresponding mixed Moreau envelopes depend only on
the local values of f . The precise meaning of this statement will be specified for each result. Next
we consider the case of a bounded function f defined on a bounded domain Ω.

Theorem 3.1. Let Ω ⊂ Rn be a bounded open set and f : Ω ⊂ Rn → R a bounded function. Consider
the extensions f−

Ω
and f−Rn given by (1.7a) and (1.8a), respectively, and the extensions f+

Ω
and f+

Rn

given by (1.7b) and (1.8b), respectively. Then, for any x ∈ Ω,

Mλ,Ω(f−
Ω

)(x) = Mλ(f−Rn)(x) , (3.1)

Mλ
Ω(f+

Ω
)(x) = Mλ(f+

Rn)(x) , (3.2)

and

Mλ
Ω(Mλ,Ω(f−

Ω
))(x) = Mλ(Mλ(f−Rn))(x) , (3.3)

Mλ,Ω(Mλ
Ω(f+

Ω
))(x) = Mλ(Mλ(f+

Rn))(x) . (3.4)

Consequently, for any x ∈ Ω,

C lλ,Ω(f−
Ω

)(x) = C lλ(f−Rn)(x) , (3.5)

Cuλ,Ω(f+
Ω

)(x) = Cuλ(f+
Rn)(x) . (3.6)

Furthermore, we have the following locality results:

(i) If x ∈ Ω is such that dist2(x, ∂Ω) > Of/λ and there is zx ∈ Rn such that

Mλ,Ω(f−
Ω

)(x) = f−
Ω

(zx) + λ|zx − x|2

[resp. Mλ
Ω(f+

Ω
)(x) = f+

Ω
(zx)− λ|zx − x|2] ,

then Mλ,Ω(f−
Ω

)(x) [resp. Mλ
Ω(f+

Ω
)(x)] is determined by values of f on Ω, in the sense that

zx ∈ Ω.
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(ii) If x ∈ Ω is such that dist2(x, ∂Ω) > 4Of/λ and there is a zx ∈ Rn such that

Mλ
Ω(Mλ,Ω(f−

Ω
))(x) = Mλ,Ω(f−

Ω
)(zx)− λ|zx − x|2

[resp. Mλ
Ω(Mλ,Ω(f+

Ω
))(x) = Mλ,Ω(f+

Ω
)(zx) + λ|zx − x|2]

then Mλ
Ω(Mλ,Ω(f−

Ω
))(x) [resp. Mλ

Ω(Mλ,Ω(f+
Ω

))(x)] is determined by values of f on Ω, in the

sense that Mλ,Ω(f−
Ω

)(zx) = f−
Ω

(yx) + λ|yx − x|2 where zx, yx ∈ Ω.

Remark 3.2. The locality properties of Theorem 3.1 state that under the conditions (i) and (ii) on
x ∈ Ω, respectively, the values of C lλ,Ω(f−

Ω
)(x) [resp. C lλ,Ω(f+

Ω
)(x)] depend on the values of f on Ω.

This means that the values of C lλ,Ω(f−
Ω

)(x) [resp. C lλ,Ω(f+
Ω

)(x)] are not influenced by the values of f

we defined on ∂Ω when we define f−
Ω

(x) [resp. f+
Ω

(x)]. We express this by saying that C lλ,Ω(f−
Ω

)(x)

[resp. C lλ,Ω(f+
Ω

)(x)] is not affected by boundary values.

As an application of Theorem 3.1 we consider the case where f is the squared Euclidean distance
function to a closed set. The following two results are useful, for instance, when we need to compute
the multiscale medial axis map [6]. Let K be a nonempty closed set, the quadratic multiscale medial
axis map of K with scale λ > 0 is defined in [6, Definition 3.1] for x ∈ Rn by

M(λ; K)(x) = (1 + λ)
(

dist2(x; K)− C lλ(dist2(·; K))(x)
)
.

Next we describe how M(λ; K)(x) can be expressed in terms of the local lower transform. The
first result can be applied to find the multiscale medial axis map of the set Ω \K, where Ω is an
open subset of Rn and K ⊂ Ω a compact set.

Corollary 3.3. Let Ω ⊂ Rn be an open set and K ⊂ Ω a non-empty compact set. Let f(x) :=
dist2(x,K ∪ Ωc) for x ∈ Rn and f−

Ω
(x) be defined by (1.7a). Then for x ∈ Ω,

M(λ; K ∪ Ωc)(x) = (1 + λ)
(
f−

Ω
(x)− C lλ,Ω(f−

Ω
)(x)

)
. (3.7)

Remark 3.4. Equation (3.7) actually gives M(λ; K ∪Ωc)(x) for any x ∈ Rn given that M(λ; K ∪
Ωc)(x) = 0 for x ∈ Rn \ Ω.

The next result, on the other hand, applies when we need to define the multiscale medial axis
map of an open set A ⊂ Ω.

Corollary 3.5. Let Ω ⊂ Rn be an open set and A ⊂ Ω a non-empty open set. Let f(x) := dist2(x,Ac)
and define f−

Ω
(x) by (1.7a). Then for any x ∈ Ω

M(λ; Ac)(x) = (1 + λ)
(
f−

Ω
(x)− C lλ,Ω(f−

Ω
)(x)

)
. (3.8)

Remark 3.6. In this case we also have that M(λ; Ac)(x) = 0 for x ∈ Rn \ Ω.

Next we consider the behavior of the local upper compensated transform of the characteristic
function of a compact set in view of applications that involve the processing of binary images.

Theorem 3.7. Let Ω ⊂ Rn be an open set and K ⊂ Ω a non-empty compact set. Let χK denote the
characteristic function of K defined in Rn and χΩ

K the restriction of χK to Ω, that is,
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χΩ
K(x) =

{
1 if x ∈ K

0 if x ∈ Ω \K .
(3.9)

Then, if dist2(K, ∂Ω) > 1/λ, for any x ∈ Ω

Mλ
Ω(χΩ

K)(x) = Mλ(χK)(x) (3.10)

and

Mλ,Ω(Mλ
Ω(χΩ

K))(x) = Mλ(Mλ(χK))(x) . (3.11)

Consequently, if we define Cuλ,Ω(χΩ
K)(x) = Mλ,Ω(Mλ

Ω(χΩ
K))(x), it follows that

Cuλ,Ω(χΩ
K)(x) = Cuλ(χK)(x) . (3.12)

Remark 3.8. (i) Compared to Theorem 3.1, Theorem 3.7 states that in the case of binary func-
tions we can establish the equalities (3.10) and (3.11) using χΩ

K as defined by (3.9), and χK ,
rather than the corresponding auxiliary functions (1.7b) and (1.8b), respectively, which are
the type of functions that are used in Theorem 3.1.

(ii) It is possible to establish a locality result for Mλ
Ω(χΩ

K) and Mλ,Ω(Mλ
Ω(χΩ

K)) in the following
sense. If x ∈ Ω is such that dist2(x, ∂Ω) > 4/λ then dist2(zx, ∂Ω) > 1/λ, where zx ∈ Ω is
such that

Mλ
Ω(χΩ

K)(x) = χΩ
K(zx)− λ|zx − x|2 .

Also, if x ∈ Ω, then dist2(zx, ∂Ω) > 1/λ and dist2(yx, ∂Ω) > 1/λ where yx, zx ∈ Ω are such
that

Mλ,Ω(Mλ
Ω(χΩ

K)) = Mλ
Ω(χΩ

K)(zx) + λ|zx − x|2

= χΩ
K(yx)− λ|yx − zx|2 + λ|zx − x|2 .

As a consequence, if K = {y ∈ Ω : dist2(y, ∂Ω) ≥ 1/λ} and dist2(x, ∂Ω) > 9/λ, then both
Mλ

Ω(χΩ
K)(x) and Mλ,Ω(Mλ

Ω(χΩ
K))(x) are determined only by K, i.e. yx, zx ∈ K. The proof of

these results follows from the locality property of the Moreau envelopes (see Proposition 2.7)
and by a similar argument to the proof of Theorem 3.1(i) and (ii).

For applications to scattered data approximation and image inpainting [7, 22], we assume K ⊂
Ω ⊂ Rn to be a compact set, M > 0 and f : K → R to be a bounded function, and introduce the
following auxiliary functions
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fM
Ω,K

: x ∈ Ω 7→ fM
Ω,K

(x) =


f(x) x ∈ K

M x ∈ Ω \K

infK f x ∈ ∂Ω

(3.13a)

fMRn,K : x ∈ Rn 7→ fMRn,K(x) =


f(x) x ∈ K

M x ∈ Ω \K

infK f x ∈ Rn \ Ω

(3.13b)

f−M
Ω,K

: x ∈ Ω 7→ f−M
Ω,K

(x) =


f(x) x ∈ K

−M x ∈ Ω \K

supK f x ∈ ∂Ω

(3.13c)

f−MRn,K : x ∈ Rn 7→ f−MRn,K(x) =


f(x) x ∈ K

−M x ∈ Ω \K

supK f x ∈ Rn \ Ω

(3.13d)

where infK f and supK f denote the infimum and supremum of f over K, respectively.

Remark 3.9. With the notation given above, for the inpainting problem the set D = Ω \K will be
the non-empty open subset of Ω representing the damaged region of the image of domain Ω which
must be repaired, whereas for scattered data approximations K will be the set of sample points.

Theorem 3.10. Let Ω ⊂ Rn be a bounded open set and K ⊂ Ω a compact set. Assume f : K → R
to be bounded, and, for M > 0, consider the auxiliary functions defined by (3.13).Suppose λ > 0,
then, for any x ∈ Ω,

Mλ,Ω(fM
Ω,K

)(x) = Mλ(fMRn,K)(x) ,

Mλ
Ω(f−M

Ω,K
)(x) = Mλ(f−MRn,K)(x) ,

(3.14)

and

Mλ
Ω(Mλ,Ω(fM

Ω,K
))(x) = Mλ(Mλ(fMRn,K))(x) ,

Mλ,Ω(Mλ
Ω(f−M

Ω,K
))(x) = Mλ(Mλ(f−MRn,K))(x) .

(3.15)

Furthermore, let D = Ω \ K and assume that Ωc ∩ D = ∅. Define Of = supKf − infK f and
dist(∂D, ∂Ω) = infx∈∂D{dist(x, ∂Ω)}. If M > supΩ\D f +λ diam2(D) and dist2(∂D, ∂Ω) > Of/λ,
the following locality properties hold:

(i) If x ∈ Ω is such that dist2(x, ∂Ω) > Of/λ then Mλ,Ω(fM
Ω,K

)(x) [resp. Mλ
Ω(f−M

Ω,K
)(x)] is deter-

mined by values of f |Ω\D. More precisely, if
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Mλ,Ω(fM
Ω,K

)(x) = fM
Ω,K

(zx) + λ|x− zx|2

[resp. Mλ
Ω(f−M

Ω,K
)(x) = f−M

Ω,K
(zx)− λ|zx − x|2] ,

for some zx ∈ Ω, then zx ∈ Ω \D.

(ii) If x ∈ Ω is such that dist2(x, ∂Ω) > 4Of/λ then Mλ
Ω(Mλ,Ω(fM

Ω,K
))(x) [resp. Mλ,Ω(Mλ

Ω(f−M
Ω,K

))(x)]

is determined by values of f |Ω\D. More precisely, if

Mλ
Ω(Mλ,Ω(fM

Ω,K
))(x) = Mλ,Ω(fM

Ω,K
)(zx)− λ|x− zx|2

[resp. Mλ,Ω(Mλ
Ω(f−M

Ω,K
))(x) = Mλ

Ω(f−M
Ω,K

)(zx) + λ|x− zx|2] ,

for some zx ∈ Ω, then

Mλ,Ω(fM
Ω,K

)(zx) = fM
Ω,K

(yx) + λ|yx − zx|2

[resp. Mλ
Ω(f−M

Ω,K
)(zx) = f−M

Ω,K
(yx)− λ|yx − zx|2] ,

with zx, yx ∈ Ω \D.

Remark 3.11. (i) Given the definition of fM
Ω,K

, it is not difficult to show that if M > supK f +

λ diam2(Ω) and if for x ∈ Ω, Mλ,Ω(fM
Ω,K

)(x) = fM
Ω,K

(zx) + λ|zx − x|2 with zx ∈ Ω, then zx
must belong to K∪∂Ω. The locality property of Theorem 3.10 is de facto making more precise
this result by stating that zx ∈ K. The proof that, in general, zx ∈ K ∪ ∂Ω can be realized by
contradiction. Assume z ∈ Ω \ (K ∪ ∂Ω), then fM

Ω,K
(z) = M , thus we have

M ≤Mλ,Ω(fM
Ω,K

)(x) = fM
Ω,K

(zx) + λ|zx − x|2

= M + λ|zx − x|2

≤ fM
Ω,K

(z) + λ|z − x|2 for any z ∈ Ω .

In particular, the inequality holds also for y ∈ K such that |y − x|2 = dist2(x, K), that is,

M ≤ fM
Ω,K

(y) + λ|y − x|2

≤ sup
K

f + λdist2(x, K)

≤ sup
K

f + λ diam2(Ω)

which is a contradiction. A similar argument can be made for Mλ
Ω(f−M

Ω,K
)(x).
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(ii) The first part of Theorem 3.10 on the equality between the local and global Moreau envelopes
of our auxiliary functions is, in fact, a consequence of Theorem 3.1 applied to the functions
(3.13) which are bounded in Ω and are of the type (1.7) and (1.8) considered in Theorem
3.1. However, by Theorem 3.1, we could only conclude that, for instance, for zx as in (i),
(ii), we have zx ∈ Ω. Thus, the relevance of the results stated in Theorem 3.10 is in the
locality properties, that is, under the conditions on M and dist(∂D, ∂Ω) we can conclude that
zx ∈ K = Ω \D.

(iii) Theorem 3.10(ii) can be used to get an estimate of the value of λ so that the globally defined
compensated convex transforms via the mixed critical Moreau envelopes coincides with the
local compensated convex transforms apart from a boundary layer. For instance, if we want
to restric these boundary effects only to a one-pixel wide boundary layer, that is for x ∈ Ω
such that dist(x, ∂Ω) < 1, of an image with values in the range [0, 1] so that Of = 1, we need
to take at most λ ≥ 4Of/dist2(x, ∂Ω) = 4.

4 Numerical Scheme

Given the equalities (3.5), (3.6), the numerical realization of the local compensated convex trans-
forms boils down to computing the Moreau envelope of a function defined in Rn. Without loss of
generality, given the relation (2.15) between the upper and lower Moreau envelopes, we will refer
in the following only to the computation of the lower Moreau envelope. To compute the upper
Moreau envelope, it is not difficult to adapt the algorithm proposed, or to use the relation (2.15)
between the two envelopes.

The computation of the Moreau envelope is an established task in the field of computational
convex analysis [28] and references therein, that has been tackled by various different approaches
aimed at reducing the complexity of a direct brute force implementation of the transform. The
methods developed in [29, 30, 31], for instance, are based on a dimensional reduction. The authors
exploit the property that the Moreau envelope can be factored by n 1d Moreau envelopes and its
relationship with the Legendre-Fenchel transform [20, Example 11.26]. The factorization of the
Moreau envelope is also used in [32] where the construction of the inf-convolution is reduced to the
computation, in constant time, of the envelope of parabolas.

Moreau envelopes can also be obtained by mathematical morphology operations which can be
particularly useful in the case when f represents an image. Such a class of methods can be obtained
by an appropriate modification of the ones that compute the Euclidean distance transform of binary
images. Here we develop such a method that generalizes the one used in [33, 16, 34] to compute
the discrete Euclidean distance transform.

The fundamental idea is the characterization (2.26) of the Euclidean distance in terms of the
Moreau envelope of the characteristic function. The Euclidean distance transform is the erosion of
the characteristic function by the quadratic structuring element whereas the Moreau envelope is
the erosion of the image f . Thus, one can think of generalizing the Euclidean distance transform of
binary images, by replacing the binary image by an arbitrary function on a grid. The decomposition
of the structuring element which yields the exact Euclidean distance transform [34] into basic ones,
yields a simple and fast algorithm where the discrete lower Moreau envelope can be computed
by a sequence of local operations, using one-dimensional neighborhoods. We will use the same
structuring element as in [33] and show that we recover the exact discrete lower Moreau envelope.

Unless otherwise stated, in the following, i, j, k, r, s, p, q ∈ Z denote integers whereas m, n ∈ N
are non-negative integers. Given n ≥ 1, we introduce grid of points of the space Rn with regular
spacing h > 0 denoted by xk ∈ Rn, k ∈ Z.
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Definition 4.1. Suppose f : Rn → R ∪ {∞} satisfies f(x) ≥ −c0|x|2 − C1 with c0, C1 ≥ 0. Let
h > 0, n ≥ 1 and denote by xk a point of the grid of Rn of size h. Then the discrete Moreau lower
envelope at xk ∈ Rn is defined by

Mh
λ (f)(xk) = inf{f(xk + rh) + λh2|r|2, r ∈ Zn}. (4.1)

for λ > c0.

The approximation of Moreau lower envelope by the discrete Moreau lower envelope is quantified
by the following estimation result. We consider the case where f is a uniformly continuous function
first.

Theorem 4.2. Let f : Rn → R be a function with modulus of continuity ωf such that ωf (t) ≤ at+ b
with a > 0 and b ≥ 0 for any t ≥ 0. Assume h > 0 and n ≥ 1. Then, for any grid point xk of the
grid of Rn of size h,∣∣∣Mh

λ (f)(xk)−Mλ(f)(xk)
∣∣∣ ≤ ωf (h

√
n) + 2λh2n+ 2h

√
λ d(λ) (4.2)

where d(λ) =

√
ωf

(
a/λ+

√
b/λ
)

.

Remark 4.3. Since the modulus of continuity ωf = ωf (t) tends to zero as t→ 0+ (see Proposition
2.20(i)), it follows that the error bound in (4.2) tends to zero when h→ 0+.

The rate of convergence in (4.2) can be improved for L−Lipschitz functions f . In this case, we
have the following result.

Corollary 4.4. Let f be an L−Lipschitz function in Rn. Assume h > 0 and n ≥ 1. Then, for any
grid point xk of the grid of Rn of size h,∣∣∣Mh

λ (f)(xk)−Mλ(f)(xk)
∣∣∣ ≤ (2 +

√
n)Lh+ 2λh2n . (4.3)

Remark 4.5. Under the same regularity conditions, [29] obtains the same converegnce rate for a
real function of one real variable. However, in contrast to the scheme [29] we obtain directy the
values of the Moreau envelope at the grid points by a scheme which has the same complexity as the
distance transform [16] and can be easily implemented and applied to any dimension.

In Definition 4.1, the infimum is taken over infinitely many grid points thus its computation
is not practical. Therefore we introduce the m-th approximation of the discrete Moreau lower
envelope where the order of approximation m is related to the number of nodes that are taken to
compute the infimum in the definition of the envelope.

Definition 4.6. Let n ≥ 1 and denote by xk a point of the grid of Rn of size h. The m-th approxi-
mation of the n−th dimensional discrete Moreau lower envelope Mh

λ (f) is given by

gm(xk) = inf{f(xk + rh) + λh2|r|2, r ∈ Zn, |r|∞ ≤ m} (4.4)

for λ > c0, where |r|∞ is the infinity norm of r ∈ Zn.

Given m ≥ 1, to evaluate gm(xk) at any point xk of the grid of Rn of size h, we can, in fact,
consider the values fm(xk) that are obtained by applying Algorithm 1:
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Algorithm 1 Computation of fm(xk) at the points xk of the grid of Rn of size h for given m ≥ 1.

1: Set i = 1, m ∈ N
2: ∀xk, f0(xk) = f(xk)
3: while i < m do
4: τi = 2i− 1
5: fi(xk) = min{fi−1(xk + rh) + λh2|r|2τi : r ∈ Zn, |r|∞ ≤ 1}
6: i← i+ 1
7: end while

The relation between fm(xk) and gm(xk) is described in the following theorem.

Theorem 4.7. Let f be bounded in Rn. Assume λ > 0. Then for all the grid points xk of the grid
of Rn of size h, and m = 0, 1, 2, . . . ,

fm(xk) = gm(xk)

with fm(xk) computed by applying Algorithm 1.

By definition, for every grid point xk, gm(xk) is decreasing in m. Since gm(xk) is bounded from
below by Mh

λ (f)(xk), gm will then converge as m goes to ∞. The following result actually shows
that it will take only finitely many iterations for gm(xk) to reach Mh

λ (f)(xk).

Proposition 4.8. Let f be bounded in Rn. Assume h > 0 and denote by xk a point of the grid of Rn
of size h. Then

Mh
λ (f)(xk) = gm(xk) ,

for m ≥ b 1
h

√
osc(f)
λ c+ 1, where bxc denotes the integer part of x.

Remark 4.9. For an 8−bit image with h = 1 the pixel size and osc(f) = 255, if we take m ≥
b16/
√
λc+ 1, we will have gm(xk) = Mh

λ f(xk) at any grid point xk.

For completeness, we conclude this section by giving the scheme that we use for the implementa-
tion of the convex based definition of the compensated transforms. The scheme is a generalization
of the one introduced in [8] that is briefly summarized in Algorithm 2 and described below. Given
a uniform grid of points xk ∈ Rn, equally spaced with grid size h, denote by Sxk the d−point
stencil of Rn with center at xk defined as Sxk = {xk +hr, |r|∞ ≤ 1, r ∈ Zn} with | · |∞ the `∞-norm
of r ∈ Zn and d = #(S), cardinality of the finite set S. At each grid point xk we compute an
approximation of the convex envelope of f at xk by an iterative scheme where each iteration step
m is given by

(co f)m(xk) = min
{
f(xk),

∑
λi(co f)m−1(xi) :

∑
λi = 1, λi ≥ 0, xi ∈ Sxk

}
with the minimum taken between f(xk) and only some convex combinations of (co f)m−1 at the
stencil grid points xi of Sxk . Likewise [8], the scheme can be shown to converge but there is no
estimate of the rate of convergence.

5 Numerical Experiments

In this section we first present a one-dimensional and a two-dimensional prototype example with
analytical expression for C lλ,Ω(f−

Ω
) which we use:
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Algorithm 2 Computation of the convex envelope of f according to [8]

1: Set m = 1, (co f)0 = f, tol
2: ε = ‖f‖L2

3: while ε > tol do
4: ∀xk, (co f)m(xk) = min

{
f(xk),

∑
λi(co f)m−1(xi) :

∑
λi = 1, λi ≥ 0, xi ∈ Sxk

}
5: ε = ‖(co f)m − (co f)m−1‖L2

6: m← m+ 1
7: end while

(i) to verify the numerical scheme introduced in Section 4;

(ii) to compare the compensated convex transforms using the local Moreau envelope based defi-
nition and the convex based definition.

(iii) to analyze different behaviors of the transformations C lλ,Ω(f−
Ω

) and C lλ(f∞) at the boundary
of the domain.

For computing the compensated convex transforms by using the Moreau envelope based definition,
we use the iterative scheme described by Algorithm 1, whereas for the realization of the convex
based definition of the compensated convex transforms, we apply Algorithm 2, which has already
been employed to carry out numerical examples of [6, 4]. In the application of Algorithm 1,
rather than fixing the number m of iterations, we introduce the convergence check on the `∞

norm of the error between two succesive iterates such as we do when we apply Algorithm 2. We
then describe numerical experiments on applications of the local compensated convex transforms
on a bounded closed convex domain for the extraction of the multiscale medial axis map, the
extraction of Hausdorff stable intersections of smooth manifolds and finally, for the interpolation
and approximation of sampled functions.

Example 5.1. A one-dimensional prototype example. We consider a one-dimensional model
problem given by the piecewise affine double well model

f(x) = dist(x, {−1, 1}) = min{|x− 1|, |x+ 1|} (5.1)

for x ∈ Ω := {x ∈ R, |x| ≤ 2}. Let the corresponding f−
Ω

be defined by (1.7a). For λ ≥ 1, it is not
difficult to show that

C lλ,Ω(f−
Ω

)(x) =



A(|x| − 1),

∣∣∣∣|x| − 2 + x1

2

∣∣∣∣ ≤ 2− x1

2
,

f(x),

∣∣∣∣|x| − x1 + x2

2

∣∣∣∣ ≤ x1 − x2

2
,

1− 1

4λ
− λx2, |x| ≤ x2,

0, otherwise ,

(5.2)

where x1 = 2 −
√
λ/λ, x2 = 1/(2λ) and A(x) = −λx2 + (2λ − 2

√
λ + 1)x − λ + 2

√
λ − 1.

Given the definition of f−
Ω

, at the boundary nodes ∂Ω = {−2, 2}, we have that Mλ,Ω(f−
Ω

)(x) =

Mλ
Ω(Mλ,Ω(f−

Ω
))(x) = inf f for x ∈ ∂Ω. After choosing a uniform grid of Ω with grid size h which

we denote next as Ωh, we can therefore run Algorithm 1 only at the interior points xk ∈ Ωh and
assume fi = inf f when the scheme is applied at the first grid point xk of Ωh next to −2 and 2. For
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a given grid size h and for any given m, number of iterations used in the application of Algorithm
1, we compute the `∞-norm of the error defined as

‖e‖`∞ = max{|C lλ,Ω(f−
Ω

)(xk)−Mλ,h
Ω (Mh

λ,Ω(f−
Ω

))(xk)|, xk ∈ Ωh} .
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Figure 1 (a) Variation of ‖e‖`∞ with the number m of iterations and for different values of the
grid size h and λ = 2; (b) Convergence plot of the error with the grid size h and λ = 1 and λ = 2.

Figure 1(a) displays the convergence plot with respect to the number of iterations for different
values of the grid size h and for given values of the parameter λ, λ = 1 and λ = 2, whereas Figure
1(b) shows the convergence plot with respect to the grid size h, using for each h the value of m
such that the `∞ norm of the error between two iterates is not greater than 10−7 and for different
values of λ. We observe that the number m of iterations to obtain convergence increases as h is
reduced, consistently with the theoretical finding of Proposition 4.8, whereas Figure 1(b) exhibits
the linear convergence rate of the scheme as predicted by Corollary 4.4. The graph of (5.2) and

Mλ,h
Ω (Mh

λ,Ω(f−
Ω

)), with the latter corresponding to the grid size h = 0.01 and λ = 2 are shown in
Figure 2.
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Figure 2 Graph of (5.2), Mh
λ,Ω(f−

Ω
) and Mλ,h

Ω (Mh
λ,Ω(f−

Ω
)), with h = 0.01 and λ = 2.

To compare the Moreau computation of C lλ,Ω(f−
Ω

) given by Mλ,h
Ω (Mh

λ,Ω(f−
Ω

)), to the convex based

definition which relies on the equality C lλ,Ω(f−
Ω

) = C lλ(f−Rn), Table 1 reports, for different grid size

h, the error ‖e‖`∞ and the number of iterations m that compute Mλ,h
Ω (Mh

λ,Ω(f−
Ω

)) and C lλ(f−Rn) such

that the `∞ norm of the error between two iterates is not greater than 10−7. Inspection of Table
1 shows that for a given grid size h the Moreau based computation uses a much lower number of
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iterations, especially for small h, and the discrete Moreau based lower transform is more accurate
than the discrete convex based lower transform. Furthermore, for small values of h, we also note
that the convex based scheme (Algorithm 2) appears not to be numerically stable. The number of

iterations m relative to the computation of Mλ,h
Ω (Mh

λ,Ω(f−
Ω

)) is the total number of iterations which
sums up the iterations for computing the lower Moreau envelope and the upper Moreau envelope.

λ = 1 λ = 2

Mλ,h
Ω (Mh

λ,Ω(f−
Ω

)) C lλ(f−Rn) Mλ,h
Ω (Mh

λ,Ω(f−
Ω

)) C lλ(f−Rn)

h m ‖e‖`∞ m ‖e‖`∞ m ‖e‖`∞ m ‖e‖`∞
10−1 14 0.09 254 0.10 12 0.16 130 0.1771431

5 · 10−2 24 0.00475 905 0.05 21 0.085 472 0.09

10−2 104 0.0099 15871 0.0100032 95 0.0182 8669 0.0182276

5 · 10−3 204 0.004975 52053 0.0050064 185 0.00905 28870 0.009132

10−3 1004 0.000999 651472 0.0104497 917 0.0001826 394000 0.0059748

5 · 10−3 2004 0.0004997 1572046 0.0377351 1831 0.0009135 1037066 0.0199438

10−4 9999 0.0000999 − − 9143 0.000128 − −

Table 1 Number of iterations m and values of the error ‖e‖`∞ of Mλ,h
Ω (Mh

λ,Ω(f−
Ω

)) and Clλ(f−Rn)
computed by applying Algorithm 1 and Algorithm 2, respectively, for different values of the grid
size h and λ. The number of iterations m given in the table corresponds to the termination criteria
with the `∞ norm of the error between two successive iterates not greater than 10−7. The reported
values of m for computing Mλ,h(Mh

λ (f−
Ω

)) are the total number of iterations.

We conclude this example by looking at the behavior of C lλ(f∞) with f∞ defined by (1.5). For
λ ≥ 1/2, we have then the following explicit formula for C lλ(f∞),

C lλ(f∞)(x) =


1− 1

4λ
− λx2, |x| ≤ 1

2λ
,

f∞(x), |x| ≥ 1

2λ
.

(5.3)

The graph of C lλ(f∞)(x) is displayed in Figure 3(a) along with that of C lλ,Ω(f−
Ω

) given by (5.2).
Note that the two transforms differ at the boundary of Ω, as a result of the type of singularity
therein introduced by the definition of f∞ and f−

Ω
, respectively.

At first sight, the computation of C lλ(f∞) as Mλ(Mλ(f∞)) would be faced with the problem of
having to evaluate Mλ(f∞) in Rn. In this case, one could therefore think of resorting to the convex
based definition by the assumption that C lλ(f∞) = f∞ on ∂Ω and the application of a scheme
that computes the convex envelope of a function. Although there are several such schemes in the
literature, such as the quickhull algorithm [35] or the one introduced in [8], their application can
be quite cumbersome when applied to compute the convex envelope of a function defined in Rn with
n > 1, or it can exhibit a slow and unknown rate of convergence as in [8] which would not allow
any prediction for the rate of error reduction. As a result, even in the case of C lλ(f∞) one might
wonder whether it is possible to use Algorithm 1 to obtain an approximation of C lλ(f∞). Given the
localization effect of the inf- and sup-convolution with quadratic perturbations, we can also use the
Moreau based definition of C lλ(f∞) and apply Algorithm 1 provided that one computes Mλ(f∞) and
Mλ(Mλ(f∞)) over an extended domain Ωe that contains Ω. Figure 3(b) displays the graph of the
transforms in the case of Ωe = Ω and of Ω ⊂ Ωe with

Ωe =]− 2− 1/(2λ), 2 + 1/(2λ)[ . (5.4)
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Figure 3 (a) Graph of Clλ(f∞)(x) and Clλ,Ω(f−
Ω

) for λ = 2 as given by (5.3) and (5.2), respectively.

(b) Graph of Clλ(f∞)(x), Mh
λ,Ωe

(f∞) and of Mλ,h
Ωe

(Mh
λ,Ωe

(f∞)) for Ωe = Ω and Ωe given by (5.4),
and by taking h = 0.01 and λ = 2. For the simulations, in place of f∞ we have considered
fM (x) = χΩ(x)f(x) + (1− χΩ(x))M with M = 103.

In the first case, we are actually computing the transform Mλ
Ω(M∞λ (f∞)) where we have set

M∞λ (f∞)(x) =

{
Mλ(f∞)(x) , x ∈ Ω ,

∞ , otherwise,

which produces a boundary error, whereas in the second case we obtain an excellent approximation of
C lλ(f∞) with ‖e‖∞=0.0002. Note that how big the domain Ωe must be to ensure that C lλ(f∞)(x) =
Mλ

Ωe
(Mλ,Ωe(f

∞))(x) for x ∈ Ω, is an open question.

Example 5.2. A two-dimensional prototype example. Let Ω = B(O; 2) be the open ball with
center at the origin O ∈ R2 and radius r = 2. Consider the squared distance of x ∈ Ω to the
boundary ∂B(O; 1) given by

f(x, y) = dist2(x, ∂B(O; 1)), x ∈ B(O; 2) , (5.5)

and the functions f−
Ω

and f∞ defined by (1.7a) and (1.5), respectively. Given the radial symmetry

of f−
Ω

and f∞, it is not difficult to verify that, for λ ≥ 1,

C lλ,Ω(f−
Ω

)(x) =



0, r > 2 ,

−|m(r − 2)|+ 4λ− λr2,

∣∣∣∣r − 2 + xp
2

∣∣∣∣ ≤ 2− xp
2

,

f−
Ω

(r),

∣∣∣∣r − xs + xp
2

∣∣∣∣ ≤ xp − xs
2

,

λ

1 + λ
− λr2, r < xs ,

(5.6)

and

C lλ(f∞)(x) =


f∞(r), r > xs ,

λ

1 + λ
− λr2, r ≤ xs ,

(5.7)
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where r = |x|, xp = 2 − 1/
√

1 + λ, xs = 1/(1 + λ) and m = 2(1 + 2λ) − 2
√

1 + λ. Though for
the computation of (5.6) and (5.7) we could exploit the symmetry of f−

Ω
and f∞ and reduce their

evaluation to 1d problems, in order to verify our scheme for 2d applications, we will not take the
symmetry into account and will refer to f−

Ω
and f∞ as generic functions of x ∈ R2. Let D ⊂ R2 be

a box that contains Ω, for instance, let us take

D =]− 2.5, 2.5[× ]− 2.5, 2.5[

and consider f−
Ω

and f∞ to be extended over D by setting f−
Ω

(x) = 0 for x ∈ D \ Ω, respectively.
Since Algorithm 1 is formulated for a square lattice, we will refer to the above extensions over D
for the application of the algorithm and still denote them by f−

Ω
and f∞.
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Figure 4 (a) Variation of the `∞ norm of the error versus the number of iterations m for different
grid sizes h and λ = 1. (b) Convergence plot of the error with respect to the grid size and for
different values of λ.

As in the previous example, Figure 4(a) displays the convergence plot of the `∞ norm of the error
versus the number of iterations for different grid sizes, with a number of iterations that increases
by reducing h, whereas Figure 4(b) shows the linear convergence of the error with the grid size.
Table 2 contains for different grid sizes h, the total number of iterations m and the error ‖e‖`∞
of the approximations of Mλ,h

Ω (Mh
λ,Ω(f−

Ω
)) and C lλ(f−Rn), for the comparison of the Moreau and

convex based computation of the local lower transform, respectively. Also observe that the number
of iterations needed to compute the local lower transform using the Moreau based definition is much
less than the one needed for the computation based on the convex envelope. For small grid size,
while the computation of Mλ,h

Ω (Mh
λ,Ω(f−

Ω
)) takes just a few seconds, the computing time of C lλ(f−Rn)

using a tolerance for the convergence of the scheme equal to 10−7 for the `∞ norm of the difference
between two succesive iterates, is much longer. Furthermore, for a given grid size, the discrete
Moreau based lower transform is much more accurate than the convex based lower transform and,
as in the previous example, for small values of h the convex based scheme appears to be unstable,
showing oscillations in the error.

We conclude the discussion of this example with some observations on the computation of
C lλ(f∞). By means of numerical simulations, we show that there exists a domain De that con-
tains Ω such that C lλ(f∞)(x) = Mλ

De
(Mλ,De(f

M ))(x) for x ∈ Ω with fM defined below. Assume
a > 0 and consider the extended domain

De = [−2− a, 2 + a] × [−2− a, 2 + a] .

Given M > 0, define the following auxiliary function
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λ = 1 λ = 2

Mλ,h
Ω (Mh

λ,Ω(f−
Ω

)) C lλ(f−Rn) Mλ,h
Ω (Mh

λ,Ω(f−
Ω

)) C lλ(f−Rn)

h m ‖e‖`∞ m ‖e‖`∞ m ‖e‖`∞ m ‖e‖`∞
0.25 7 0.0629657 22 0.1147375 6 0.125 18 0.2127817

0.1 12 0.04 127 0.0450623 10 0.0784089 94 0.0805668

0.05 22 0.0203122 466 0.0214302 17 0.0323148 340 0.0324987

0.025 42 0.0111877 1634 0.0166887 31 0.0203275 1152 0.0228483

0.02 52 0.0070677 2453 0.0170046 39 0.0134798 1742 0.0237278

0.01 102 0.0034324 8073 0.0161028 75 0.0054984 5949 0.0219233

0.005 202 0.001664 − − 149 0.0031323 − −
0.0025 402 0.00095 − − 295 0.0016961 − −
0.001 1002 0.0003644 − − 735 0.0006545 − −

Table 2 Number of iterations m and values of the error ‖e‖`∞ of approximations of Mλ,h
Ω (Mh

λ,Ω(f−
Ω

))

and Clλ(f−Rn) by applying Algorithm 1 and Algorithm 2, respectively, for different values of the grid
size h. The number of iterations m given in the table, has been obtained by taking as termination
criteria of the two algorithms the check on the `∞ norm of the error between two successive iterates,
which was set not greater than 10−7. The values of m shown in the table denote the total number
of iterations. There are no values reported for the convex based scheme in the case of h ≤ 0.005
due to the long running time.

fM (x) =

{
f(x), x ∈ B(O; 2),

M, x ∈ De \B(O; 2) .
(5.8)

Then we apply Algorithm 1 to the interior grid points of De to compute the lower and upper
Moreau envelope. Table 3 reports the value of the `∞ norm of the error between Mλ

De
(Mλ,De(f

M ))(x)

and C lλ(f∞)(x) respectively in Ω for different values of the grid size h, the domain extension pa-
rameter ′a′ and the parameter λ. We observe that by choosing M large enough and by a suitable
choice of a, we get an excellent agreement in Ω. Also in this case, we conjecture that this extension
depends on λ, but obtaining a formula for it is an open issue at present.

λ = 1 λ = 2

h = 0.01 h = 0.005 h = 0.01 h = 0.005

a ‖e‖`∞ a ‖e‖`∞ a ‖e‖`∞ a ‖e‖`∞
0 0.4960309 0 0.4982693 0 0.3302767 0 0.3319488

0.2 0.3165244 0.2 0.3184523 0.2 0.1180116 0.2 0.1190902

0.5 0.1225861 0.5 0.1239016 0.34 0.0329538 0.34 0.0336187

1 0.0002370 1 0.0000963 0.5 0.0004378 0.5 0.0001693

1.2 0.0002370 1.2 0.0000963 1 0.0004378 1 0.0001693

Table 3 Values of the error ‖e‖`∞ in Ω between Clλ(f∞) and Mλ
De

(Mλ,De
(fM )) for different values

of h, the extension a and λ. The results refer to M ≥ 103.

Example 5.3. The Multiscale Medial Axis Map. We present an application of Corollary 3.5
to find the multiscale medial axis map of the closed set K represented in Figure 5(a). The open
set Ω is taken, in this case, as the domain of the whole image and A = Ω \K. By Corollary 3.5
the quadratic multiscale medial axis map with scale λ of the closed set K can then be computed for
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x ∈ Ω as

M(λ; K)(x) =
(
f−

Ω
(x)− C lλ,Ω(f−

Ω
)(x)

)
where f−

Ω
(x) = dist2(x; Kc) for x ∈ Ω. Note that in this case f−

Ω
(x) = 0 for x ∈ ∂Ω.

The support of M(λ; K)(x) with all its fine branches is shown in Figure 5(b). Figure 5(c)
depicts the stable branches that correspond to the suplevel set of M(λ; K)(x), given by {x ∈ Ω :
M(λ; K)(x) > t} with t > 0 measure of the branch height, whereas Figure 5(d) displays the results
of the morphological thinning of the suplevel set shown in Figure 5(c) using the algorithm described
in [36, page 879, bottom of first column through top of second column] implemented in MATLAB.
To produce Figure 5(c) we have taken t = 1 after normalizingM(λ; K) to the range [0, 255]. While
the medial representation of the leaf stem is present in the support of M(λ; K) (see Figure 5(b)),
this disappears in the suplevel set relative to t = 1. The very small values of M(λ; K) at such
points is the result of the small value of the separation angle, which is, in turn, related to the values
of M(λ; K) (see the bound (3.11) in [6]). The application of Algorithm 1 and Algorithm 2, when
f is an image, simplifies by taking the digitized image as the grid, and h = 1 equal to the pixel size.
To compare the performance of the two algorithms, Figure 6 displays the variation of the L2−norm
of C lλ,Ω(f−

Ω
) with the number of iterations m used to compute Mλ

Ω(Mλ,Ω(f−
Ω

)) by Algorithm 1 and to

compute C lλ(f−Rn) by Algorithm 2. By referring to the Moreau based definition, convergence of the
scheme is achieved after a finite number of iterations (m = 118) which is much lower than those
needed to compute the convex envelope based definition of the lower transform (m = 22783).

Example 5.4. Shape interrogation. As an application of Theorem 3.7, we consider the compu-
tation of the intersection extraction filter Iλ(·; K) introduced in [3] with the digitized set K as the
input image. Given a non-empty compact set K ⊂ Rn, and taking Ω as a reference bounding box
such that K ⊂ Ω and with K distant enough from the boundary of Ω, by Theorem 3.7, the filter
Iλ(·; K) can be expressed in terms of the local transforms as

Iλ,Ω(x; K) =
∣∣∣Cu4λ,Ω(χΩ

K)(x)− 2
(
Cu4λ,Ω(χΩ

K)(x)− C lλ,Ω(Cuλ,Ω(χΩ
K))(x)

)∣∣∣ . (5.9)

For the digitized set K given by the collection of curves shown in Figure 7(a), the local maxima of
Iλ,Ω(·; K) coincide with all the crossing and turning points of the set K. The filter defined by (5.9)
can also be applied to 3d geometries. Due to the Hausdorff stability of (5.9), we can also consider
K represented by point clouds. Figure 7(b) displays the intersection between manifolds of different
dimensions with each manifold sampled by point clouds.

Example 5.5. Image Inpainting. Let Ω be the domain of the whole image, D ⊂ Ω the set of
missing/damaged pixels and K = Ω \ D the set of the true pixels. The image inpainting problem
consists in reconstructing the image over D from knowing fK , if we denote by f the original image.
In [22] it is shown that the restored image can be obtained by the average compensated convex
transform, which under the assumptions of Theorem 3.10, can be computed for x ∈ Ω as

AMλ,Ω(x) =
1

2

(
C lλ,Ω(fM

Ω,K
)(x) + Cuλ,Ω(f−M

Ω,K
)(x)

)
, (5.10)

where fM
Ω,K

and f−M
Ω,K

have been defined in (3.13a) and (3.13c), respectively. We give here an

application of (5.10) for the problem of removing scratches overprinted over an image such as
the one displayed in Figure 8(a). By using the Moreau based definition of the upper and lower
transforms that enter (5.10) and by applying Algorithm 1, we compute with λ = 5 and M = 104

the averaged image AMλ,Ω defined by (5.10) and consider the restored image given by
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(a) (b)

(c) (d)

Figure 5 Example 5.3. Computation of the multiscale medial axis map. (a) Characteristic function
of the set Ω \K; (b) Support of the multiscale medial axis map for λ = 1 with the display of all the
fine brances generated by the steps on the boundary. (c) Suplevel set {x ∈ Ω : M(λ; K)(x) > t}
for t = 1, displaying the stable branches corresponding to the level t. (d) Morphological thinning
of (c) by the structuring element described in [36, page 879, bottom of first column through top of
second column] implemented in MATLAB.
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Figure 6 Example 5.3. Variation of the L2-norm of Clλ,Ω(f−
Ω

) with the number m of iterations
using the Moreau based definition and the convex based definition. λ = 1.

(a) (b)

Figure 7 Example 5.4. Applications of the filter defined by (5.9) for shape interrogation to detect:
(a) Intersection points of curves with square markers at the local maxima of the filter (5.9); λ = 5.
The network is displayed as inlaid picture. (b) Intersections between an ellipsoid, a plane and a
line; λ = 0.01.
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I(x) =

{
AMλ,Ω(x) x ∈ D

fK(x) x ∈ K.
(5.11)

The restored image I is shown in Figure 8(b). The number of iterations needed to obtain AMλ,Ω
is m = 34 for a tolerance equal to 10−7 on the `∞ norm of the difference between two succesive
iterates. Taking the PSNR (peak-to-signal ratio) as a measure of the quality of the restoration,
which is expressed in the units of dB and, for an 8−bit image, is defined by

PSNR = 10 log10

2552

1
mn

∑
i,j |fi,j − ri,j |2

where fi,j and ri,j denote the pixels values of the original and restored image, respectively, and m, n
denote the size of the image f , we find a value of PSNR equal to 33.165 dB. Figure 8c displays the
restored image based on the convex based transforms, where we use the convex based definition of
the transforms and apply Algorithm 2 to compute the convex envelope with a tol = 10−7 for the `∞

norm of the difference between two successive iterates. We assume C lλ(fMK ) = Cuλ(f−MK ) = fK on
the boundary of the image array. In this case, we needed m = 1063 iterations and got PSNR =
33.239 dB, which is slightly higher than the one that uses the Moreau based transforms but at the
expenses of an higher number of iterations. Figure 8d displays the TV based restoration obtained
by applying the TV inpainting method described in [37] and solved by the split Bregman method
described in [38, 39]. In this case m = 3531 and PSNR = 33.027 dB. Figure 9 compares the details
of the original image and of the restored images near the right eye, respectively, showing that AMλ,Ω,
either by the Moreau based transforms or by the Convex based transforms, is able to preserve image
details and does not introduce unintended effects.

Example 5.6. Salt & pepper noise removal. As a further example of scattered data approxi-
mation and application of Theorem 3.10, we consider the restoration of an image corrupted by salt
& pepper noise by computing AM

λ,Ω
(fK) defined by (5.11). Given the picture displayed in Figure

10(a) with size 512× 512 pixels and damaged by 70% salt & pepper noise as shown in Figure 10(b),
let us denote by K the set of the true pixels, by Ω the domain of the whole image and fK the
values of free noise pixels. Since for x ∈ Ω the values of C lλ,Ω(fM

Ω,K
)(x) and Cuλ,Ω(f−M

Ω,K
)(x) depend

on fK if dist(x, ∂Ω) > 4Of/λ, to reduce the boundary error due to the redefinition of fK on ∂Ω,
we consider an enlarged image and then restrict the restored image to the original domain. The
enlarged image is obtained by padding one pixel before the first image element and after the last
image element along each dimension, defining fK thereing equal to minK f or maxK f according to
whether we are computing C lλ,Ω(fM

Ω,K
) or Cuλ,Ω(f−M

Ω,K
), respectively. We apply then Algorithm 1 and

Algorithm 2 using a value of tol = 10−7 to compute the Moreau and convex based upper and lower
compensated convex transforms that enter (5.10), respectively. For the application of Algorithm 1
the convergence check was on the `∞ norm of the error between two successive iterates, whereas
in the application of Algorithm 2, to limit the computing time of the convex envelope scheme, we
opted to make the convergence check by comparing the value of the PSNR between two successive
iterates. For λ = 15 and M = 1013, the restored images with the Moreau and convex based scheme
are displayed in Figure 10(c) and Figure 10(d), respectively. For the Moreau based scheme we got
a value of PSNR equal to 28.917 dB after m = 30 iterations for a tolerance on the `∞ norm of
the difference between two succesive iterates equal to 10−7, whereas for the convex based scheme,
we got PSNR = 29.308 dB after m = 185 iterations, giving an `∞ norm of the error between two
succesive iterations equal to 2.18 ·10−5. We note that the restored image by the convex based scheme
presents a slightly higher value of the PSNR than the one that uses the Moreau based transforms
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(a) (b)

(c) (d)

Figure 8 Example 5.5. Impainting of scratches over an image: (a) Lena image with scratches; (b)
Restored image I as defined by (5.11) with λ = 5 and M = 104, with the Moreau based trasforms
computed using Algorithm 1. Computed value for PSNR = 33.165 dB. Number of iterations
m = 34 for a tolerance on the error between two succesive iterates equal to 10−7; (c); Restored
image I as defined by (5.11) with λ = 5 and M = 104, with the convex based trasforms computed
using Algorithm 2. Computed value for PSNR = 33.239 dB. Number of iterations m = 1063 for
a tolerance on the error between two succesive iterates equal to 10−7; (d) Restored image by the
Split Bregman inpainting method described in [38, 39]. Computed value for PSNR = 33.027 dB.
Number of iterations m = 3531.
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(a) (b) (c)

Figure 9 Example 5.5. Comparison of a detail of the original image with the corresponding detail
of the restored images according to the local Moreau based compensated convex transforms and
the TV-based method: (a) Right eye detail of the original image without overprinted scratches.
(b) Right eye detail of the restored image AMλ (fK). (c) Right eye detail of the TV-based restored
image.

but at the expenses of an higher number of iterations. For both the restored images, there is no
visible effect on the boundary of the image. Finally, we consider the case of noise density equal
to 99%. Figure 11 displays the restored images by the Moreau and convex based definitions of the
compensated transforms for λ = 5 and M = 1013 obtained after a number of iterations equal to
m = 78 and m = 3081, respectively. The two restored images present comparable values of PSNR,
with the Moreau based scheme obtained after a much lower number of iterations than the one that
uses the convex based definition of the lower and upper compensated convex transform. Even in this
case there is no visible boundary effects for the two restored images, and as a result of the theoretical
findings of [22, Corollary 4.7], we note AM

λ,Ω
(fK) to be realized by an almost continuous piecewise

affine interpolation.

6 Conclusions

Compensated convex transforms, or also known as proximity hull in the case of the lower transform,
or grey scale erosion and dilation with quadratic structuring elements in mathematical morphology,
provide a geometric tight–approximation method for general functions that yields novel ways to
smooth functions, to identify singularities in functions, and to interpolate and approximate data.
Introduced for real valued functions defined in Rn, in view of applications to image processing and
computer aided geometric design, in this paper we have proposed a definition for functions defined
on bounded convex open sets such that the following equality holds

C lλ,Ω(f−
Ω

)(x) = C lλ(f−Rn)(x) and Cuλ,Ω(f+
Ω

)(x) = C lλ(f+
Rn)(x) for any x ∈ Ω ,

where f−Rn and f+
Rn are suitable extensions of f to Rn, C lλ(f−Rn) and Cuλ(f+

Rn) are the ‘global’
compensated convex transforms (1.1) and (1.2), whereas C lλ,Ω(f−

Ω
) and C lλ,Ω(f+

Ω
) are the local

versions defined in terms of the Moreau envelopes as (1.12) and (1.13), respectively. We have
thus proposed a new algorithm to compute the Moreau envelope which has linear complexity with
respect to the number of grid points and we have given applications to tasks of image processing
such as image inpainting and restoration of image with high density of salt & pepper noise, and of
shape interrogation such as detection of intersection of sampled geometries and multiscale medial
axis map. The performance of the methods and the accuracy of the results show that, when coupled
with an efficient numerical scheme, the theory of compensated convex transforms provides a valid
and feasible alternative to state-of-art methods especially for processing data without any a prior
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(a) (b)

(c) (d)

Figure 10 Example 5.6. Restoration of 70% corrupted image. (a) Original image with size 512×512;
(b) Original image covered by a salt & pepper noise density of 70%. PSNR = 6.998 dB; (c)
Restored image AMλ,Ω(fK) using the Moreau based transforms computed by applying Algorithm 1,

with λ = 15, M = 1013 and tol = 10−7. PSNR = 28.917 dB. Number of iterations m = 30. (d)
Restored image AMλ,Ω(fK) using the convex based transforms computed by applying Algorithm 2

with λ = 15, M = 1013 and tol = 10−7 on the error between the PSNR of two successive iterates.
PSNR = 29.304 dB. Number of iterations m = 185 for an error between two succesive iterates of
the convex based scheme equal to 2.18 · 10−5.
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(a) (b)

Figure 11 Example 5.6. Restoration of 99% corrupted image (PSNR = 5.901 dB): (a) Restored
image AMλ (fK) by applying Algorithm 1 with λ = 5, M = 1013, tol = 10−7. PSNR = 28.918 dB.
Number of iterations m = 78. (b) Restored Image AMλ (fK) by applying Algorithm 2 with λ = 5,
M = 1013 and tol = 10−7. PSNR = 29.304 dB. Number of iterations m = 3081 for an error
between two succesive iterates of the convex based scheme equal to 1.42 · 10−2.

information or represented by point cloud.
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A Appendix: Proofs of main results

Proof of (1.3). Next we prove only the characterization of the lower compensated convex transform.
The one for the upper transform is obtained by using the relationship (2.15). From the definition

(1.1) of C
(
λf) and the characterization (2.3) of the convex envelope, we have

C lλ(f)(x) = co[f + λ| · |2](x)− λ|x|2

= sup
`∈Aff(Rn)

{`(x) : `(y) ≤ f(y) + λ|y|2} − λ|x|2

= sup
`∈Aff(Rn)

{`(x)− λ|x|2 : `(y)− λ|y|2 ≤ f(y)} , (A.1)

which shows the lower compensated transform to be equal to the envelope of quadratic functions
with given curvature λ. If we represent the elements of Aff(Rn) as

`(x) = a · x+ b, a ∈ Rn, b ∈ R ,
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then

`(x)− λ|x|2 = a · x+ b− λ|x|2

= −λ
∣∣∣x− a

2λ

∣∣∣2 +
|a|2

4λ
+ b .

thus (A.1) reads also as

C lλ(f)(x) = sup
z∈Rn
c∈R

{
−λ|x− z|2 + c : −λ|y − z|2 + c ≤ f(y)

}

= sup
z∈Rn

{
−λ|x− z|2 + inf

y∈Rn

{
f(y) + λ|y − z|2

}}
= Mλ(Mλ(f))(x) ,

where we have used the fact that for any z ∈ Rn, the largest c ∈ R such that

c ≤ f(y) + λ|y − z|2

is given by
inf
z∈Rn

{
f(y) + λ|y − z|2

}
,

which is Mλ(f)(z).

Proof of Proposition 2.7. Part (i): Since

Mλ(f)(x) = f(yx) + λ|yx − x|2 = inf{f(y) + λ|y − x|2, y ∈ Rn} ≤ f(x) (A.2)

then
λ|yx − x|2 ≤ f(x)− f(yx) ≤M −m = Of , (A.3)

which concludes the proof for Mλ(f)(x). The proof for Mλ(f)(x) follows similar arguments.

Part (ii): Again we have

Mλ(f)(x) = f(yx) + λ|yx − x|2 = inf{f(y) + λ|y − x|2, y ∈ Rn} ≤ f(x) (A.4)

so that λ|yx − x|2 ≤ f(x) − f(yx) ≤ L|yx − x|. Thus |yx − x| ≤ L/λ. The proof for Mλ(f)(x)
follows similar arguments.

Proof of Proposition 2.9: We first observe that by definition, for z ∈ Ω

Mλ(f∞)(z) = inf{f∞(y) + λ|y − z|2 : y ∈ Rn}

= inf{f(y) + λ|y − z|2 : y ∈ Ω}

= Mλ,Ω(f)(z)

= Mλ,Ω(f)(z) ,
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as f∞(y) + λ|y − z|2 = +∞ if y ∈ Rn \ Ω, thus for x ∈ Ω, we have

C lλ(f∞)(x) = Mλ(Mλ(f∞))(x)

= sup{Mλ(f∞)(z)− λ|x− z|2 : z ∈ Rn}

≥ sup{Mλ(f∞)(z)− λ|x− z|2 : z ∈ Ω}

= sup{Mλ,Ω(f)(z)− λ|x− z|2 : z ∈ Ω}

= C lλ,Ω(f)(x) ,

(A.5)

hence C lλ(f∞)(x) ≥ C lλ,Ω(f)(x). By the definition of lower transform for x ∈ Ω, we find that

C lλ(f∞)(x) = co[f∞(·) + λ| · −x|2](x)

= inf
{ n+1∑
j=1

λj

(
f(xj) + λ|xj − x|2

)
: λj ≥ 0, xj ∈ Ω, j = 1, 2, . . . , n+ 1,

n+1∑
j=1

λj = 1,

n+1∑
j=1

λjxj = x
}

≤ f(x) ,

(A.6)

given that if there exists xi /∈ Ω and λj > 0, then the sum is +∞. Furthermore, since Mλ,Ω(f−
Ω

) =

Mλ,Ω(f−
Ω

) and by definition (1.7a), (2.7) and (2.17), for x ∈ Ω it is f−
Ω

(x) ≤ f(x), then it is

Mλ,Ω(f−
Ω

)(x) ≤Mλ,Ω(f)(x) = Mλ,Ω(f)(x), hence

C lλ,Ω(f−
Ω

)(x) = Mλ
Ω(Mλ,Ω(f−

Ω
))(x)

≤Mλ
Ω(Mλ,Ω(f))(x)

= C lλ,Ω(f)(x) ,

(A.7)

thus C lλ,Ω(f−
Ω

)(x) ≤ C lλ,Ω(f)(x). By comparing (A.5), (A.6) and (A.7) we conclude the proof.

Proof of Theorem 3.1. We next present the proofs only for the lower transform, given that the
results for the upper transform will follow from (2.15).

Proof of (3.1): Without loss of generality, suppose that infΩ f = 0. By definition, for x ∈ Ω, we
have

Mλ,Ω(f−
Ω

)(x) = inf{f−Ω (z) + λ|z − x|2, z ∈ Ω}

≥ inf{f−Rn(y) + λ|y − x|2, y ∈ Rn}

= Mλ(f−Rn)(x) ,

(A.8)

given that the second infimum is taken over a larger set. In order to show that also the opposite
inequality holds, first let (yk)k∈N be a minimizing sequence of g(y) := f−Rn(y) + λ|y − x|2 in Rn.
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Clearly g is coercive in Rn in the sense that g(y)/|y| → +∞ as |y| → +∞. Thus (yk)k∈N is
bounded in Rn and, therefore, there exists a yx ∈ Rn and a convergent subsequence

(
ykj
)
kj∈N

such

that ykj → yx ∈ Rn.

Next we show that yx ∈ Ω and then we will use yx to prove that there also holds Mλ(f−Rn)(x) ≥
Mλ,Ω(f−

Ω
)(x).

If yx /∈ Ω, since f−Rn(y) = 0 = infΩ f for y ∈ Rn \Ω, then f−Rn is lower semicontinuous in Rn \Ω.
As a result, g(y) := f−Rn(y) + λ|y − x|2 is lower semicontinuous at yx and yx is a minimizer of g(y)
in Rn. We would have therefore

Mλ(f−Rn)(x) = inf{f−Rn(y) + λ|y − x|2, y ∈ Rn}

= f−Rn(yx) + λ|yx − x|2

= λ|yx − x|2 .

Since yx 6= x, along the line segment [x, yx], there would then exist a point ξx ∈ ∂Ω such that

Mλ(f−Rn)(x) = λ|yx − x|2 > λ|ξx − x|2

≥ inf{f−
Ω

(z) + λ|z − x|2, z ∈ Ω} = Mλ,Ω(f−
Ω

)(x) ,
(A.9)

which is a contadiction, and therefore yx ∈ Ω.
Let us now examine separately the case of yx ∈ ∂Ω and yx ∈ Ω. If yx ∈ ∂Ω, by an argument

similar to the above, we conclude that g(y) is lower semicontinuous at yx /∈ Ω and therefore

Mλ(f−Rn)(x) = λ|yx − x|2 . (A.10)

We now have to distinguish the two cases of x ∈ ∂Ω and x ∈ Ω. If x ∈ ∂Ω, from (A.8), (A.10) and
the ordering property of the lower Moreau envelope (2.16), we have

λ|yx − x|2 = Mλ(f−Rn)(x)

≤Mλ,Ω(f−
Ω

)(x)

≤ f−
Ω

(x)

= 0 ,

(A.11)

that is, yx = x, hence

Mλ,Ω(f−
Ω

)(x) ≤ f−
Ω

(x) = 0 = λ|yx − x|2 = Mλ(f−Rn)(x) . (A.12)

If x ∈ Ω, on the other hand, let us consider the convergent minimizing sequence (ykj )j∈N ∈ Rn of

f−Rn(y) + λ|y − x|2. We note that for j ∈ N such that ykj ∈ Ω, we have

f−Rn(ykj ) + λ|ykj − x|
2 = f−

Ω
(ykj ) + λ|ykj − x|

2 ≥Mλ(f−
Ω

)(x) , (A.13)
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and for j ∈ N such that ykj ∈ Rn \ Ω, there exists zj ∈ [x, ykj ] and zj ∈ ∂Ω so that

f−Rn(ykj ) + λ|ykj − x|
2 = λ|ykj − x|

2

≥ λ|zj − x|2

= f−
Ω

(zj) + λ|zj − x|2

≥Mλ(f−
Ω

)(x) .

(A.14)

Thus, from (A.13) and (A.14) we get that for any j ∈ N, it is

f−Rn(ykj ) + λ|ykj − x|
2 ≥Mλ(f−

Ω
)(x) .

By letting j →∞, since (ykj )j∈N is a minimizing sequence of f−Rn(y) + λ|y − x|2, we conclude that

Mλ(f−Rn)(x) ≥Mλ(f−
Ω

)(x) . (A.15)

If yx ∈ Ω, for j > 0 sufficiently large, ykj ∈ Ω, thus

f(ykj ) + λ|ykj − x|
2 ≥ inf{f−

Ω
(z) + λ|z − x|2, z ∈ Ω̄}

= Mλ,Ω(f−
Ω

)(x) .

Since (ykj )j∈N is a minimizing sequence of g(y) in Rn, if we let j →∞, we obtain also in this case

Mλ(f−Rn)(x) ≥Mλ,Ω(f−
Ω

)(x) . (A.16)

By comparing (A.15) and (A.16) with (A.8), we conclude that Mλ(f−Rn)(x) = Mλ,Ω(f−
Ω

)(x) for

x ∈ Ω and this completes the proof.

Proof of (3.3): We first observe that for x /∈ Ω, as 0 is the minimum value of f−Rn , we have
Mλ(f−Rn)(x) = 0. Thus

Mλ(f−Rn)(x) =

{
Mλ,Ω(f−

Ω
)(x), x ∈ Ω,

0, x /∈ Ω.
(A.17)

To complete the proof, we need to show that for x ∈ Ω, Mλ(Mλ(f−Rn))(x) = Mλ
Ω(Mλ,Ω(f−

Ω
(x)). By

definition, for x ∈ Ω, we have that

Mλ(Mλ(f−Rn))(x) = sup

{
Mλ(f−Rn)(y)− λ|y − x|2, y ∈ Rn

}

= max

{
sup

{
Mλ(f−

Ω
)(y)− λ|y − x|2, y ∈ Ω

}
, sup

{
Mλ(f−Rn)(y)− λ|y − x|2, y /∈ Ω

}}

≥Mλ
Ω(Mλ,Ω(f−

Ω
(x)).

(A.18)

Since f−Rn is bounded in Rn, then Mλ(f−Rn) is also a bounded function in Rn, thus g(y) :=
Mλ(f−Rn)(y) − λ|y − x|2 is coercive, in the sense that lim|y|→∞ g(y)/|y| = −∞. Furthermore,
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g = g(y) is also continuous because so is Mλ(f−Rn)(y) [12, Proposition 1.1], thus a maximum point,
say, yx ∈ Rn of g = g(y) exists. If yx /∈ Ω, we have

Mλ(Mλ(f−Rn))(x) = −λ|yx − x|2 (A.19)

as Mλ(f−Rn)(yx) = 0. Thus yx 6= x. Again if we take the point ηx ∈ ∂Ω in the line segment [x, yx],
then

− λ|yx − x|2 < −λ|ηx − x|2 ≤ sup{Mλ,Ω(f−
Ω

)(z)− λ|z − x|2, z ∈ Ω} = Mλ
Ω(Mλ,Ω(f−

Ω
(x)). (A.20)

This is a contradiction. Thus Mλ(Mλ(f−Rn))(x) = Mλ
Ω(Mλ,Ω(f−

Ω
(x)) for x ∈ Ω so that

C lλ,Ω(f−
Ω

)(x) = C lλ(f−Rn)(x) (A.21)

for x ∈ Ω and this concludes the proof.

As for the estimate in (i), it follows as argued above that there exists a zx ∈ Rn such that

Mλ,Ω(f−
Ω

)(x) = f−
Ω

(zx) + λ|zx − x|2

which yields the estimate

|zx − x|2 ≤
Of
λ
.

Thus if dist(x, ∂Ω) >
√
Of/λ, then by the triangle inequality we conclude that zx ∈ Ω.

The estimate in (ii) is obtained by a similar argument applied to Mλ,Ω(f−Ω ).

Proof of Corollary 3.3: Since f(x) = 0 for x 6∈ Ω, this follows from the fact that f = f−Rn , the
definition of f−

Ω
and (3.5).

Proof of Corollary 3.5: Same arguments as in the previous corollary apply.

Proof of Theorem 3.7: First we show that if x ∈ Rn \ Ω, then Mλ(χK)(x) = 0. Suppose that for
some x ∈ Rn \ Ω, Mλ(χK)(x) 6= 0. By definition (1.4) of Mλ(χK) and since x 6∈ K, we have that

Mλ(χK)(x) ≥ χK(x)− λ|x− x|2 = 0 .

Since χK is upper-semicontinuous and χK(y)−λ|y−x|2 → −∞ as |y| → ∞, there exists a y0 ∈ Rn
such that

Mλ(χK)(x) = χK(y0)− λ|y0 − x|2 > 0 ,

thus y0 ∈ K, otherwise Mλ(χK)(x) ≤ 0. So we have that

1− λ|y0 − x|2 > 0 ,

thus
|y0 − x| ≤ 1√

λ
,

which contradicts that dist(K, ∂Ω) > 1√
λ

.

Next we show that for any x ∈ Ω, Mλ
Ω(χΩ

K)(x) = Mλ(χK)(x). If, for some x ∈ Ω, there exists

36



y0 6∈ Ω such that
Mλ(χK)(x) = χK(y0)− λ|y0 − x|2

then
χK(y0) = 0 ,

so that
Mλ(χK)(x) = −λ|y0 − x|2 < 0 .

which contradicts the fact that Mλ(χK)(x) ≥ 0 for any x ∈ Rn. Thus y0 ∈ Ω and so Mλ(χK)(x) =
Mλ

Ω(χΩ
K)(x) for x ∈ Ω.

Now we consider the mixed transform. Let x ∈ Ω. If there exists y0 6∈ Ω such that

Mλ(Mλ(χK))(x) = Mλ(χK)(y0) + λ|y0 − x|2 = λ|y0 − x|2

then
λ|y0 − x|2 > 0

given that y0 6∈ Ω. Then consider the segment

`(t) = y0 + t(x− y0)

for t ∈ [0, 1]. We have `(0) = y0 6∈ Ω and `(1) = x ∈ Ω. So there exists ξ ∈]0, 1[ such that

`(ξ) ∈ ∂Ω .

We then have

λ|y0 − x|2 = Mλ(Mλ(χK))(x)

≤Mλ(χK)(`(ξ)) + λ|`(ξ)− x|2

= λ(1− ξ)2|y0 − x|2

which is a contradiction as 0 ≤ (1− ξ)2 < 1, thus y0 ∈ Ω and

Mλ(Mλ(χK))(x) = inf
y∈Ω

(
Mλ(χK)(y) + λ|y − x|2

)
= inf

y∈Ω

(
Mλ

Ω(χΩ
K)(y) + λ|y − x|2

)
= Mλ,Ω(Mλ

Ω(χΩ
K))(x)

which concludes the proof.

Proof of Theorem 3.10: The statements (3.14) and (3.15) are a consequence of Theorem 3.1 applied
to the auxiliary functions (3.13) which are bounded functions in Ω of the type (1.7) and (1.8)
considered in Theorem 3.1. Therefore, next, we will focus only on the proof of the local properties.

Part (i): Assume x ∈ D and let zx be such that

Mλ,Ω(fM
Ω,K

)(x) = fM
Ω,K

(zx) + λ|zx − x|2 .
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We will first show that zx ∈ (Ω \D) ∪ ∂Ω, otherwise we have

Mλ,Ω(fM
Ω,K

)(x) = M + λ|zx − x|2 .

Let yx ∈ ∂D such that |yx − x| = dist(x,Ω \D) we have then that

Mλ,Ω(fM
Ω,K

)(x) ≤ fM
Ω,K

(yx) + λ|yx − x|2 ≤ sup
K
f + λdiam2(D)

so that
M ≤ sup

K
f + λdiam2(D)

which is a contradiction. Now if zx ∈ ∂Ω, we have

Mλ,Ω(fM
Ω,K

)(x) = inf
K
f + λ|zx − x|2 ≥ λdist2(x, ∂Ω) + inf

K
f .

On the other hand,
Mλ,Ω(fM

Ω,K
)(x) ≤ sup

K
f + λdist2(x,Ω \D)

so that,
inf
K
f + λdist2(x, ∂Ω) ≤ sup

K
f + λdist2(x, ∂D) .

Let ux ∈ ∂Ω such that x − ux = dist(x, ∂Ω) and x∗ ∈ ∂D such that x∗ lies on the line segment
[x, ux]. Thus,

dist(x, ∂Ω) = |x− x∗|+ |x∗ − ux| ≥ dist(x, ∂Ω) + dist(∂D, ∂Ω) ,

hence

sup
K
f − inf

K
f + λdist2(x, ∂D) ≥ λ (dist(x, ∂D) + dist(∂D, ∂Ω))2

≥ λdist2(x, ∂D) + λdist2(∂D, ∂Ω) ,

so that

dist2(∂D, ∂Ω) ≤
Of
λ

which contradicts the assumption.
Assume x ∈ Ω \D and that Mλ(fM

Ω,K
)(x) = fM

Ω,K
(zx) + λ|x− zx|2 with zx ∈ ∂Ω. Then, since

Mλ(fM
Ω,K

)(x) ≤ fM
Ω,K

)(x) = f(x)

we have that
λdist2(x, ∂Ω) ≤ λ|zx − x|2 ≤ f(x)− inf

K
f ≤ Of ,

thus

dist2(x, ∂Ω) ≤
Of
λ
,

which is a contradiction. Thus zx ∈ Ω \D.
Part (ii): Assume first x ∈ D and let zx be such that

Mλ(Mλ(fM
Ω,K

))(x) = Mλ(fM
Ω,K

)(zx)− λ|x− zx|2 ,
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then we need to distinguish the following three cases:

(a) zx ∈ D ; (b) zx ∈ ∂Ω ; (c) zx ∈ Ω \D .

Case (a): If zx ∈ D, then by Part (i) we conclude that Mλ(fM
Ω,K

))(zx) is determined by f |Ω\D.

Case (b): If zx ∈ ∂Ω, we have

Mλ(fM
Ω,K

)(zx)− λ|zx − x|2 ≤ inf
K
f − λdist2(x, ∂Ω) ,

and
Mλ

Ω(Mλ,Ω(fM
Ω,K

))(x) ≥Mλ,Ω(fM
Ω,K

)(x) = fM
Ω,K

(ux) + λ|ux − x|2 ≥ f(ux) ,

for some ux ∈ (Ω \D) ∪ ∂Ω, thus

dist2(x, ∂Ω) ≤
Of
λ

which is a contradiction, thus zx 6∈ ∂Ω.
Case (c): Let zx ∈ Ω \D. We have then that

Mλ(fM
Ω,K

)(zx)− λ|zx − x|2 ≤ f(zx)− λ|zx − x|2 ,

and
Mλ

Ω(Mλ,Ω(fM
Ω,K

))(x) ≥Mλ,Ω(fM
Ω,K

)(x) = fM
Ω,K

(ux) + λ|zx − x|2 ≥ f(ux) ,

for some ux ∈ (Ω \D) ∪ ∂Ω. Thus
λ|zx − ux|2 ≤ Of ,

that is,

|zx − ux| ≤
√
Of
λ
.

Therefore,

dist(zx, ∂Ω) ≥ dist(x, ∂Ω)− |zx − x| ≥ 2

√
Of
λ
−
√
Of
λ

=

√
Of
λ
,

and from Part (i) we conclude that Mλ,Ω(fM
Ω,K

)(zx) is determined by f |Ω\D.

Now, let us assume that x ∈ Ω \D, dist(x, ∂Ω) > 2

√
Of
λ and let zx be such that

Mλ
Ω(Mλ,Ω(fM

Ω,K
))(x) = Mλ,Ω(fM

Ω,K
)(zx)− λ|x− zx|2 ,

then, also in this case, we need to analyze the following three claims:

(a) zx ∈ D ; (b) zx ∈ ∂Ω ; (c) zx ∈ Ω \D .

Case (a): By Part (i) we conclude that Mλ,Ω(fM
Ω,K

)(zx) is determined by f |Ω\D.

Case (b): As in the similar case seen previusly, we can mke the same arguments and show that
zx 6∈ ∂Ω.

Case (c): By imitating the arguments made previously for the same case, let zx ∈ Ω\D be such
that

Mλ(fM
Ω,K

)(zx)− λ|zx − x|2 ≤ f(zx)− λ|zx − x|2 ,
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and
Mλ

Ω(Mλ,Ω(fM
Ω,K

))(x) ≥Mλ,Ω(fM
Ω,K

)(x) = fM
Ω,K

(ux) + λ|zx − x|2 ≥ f(ux) ,

for some ux ∈ (Ω \D) ∪ ∂Ω. Thus,

|zx − ux| ≤
√
Of
λ
.

Therefore,

dist(zx, ∂Ω) ≥ dist(x, ∂Ω)− |zx − x| ≥
√
Of
λ
,

and from Part (i) we conclude that Mλ,Ω(fM
Ω,K

)(zx) is determined by f |Ω\D.

Proof of Theorem 4.2: We have that

Mλf(xk) = f(zxk) + λ|zxk − xk|
2 ≤ f(xk) , (A.22)

with some zxk ∈ Rn. By Proposition 2.11,

λ|zxk − xk|
2 ≤ f(xk)− f(zxk)

≤ ωf (|zxk − xk|)

≤ a|zxk − xk|+ b

(A.23)

which yields the following estimate

|zxk − xk| ≤
a+
√
a2 + 4bλ

2λ
=
a

λ
+

√
b

λ
. (A.24)

Since ωf is non-decreasing, from (A.23) and (A.24) we obtain

|zxk − xk| ≤

√
ωf (a/λ+

√
b/λ)

λ
=
d(λ)√
λ
, (A.25)

where we have set d(λ) =
√
ωf (a/λ+

√
b/λ). Now, it is not difficult to realize that we can give

the following representation for zxk which enters (A.22) in terms of the grid points as follows 1

zxk = xk + h(rxk + δ) (A.26)

1Let xzxk
be for instance the closest grid point to zxk and set zxk = xk + xzxk

− xk + zxk − xzxk
. Noting that

xzxk
− xk = hrxk , h the grid size and rxk ∈ Zn, and zxk − xzxk

= hδ with δ ∈ Rn, 0 ≤ δi ≤ 1, i = 1, . . . , n, we obtain
(A.26).
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rxk ∈ Zn and δ ∈ Rn such that |δ| <
√
n. Thus, we have

Mh
λ f(xk) ≥Mλf(xk) = λ|zxk − xk|

2 + f(zxk)

= λh2|rxk + δ|2 + f(xk + h(rxk + δ))

≥ λh2|rxk |
2 + λh2|δ|2 + 2λh2rxk · δ + f(xk + hrxk)− ωf (|hδ|)

≥Mh
λ f(xk) + λh2|δ|2 + 2λh2rxk · δ − ωf (|hδ|)

≥Mh
λ f(xk) + 2λh2rxk · δ − ωf (|hδ|) ,

(A.27)

where we have used the fact that

Mh
λ f(xk) ≤ λh2|rxk |

2 + f(xk + hrxk) . (A.28)

By the Cauchy-Schwartz inequality,

rxk · δ ≥ −|rxk ||δ| ≥ −
√
n|rxk | (A.29)

and since ωf is non-decreasing, we have that

ωf (h|δ|) ≤ ωf (h
√
n) . (A.30)

As a result, taking into account (A.29) and (A.30) into (A.27) yields

Mh
λ f(xk) ≥Mh

λ f(xk)− 2λh2√n|rxk | − ωf (h
√
n) . (A.31)

From (A.26),
|zxk − xk| = h|rxk + δ| (A.32)

which, combined with (A.25), gives

h|rxk + δ| ≤ d(λ)√
λ

(A.33)

which implies that

− h|rxk | ≥ −h
√
n− d(λ)√

λ
(A.34)

Using (A.34) into (A.31), and by taking into account of (A.22), we get

Mh
λ f(xk) ≥Mλf(xk) ≥Mh

λ f(xk)− 2λnh2 − 2h
√
λd(λ)− ωf (h

√
n) , (A.35)

which concludes the proof.

Proof of Corollary 4.4: The result follows from Theorem 4.2 by taking ωf (t) = Lt.

Proof of Theorem 4.7: For the sake of clarity, in the following, we present the proof only for n = 1
and n = 2, given that the proof of the results for n > 2 build on the arguments required for n− 1.
Case n = 1: We prove the statement by induction. Clearly, the statement is true for m = 0, 1 and
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for all xk = kh, k ∈ Z. Suppose now fm = gm for some m ≥ 1. Then for m+ 1, we have

fm+1(xk) = min{fm(xk), fm(xk − h) + λτm+1h
2, fm(xk + h) + λτm+1h

2}

= min{A, B, C}
(A.36)

where we have let A := fm(xk), B := fm(xk − h) + λτm+1h
2 and C := fm(xk + h) + λτm+1h

2. By
the inductive assumption, we have then

A = gm(xk) = min{f0(xk + jh) + λj2h2, |j| ≤ m}, (A.37)

and

B = gm(xk−1) + λτm+1h
2

= min{f0(xk−1 + jh) + λ(j2 + τm+1)h2, |j| ≤ m}

= min{f0(xk−(m+1) + λ(m2 + τm+1)h2, B1}

= min{f0(xk−(m+1) + λ(m+ 1)2h2, B1}.

(A.38)

where we have let

B1 := min{f0(xk−1 + jh) + λ(j2 + τm+1)h2, −(m− 1) ≤ j ≤ m} . (A.39)

If we change index j − 1 = r in B1, we have

B1 = min{f0(xk + rh) + λ((r + 1)2 + τm+1)h2, −m ≤ r ≤ m− 1}. (A.40)

Now we show that

f0(xk + rh) + λ((r + 1)2 + τm+1)h2 ≥ f0(xk + rh) + λr2h2, −m ≤ r ≤ m− 1, (A.41)

as the right hand side of the above inequality is one of the terms to be minimised in A above.
This inequality is equivalent to (r + 1)2 + τm+1 ≥ r2 for −m ≤ r ≤ m − 1, which is equivalent to
2r + 1 + 2m+ 1 ≥ 0 and thus to 2(m+ r) + 2 ≥ 0. As −m ≤ r ≤ m− 1, the last inequality above
clearly holds. Thus we have

min{A, B} = min{gm(xk), f0(xk−(m+1)) + λ(m+ 1)2h2}. (A.42)

Similarly, we can easily see that

min{A, C} = min{gm(xk), f0(xk+(m+1)) + λ(m+ 1)2h2} , (A.43)

thus,

fm+1(xk) = min{A, B, C}

= min{gm(xk), f0(xk−(m+1)) + λ(m+ 1)2h2, f0(xk+(m+1)) + λ(m+ 1)2h2}

= gm+1(xk).

(A.44)

It therefore follows that the statement holds for n = m+1 and by induction holds for all n = 1, 2, . . . .
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Case n = 2: The proof of the two-dimensional case is very similar to the one-dimensional case but
is slightly more involved. Again, we prove the statement fn = gn by induction. For m = 0, 1, the
statement is clearly true. Suppose for some m ≥ 1, we have fm = gm. Then for m + 1 and each
(xk, yj), we have fm+1(xk, yj) = min{A, B}, where

A = fm(xk, yj)

= gm(xk, yj)

= min{f0(xk + rh, yj + sh) + λ(r2 + s2)h2, |r| ≤ m, |s| ≤ m},

(A.45)

and

B = min{gm(xk + ph, yj + qh) + λ(p2 + q2)τm+1h
2, |p| ≤ 1, |q| ≤ 1, |p|+ |q| 6= 0}. (A.46)

There are eight terms to be minimised in B. We consider first two typical cases.
Case (a): p = 0 and q = 1. This is similar to the one-dimensional case as we have

gm(xk + ph, yj + qh) + λτm+1h
2 = gm(xk, yj+1) + λτm+1h

2

= min{min{f0(xk + rh, yj + (m+ 1)h) + λ(r2 +m2 + τm+1)h2, |r| ≤ m}, C1}

= min{min{f0(xk+r, yj+(m+1)) + λ(r2 + (m+ 1)2)h2, |r| ≤ m}, C1}

= min{B1, C1}

(A.47)

where we have let

B1 := min{f0(xk+r, yj+(m+1)) + λ(r2 + (m+ 1)2)h2, |r| ≤ m}

C1 := min{f0(xk + rh, yj+1 + sh) + λ(r2 + s2 + τm+1)h2, |r| ≤ m, −m ≤ s ≤ m− 1}
(A.48)

Note that all terms to be minimised in B1 are in the definition of gm+1(xk, yj) but not in gm(xk, yj).
As in the one-dimensional case, every term to be minimised in C1 is greater than a corresponding
term to be minimised in A as we have seen for the Case (i). Therefore

min{A, gm(xk, yj+1) + λτm+1h
2} = min{A, B1} . (A.49)

Case (b): p = 1 and q = −1. In this case, we have

gm(xk + ph, yj + qh) + λ(p2 + q2)τm+1h
2 = gm(xk+1, yj−1) + 2λτm+1h

2

= min{f0(xk+1 + rh, yj−1 + sh) + λ(r2 + s2 + 2τm+1)h2, |r| ≤ m, |s| ≤ m}

= min{f0(xk+(m+1), yj−(m+1) + λ(2m2 + 2τm+1)h2, D1}

= min{f0(xk+(m+1), yj−(m+1)) + 2λ(m+ 1)2h2, D1}.

(A.50)

In the above, f0(xk+(m+1), yj−(m+1) + 2λ(m+ 1)2h2 is in the definition of gm+1(xk, yj) which is one
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of the terms to be minimised that is not in the definition of gm(xk, yj). We also have

D1 = min
{
f0(xk+1 + rh, yj−1 + sh) + λ(r2 + s2 + 2τm+1)h2,−m ≤ r ≤ m− 1,

− (m− 1) ≤ s ≤ m
}
.

(A.51)

Again, as in the Case (i), every term involved in the minimisation in D1 is greater than a corre-
sponding term in A. Therefore, we have

min
{
A, gm(xk+1, yj−1) + 2λτm+1h

2
}

= min
{
A, f0(xk+(m+1), yj−(m+1) + 2λ(m+ 1)2h2

}
. (A.52)

For the Case (c): p = 0, q = −1; Case (d): p = 1, q = 0 and Case (e): p = −1, q = 0, the proofs
are similar to that of Case (a) while for the Case (f) p = 1, q = 1; Case (g): p = −1, q = −1 and
Case (h): p = −1, q = 1, the proofs are similar to that of Case (b). Therefore, we have

fm+1(xk, yj) = min{A, B} = min{A, U, V } (A.53)

where

U := min

{
min

{
f0(xk+r, yj+(m+1)), f0(xk+r, yj−(m+1)), f0(xk+(m+1), yj+r),

f0(xk−(m+1), yj+r)
}

+ λ((m+ 1)2 + r2)h2, |r| ≤ m

}
,

(A.54)

and

V := min
{
f0(xk+(m+1), yj+(m+1)), f0(xk+(m+1), yj−(m+1)), f0(xk−(m+1), yj+(m+1)),

f0(xk−(m+1), yj−(m+1))
}

+ 2λ(m+ 1)2h2.

(A.55)

By comparing the terms involved in gm+1(xk, yj) and those involved in A, U and V , we see that

fm+1(xk, yj) = min{A, U, V } = gm+1(xk, yj). (A.56)

Thus the statement holds for n = m+1. By induction, we conclude then that fn(xk, yj) = gn(xk, yj)
holds for all n = 0, 1, 2, . . . and for all xk = kh, yj = jh with k, j ∈ Z. The proof is finished.

Proof of Proposition 4.8. For any grid point xk, we have that there exists a rxk ∈ Zn such that

Mh
λ (f)(xk) = λ|rxkh|

2 + f(xk + rxkh) ≤ f(xk) (A.57)

thus,
λ|rxkh|

2 ≤ f(xk)− f(xk + rxkh) ≤ osc(f)

which implies that

|rxk | ≤
1

h

√
osc(f)

λ
.
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As a result, by taking in (4.4)

m ≥ b1
h

√
osc(f)

λ
c+ 1

where bxc denotes the integer part of x, we are guaranteed that rxk , which enters (A.57), belongs
to the feasible set of (4.4) and is, therefore, attained by Algorithm 1. This concludes the proof.
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