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Terrestrial water storage (TWS) modulates the hydrological cycle and is a key determinant 36 

of water availability and an indicator of drought. While historical TWS variations have 37 

been increasingly studied, future changes in TWS and the linkages to droughts remain 38 

unexamined. Here, using ensemble hydrological simulations, we show that climate change 39 

could reduce TWS in many regions, especially those in the Southern Hemisphere. Strong 40 

inter-ensemble agreement indicates high confidence in the projected changes that are 41 

driven primarily by climate forcing, rather than land and water management activities. 42 

Declines in TWS translate to increases in future droughts. By the late-twenty-first century, 43 

global land area and population in extreme-to-exceptional TWS drought could more than 44 

double, each increasing from 3% during 1976-2005 to 7% and 8%, respectively. Our 45 

findings highlight the importance of climate change mitigation to avoid adverse TWS 46 

impacts and increased droughts, and the need for improved water resource management 47 

and adaptation.    48 

 49 

 50 

TWS—the sum of continental water stored in canopies, snow and ice, rivers, lakes and 51 

reservoirs, wetlands, soil, and groundwater—is a critical component of the global water and 52 

energy budget. It plays key roles in determining water resource availability
1
 and modulating 53 

water flux interactions among various Earth system components
2
. Further, TWS changes are 54 

inherently linked to droughts
2-6

, floods
7
, and global sea level change

8-11
. Despite such 55 

importance, global TWS remains less studied relative to hydrological fluxes (for example, river 56 

discharge, evapotranspiration, and groundwater flow) owing to the lack of large-scale 57 

observations and challenges in explicitly resolving all TWS components in hydrological 58 

modelling
12

. This generally holds true for historical analyses; crucially, no study has to date 59 

examined the potential impacts of future climate change on global TWS.   60 

 61 

Recent modelling advancements
13

 have improved the representation of TWS in global 62 

hydrological models
14,15

 (GHMs) and land surface models
12

 (LSMs). The Gravity Recovery and 63 

Climate Experiment (GRACE) satellite mission provided added opportunities to improve and 64 

validate TWS simulations in these models. GRACE TWS data and model simulations, often in 65 

combination, have been used for wide-ranging applications including the assessment of water 66 

resources and impacts of human activities on the water cycle
14,16

, quantifying aquifer 67 

depletion
12,14,17-19

, monitoring drought
3-6,20

, and assessing flood potential
7
. These studies have 68 

advanced the understanding of global TWS systems that are continually changing under natural 69 

hydroclimatic variability and accelerating human land and water management activities, but the 70 

focus has been on historical variabilities in TWS. Further, future projections from general 71 

circulation models (GCMs) have been used to quantify climate change impacts on hydrological 72 

fluxes
21-23

 and storages, but the projections of storages are limited to a subset of TWS 73 

components—specifically soil moisture and snow
24-26

—owing to an incomplete representation of 74 

TWS components in the GCMs. Lack of explicit parameterizations for surface water and 75 

groundwater processes and use of shallow rooting depth in GCMs have particularly hindered 76 

comprehensive TWS projections using GCM simulations
25

.  77 

 78 

Because TWS represents total water availability on land, it also provides an integrated measure 79 

of overall drought condition in a region
5,6

. Drought—a slow-evolving phenomenon—is among 80 

the costliest natural disasters
27

, directly affecting water resources, agriculture, socioeconomic 81 
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development, and ecosystem health and often linked with armed conflicts
28

. Substantial literature 82 

exists on the study of droughts using indices such as the standardized precipitation index (SPI
29

), 83 

Palmer drought severity index (PDSI
30

), soil moisture drought index (SMI
31,32

), and standardized 84 

runoff index (SRI
33

). These conventional indices have been used in monitoring and 85 

projecting
32,34

 meteorological, agricultural, and hydrological droughts
35

. Recently, a new drought 86 

index, the TWS drought severity index (TWS-DSI
5
), has been employed to examine droughts

36,37
 87 

in relation to the vertically-integrated water storage as opposed to the individual storages or 88 

fluxes used in conventional indices. Previous studies
5,36,37

 have demonstrated that TWS-DSI 89 

correlates with the conventional indices in regions with long-term water storage change but 90 

provides an integrated measure, especially by capturing the effects of slow-responding terms 91 

(such as deep soil moisture and groundwater). Further, an increasing number of TWS-based 92 

drought studies have shown that combining TWS with traditional drought indices can provide 93 

crucial insights about drought impacts on hydrologic systems and vegetation growth
6,36,37

, 94 

because TWS directly responds to changes in precipitation, integrates soil moisture, and 95 

modulates runoff generation, hence encompassing the three aforementioned drought types
36

. 96 

However, since previous TWS studies have focused on historical droughts
3-6,20

, the changes in 97 

future droughts due to TWS change and variability remain unexamined.   98 

 99 

Here we present a global assessment of the impacts of future climate change on TWS. We then 100 

examine the changes in drought severity and frequency resulting from climate-induced TWS 101 

change and variability by using the monthly TWS-DSI
5
 (see Methods and Supplementary Table 102 

1). We use multi-model hydrological simulations (27 ensemble members; Supplementary Table 103 

2) from seven terrestrial hydrology models (LSMs and GHMs; Supplementary Table 3) driven 104 

by atmospheric forcing from four GCMs (see Methods). Four cases of radiative forcing are 105 

considered for each GCM: the pre-industrial control (PIC), historical climate (HIST), and low 106 

(Representative Concentration Pathway; RCP2.6) and medium-high (RCP6.0) emission 107 

scenarios (see Methods). Simulations are conducted under the framework of the Inter-Sectoral 108 

Impact Model Intercomparison Project, phase 2b (ISIMIP2b
38

; https://www.isimip.org/). We use 109 

the multi-model weighted mean of TWS anomalies, calculated by weighting the ensemble 110 

members based on their continent-level skill and independence scores
39

 (Methods; Extended 111 

Data Figs. 1 and 2). 112 

 113 

TWS under climate change 114 

By the mid- (2030-2059) and late- (2070-2099) twenty-first century, TWS is projected to 115 

substantially decline in the majority of the Southern Hemisphere, the conterminous U.S., most of 116 

Europe and the Mediterranean, but increase in eastern Africa, south Asia and northern high 117 

latitudes, especially northern Asia (Fig. 1). The latitudinal mean (Fig. 1) indicates a larger 118 

decline in TWS in the Southern Hemisphere than in the North, driven primarily by the decline in 119 

South America and Australia; this is in line with the projected precipitation changes (Extended 120 

Data Fig. 3) and could partly be due to a tendency of GCMs to overestimate
27

 drying trends in 121 

the Southern Hemisphere. The changes are evident by the mid-twenty-first century (under both 122 

RCPs; Figs. 1a and c), but the signal becomes stronger by the late-twenty-first century, 123 

especially under RCP6.0 (Fig. 1d). Exceptions are found in parts of the conterminous U.S., 124 

where TWS under RCP2.6 is projected to decline by mid-century but then increase slightly 125 

thereafter, due to the projected increase in precipitation across most of the region (Extended Data 126 

Fig. 3) combined with a decrease in temperature from the mid- to the late-twenty-first century 127 

https://www.isimip.org/
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(Extended Data Fig. 4). For RCP6.0, the projected changes (positive or negative) seen during 128 

mid-century become more pronounced later for most global regions. The differences between the 129 

two RCPs are, however, less obvious for both periods; an exception is Australia where the spatial 130 

extent of decline in TWS is projected to be smaller under RCP6.0 than under RCP2.6 (Fig. 1), 131 

which aligns with wetter conditions projected in RCP6.0 (Extended Data Fig. 3). Globally, TWS 132 

declines (increases) in 67% (33%) of land area (excluding Greenland, Antarctica, and glaciers) 133 

by the late-twenty-first century under RCP6.0. 134 

 135 

Overall, strong agreement is found across ensemble members in the sign of change (color 136 

saturation in Fig. 1), indicating high confidence in the projections. For the late-twenty-first 137 

century, an agreement of >50% can be seen in regions where a large decline or increase in TWS 138 

is projected; such agreement is >75% for regions such as the Amazon basin, southern Australia, 139 

the Mediterranean, and eastern U.S. (Fig. 1). This confidence is reinforced by the good 140 

agreement between the simulated TWS and GRACE data for the historical period (Extended 141 

Data Fig. 5 and Supplementary Figs. 1-2). The broad global spatial patterns and seasonal 142 

variations in TWS are accurately captured by the multi-model ensemble mean, although some 143 

differences are evident in the magnitude of seasonal amplitude (Extended Data Fig. 5). Such 144 

differences stand out especially along major river channels (such as the Amazon, Nile, and 145 

Mississippi) that are explicitly considered in the models but not resolved in the GRACE data. 146 

Further, the seasonal dynamics and interannual variability in the simulated TWS averaged over 147 

the major global river basins also agree reasonably well with the GRACE data (Supplementary 148 

Figs. 1-2), even though there are some disagreements between the trend in GRACE and multi-149 

model mean (Supplementary Fig. 2), likely due to uncertainties in model parameterizations and 150 

potential biases in GCM-based forcing data.  151 

 152 

Uncertainty in TWS simulations 153 

The inter-ensemble spread in TWS simulations is a combination of the uncertainties arising from 154 

climate forcing (driven by GCMs) and GHM/LSM parameterizations (see Methods). The GCM 155 

uncertainty (for a given RCP scenario) is larger than GHM/LSM uncertainty in most regions for 156 

the historical period and mid-twenty-first century (Fig. 2). However, the GHM/LSM uncertainty 157 

increases substantially with time, leading to a higher GHM/LSM uncertainty in most regions by 158 

the late-twenty-first century, especially under RCP6.0. The GHM/LSM uncertainty range (Fig. 2, 159 

two right panels) for the historical period is relatively small, consistent with good agreement of 160 

the seasonal amplitude and temporal variability of TWS with GRACE data (Extended Data Fig. 161 

5 and Supplementary Figs. 1-2), which likely reflects the relative benefits of bias correction 162 

using observations for the same period. 163 

 164 

Regional variability and seasonality in TWS projections 165 

The projected changes in the seasonal cycle of TWS also vary regionally (Fig. 3; Supplementary 166 

Fig. 3). The Amazon, South Europe/Mediterranean (MED), North Australia (NAU), North-East 167 

Brazil, South Australia/New Zealand (SAU), Southeastern South America (SSA), and West 168 

Africa (WAF) are projected to experience a decline in TWS across all seasons. In Alaska, a 169 

slight increase is observed during winter months—likely due to an increase in snow amount—170 

but a discernible decline is seen during summer-to-fall months, potentially caused by a warming-171 

driven increase in evapotranspiration. In regions where TWS is expected to increase, changes in 172 

the seasonal cycle vary. While South Asia (SAS) could experience an increase in TWS across all 173 
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seasons, increases are projected only during late fall to early spring in North Asia (NAS); in East 174 

Africa (EAF), increases are expected in all seasons but only under RCP6.0. Many of the regions 175 

projected to experience an increase in TWS overlap with regions with higher future precipitation 176 

(Extended Data Fig. 3). We find the strong drying in MED to be consistent with the historically-177 

observed north (wet)-south (dry) contrast in pan-European river flows
40

, implying that the 178 

regions with historical drying trends are expected to become even drier under climate change. 179 

Our results for the Amazon also corroborate the widely-discussed drying and lengthening of the 180 

dry season
41

, suggesting that the findings are robust for this region and add to the longstanding 181 

debate on the fate of the Amazonian rainforest under a warmer, drier future
42

.  182 

 183 

Soil moisture has been used previously as an indicator of total TWS, on the basis that its 184 

variability constitutes a large portion of the total TWS variability
26

. We find that the component 185 

contribution ratio (CCR; Methods) of soil moisture to total TWS varies substantially among 186 

SREX regions. Generally, soil moisture contribution is high (>50%) in relatively dry regions, 187 

including Central America/Mexico (CAM), MED, West Asia (WAS), Central Asia (CAS), 188 

WAF, Southern Africa (SAF), and SAU, and low in relatively humid and snow-dominated 189 

regions including Alaska, NAS, and Amazon (Extended Data Fig. 6), as also noted by previous 190 

studies
16,43

. The results suggest that soil moisture could not be used to substitute TWS globally.  191 

 192 

Changes in TWS are driven primarily by climate forcing, as opposed to land and water 193 

management and/or socioeconomic drivers (see Methods). This is apparent from comparing the 194 

HIST and RCP simulations with the PIC simulations (see Methods) for the baseline period and 195 

late-twenty-first century (Fig. 3). Since the PIC simulations use identical socio-economic 196 

scenarios as the HIST and RCP simulations for the respective periods (Supplementary Table 2), 197 

the PIC (2070-2099) versus PIC (1976-2005) comparison suggests that TWS would have 198 

remained generally stable in most regions under a pre-industrial climate. Differences between the 199 

two simulations can, however, be seen in some regions (e.g., EAF, SSA, WAS) even though the 200 

difference in the global average is relatively small (Fig. 3). Globally, this difference is ~11% of 201 

the difference between RCP6.0 (2070-2099) and PIC (1976-2005), meaning that ~90% of the 202 

projected change could be attributed to climate change. A decrease in TWS is projected under 203 

pre-industrial climate in CAM, EAF, and NAU. Other regions including Central North America 204 

(CAN), Amazon, SSA, WAS, and SAU would have been wetter in the future under pre-industrial 205 

climate. These results suggest that while the wetting caused by climate change could be offset by 206 

human land and water management and socio-economic drivers in some regions (such as EAF), 207 

the climate-induced drying could be further exacerbated by human activities in others (including 208 

NAU).  209 

 210 

Future projection of TWS drought 211 

The projected changes in TWS correspond with shifts in future drought occurrence and severity. 212 

Many regions are projected to experience an increased occurrence of moderate-to-severe 213 

 0.8 TWS-DSI< 1.6    and extreme-to-exceptional ( TWS-DSI 1.6  ; see Methods and 214 

Supplementary Table 1) droughts (Figs. 4a and b). The direction of change is robust among 215 

ensemble members, especially in regions that are projected to experience an increase in the 216 

number of drought days (for example Amazon, Mediterranean, conterminous U.S., Southeast 217 

Asia, and parts of Australia). By the late-twenty-first century (RCP6.0), the frequency of 218 

moderate, severe, extreme, and exceptional droughts is projected to increase substantially (17-219 



6 

 

34%; Supplementary Table 4) in all continents but Asia (Figs. 4c and 4e-h). This is caused 220 

largely by a significant reduction in the frequency of near-normal to abnormally dry and slightly 221 

wet conditions in Africa and North America, primarily of wet conditions in Europe, and that of 222 

near-normal and wet conditions in South America and Australia. Further, results suggest a 223 

general reduction in the frequency of wet conditions globally except in Asia and, to some extent, 224 

in Africa. Asia stands out among all continents where the frequency of severe, extreme, and 225 

exceptional droughts as well as that of moderately wet to exceptionally wet conditions is 226 

projected to increase, caused by a reduced frequency of near-normal and slightly dry and wet 227 

conditions (Fig. 4d). 228 

 229 

Global land area and projected future population (see Methods) exposed to moderate-to-severe 230 

drought are projected to increase steadily until the mid-twenty-first century and remain relatively 231 

stable during the late-twenty-first century. However, those under extreme-to-exceptional drought 232 

are projected to increase until the end of the century (Figs. 4i-j) with a noticeable increase in 233 

inter-ensemble spread toward the late-century, consistent with the increase in GHM/LSM 234 

uncertainty (Fig. 2). Under RCP6.0, both global land area and projected population in moderate-235 

to-severe drought increase from 15% during the baseline period of 1976-2005 to 18% and 20%, 236 

respectively, by the mid- and late-twenty-first century. This change in population translates to an 237 

additional ~600 and ~859 million people, respectively. From the mid- to the late-twenty-first 238 

century, the global population in moderate-to-severe drought for at least 30 days per year 239 

increases from 59% to 63%, and population experiencing at least 60 days per year increases from 240 

45% to 49%. For extreme-to-exceptional drought under RCP6.0, land area increases from a 3% 241 

baseline to 4% and 7% during the mid- and late-twenty-first century, respectively. Population 242 

exposed to these conditions increases from a baseline of 3% to 4% and 8%, or an additional ~154 243 

and ~488 million people. The population exposed to at least 30 days of extreme-to-exceptional 244 

drought increases from 19% to 27%, and at least 60 days from 11% to 18%, between the mid- 245 

and late-twenty-first-century.   246 

   247 

At the regional scale, the frequency of extreme and exceptional droughts is projected to increase 248 

by the late-twenty-first century in most SREX regions (Fig. 5; Methods). The changes in drought 249 

frequency are evident under both RCPs but are generally more pronounced under RCP 6.0. 250 

Overall, the probability density functions (PDFs) characterized by a symmetrical distribution 251 

(centered at TWS-DSI=0) for the historical period tend to become more positively skewed in 252 

most regions where TWS is expected to decline (see Figs. 1 and 3), meaning that these regions 253 

are likely to experience more frequent and intense droughts in the future. For example, in the 254 

Amazon the occurrence of severe, extreme, and exceptional droughts (Supplementary Table 1) 255 

increases substantially (under both RCPs) by mid- and late-twenty-first century (Fig. 5). The dry-256 

season TWS deficit in the Amazon is suggested to be increasing, causing more frequent and 257 

intense droughts
20,44

, and our findings highlight that the drying would further intensify, with 258 

important implications for the resilience of the Amazon rainforest.  259 

 260 

Distributions with obvious positive skew for the future periods can be observed in CAM, CNA, 261 

MED, NAU, SAU, WAF and WAS. Conversely, regions such as EAF, NAS and SAS are 262 

projected to experience a reduced frequency of TWS droughts. For West North America and the 263 

entire globe, a shift in the PDFs to a bimodal distribution can be seen, suggesting an increased 264 

frequency of both TWS droughts and anomalously wet conditions, further indicating a reduced 265 
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TWS buffer capacity under future climate. Finally, results indicate that in the absence of 266 

greenhouse gas forcing (PIC simulation; Fig. 5), future droughts would have either not changed 267 

noticeably or their severity could have been reduced in many regions, suggesting that the 268 

exacerbations in drought conditions are attributable primarily to climate change. 269 

 270 

A comparison of TWS-DSI with traditional drought indices (Methods; Extended Data Figs. 7-271 

10) suggests that TWS-DSI provides new information on future droughts. Unlike SRI that is 272 

highly correlated with SPI, TWS-DSI exhibits different PDFs in most SREX regions (Fig. 5 and 273 

Extended Data Figs. 7-8) because it encompasses all relevant storage components related to 274 

drought and accounts for human land and water management that directly alters water 275 

availability. We find TWS-DSI also differs from soil moisture-based indices (Fig. 5 and 276 

Extended Data Figs. 9-10) because the soil moisture contribution to total TWS varies 277 

significantly among regions (Extended Data Fig. 6); TWS-DSI captures the effects of 278 

groundwater and surface water storages and accounts for human land and water management 279 

activities not reflected in the other indices. These comparisons—supported by previous studies 280 

on historical droughts
6,36,37

—indicate that TWS-DSI could be used synergistically with 281 

traditional drought indices to better understand and predict droughts by accounting for the role of 282 

groundwater and human activities. 283 

 284 

Summary and implications 285 

These results show that climate change could reduce TWS in many regions, especially in the 286 

Southern Hemisphere, the U.S. and southwestern Europe; exceptions are regions with high 287 

increases in precipitation, including east Africa and northern Asia. By the late-twenty-first 288 

century and under RCP6.0, two-thirds of the global land could experience a reduction in TWS. 289 

We find strong agreement among ensemble model projections, especially in the direction of 290 

change, suggesting that the results are robust. We further show that extreme droughts are 291 

expected to become more frequent in most of the SREX regions. Globally, land area and 292 

projected population in extreme-to-exceptional TWS drought under RCP6.0 are projected to 293 

more than double, each increasing from 3% to 7% and 8%, respectively, by the late-twenty-first 294 

century.  295 

 296 

While we use state-of-the-art models and the best available global data available, there are 297 

limitations to our approach. First, even though the GHMs/LSMs reproduce historical TWS 298 

variability well, these models and the GCM forcing data contain inherent biases
9
. Second, 299 

assessment of the relative contributions of individual TWS components is limited to soil 300 

moisture, because the other components are not currently available from ISIMIP2b simulations. 301 

Lastly, the implications of vegetation response to rising CO2 levels on TWS and drought 302 

projections are not considered, because the hydrological models (except LPJmL) do not currently 303 

simulate vegetation dynamics. Studies have shown that elevated atmospheric CO2 levels lead to 304 

increased leaf-level water use efficiency, potentially ameliorating the reduction in water 305 

availability through reduced evapotranspiration and increased soil moisture and runoff 
45,46

. This 306 

implies that the projected decline in TWS and increase in future droughts may be overestimated 307 

in our study. However, increased foliage area under elevated CO2 levels and warmer climate 308 

generally lead to increased vegetation growth and associated water use, resulting in decreased 309 

water availability by counterbalancing the increase in runoff from water-use efficiency gains
47,48

. 310 

Thus a comprehensive analysis of TWS projections using coupled hydrological-dynamic 311 
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vegetation models is required for a robust estimation of the implications of vegetation response 312 

to elevated CO2 levels, which should be a priority for future studies.  313 

 314 

Despite some limitations, our study provides a comprehensive assessment of climate impacts on 315 

future TWS and droughts. Given large uncertainties and medium confidence in drought 316 

projections using traditional drought indices
49

, and since no single drought index can capture the 317 

diverse set of drought impacts from climate change
50

, our results provide information to better 318 

predict future droughts and understand water resource and vegetation growth impacts
6,36,37

.   319 

 320 

 321 
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Methods 443 

Models, simulation settings, and forcing data. The seven terrestrial hydrology models used in 444 

this study include five global hydrological models (GHMs
51

): CWatM
52

, H08
15,53,54

, MPI-HM
55

, 445 

PCR-GLOBWB
56

, and WaterGAP2
57

; one global land surface model (LSM
51

): CLM4.5
58

; and 446 

one dynamic global vegetation model (DGVM): LPJmL
59

. All models simulate the key terrestrial 447 

hydrological (e.g., soil, vegetation, river) processes (Supplementary Table 3). Meteorological 448 

forcing data are derived from climate simulations by four of the GCMs (a subset of models 449 

participating in the Coupled Model Intercomparison Project Phase 5; CMIP5) included in the 450 

Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC): 451 

GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, and MIROC5. The climate variables included 452 

in the forcing data are precipitation, air temperature, solar radiation (short and long wave), wind 453 

speed, specific humidity, and surface pressure, which are bias adjusted
60

 and downscaled to 454 

0.5°×0.5° spatial resolution of the terrestrial hydrology models. A comprehensive description of 455 

bias adjustment and downscaling can be found in the previous literature
60-62

.   456 

 457 

For each GCM, four radiative forcing cases are considered for varying periods (Supplementary 458 

Table 2): the pre-industrial control (PIC; pre-industrial climate; 1861-2099), historical climate 459 

(HIST; that includes the effects of human emissions including greenhouse gases and aerosols
63

; 460 

1861-2005), low greenhouse gas concentration scenario (RCP2.6; 2006-2099), and medium-high 461 

greenhouse gas concentration scenario (RCP6.0; 2006-2099). Simulations are conducted under 462 

the standard protocol of the Group-2 simulation scenario design of the Inter-Sectoral Impact 463 

Model Intercomparison Project phase 2b (ISIMIP2b
38

; https://www.isimip.org/). The two RCPs 464 

are the only RCPs for which TWS results from all models were available from ISIMIP2b 465 

simulations. The hydrology models are run for each GCM-radiative forcing combination by 466 

considering time-varying human land and water management activities and socio-economic 467 

conditions for the HIST runs but fixed at the present day (i.e., 2005) level for future projections 468 

(2006-2099; RCP2.6 and RCP6.0). For the PIC simulations, climate forcing is set at the pre-469 

industrial level and human land and water management activities and socio-economic conditions 470 

vary for the historical period but are fixed at 2005 level for the future periods (see Fig. 1 in 471 

Frieler et al.
38

). Thus, while the difference between PIC and other radiative forcing cases results 472 

from pure climate change, the difference between historical and future PIC runs reflects the time-473 

varying effects of human activities and socio-economic drivers, not climate change. The human 474 

activities and socio-economic indicators considered are population, national gross domestic 475 

product, land use and land cover change (LULCC), irrigated areas, fertilizer use, and reservoir 476 

operation including water withdrawal, depending on the model schemes. LULCC and irrigated 477 

areas are prescribed based on the HYDE3-MIRCA data
64-66

 and data for dams and reservoirs are 478 

taken from the GRanD database
67

. Irrigation (and other water use sector) schemes vary among 479 

models (Supplementary Table 3) but all models simulate global irrigation requirements within 480 

plausible limits of reported datasets based on country statistics (see reference to each model for 481 

more details). The reservoir operation schemes are based on Hanasaki et al.
68

 (H08 and 482 

WaterGAP2), Biemans et al.
69

 (LPJmL), and a combination of Haddeland et al.
70

 and Adams et 483 

al.
71

 (CWatM and PCR-GLOBWB); reservoirs are not represented in MPI-HM and CLM4.5. 484 

Soil column depth and layer configuration and groundwater representation vary among models 485 

(Supplementary Table 3).   486 

 487 

https://www.isimip.org/
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Multi-model weighted mean. Multi-model mean is calculated by weighting the ensemble 488 

members based on their skill (i.e., the root mean squared error (RMSE) of the area-weighted 489 

seasonal cycle of TWS relative to GRACE data) and independence (i.e., a measure of how 490 

different model results are) scores, following previous studies
39,72

. The continent-based, 491 

temporally static weights  ( )ow i  for the 27 ensemble members (Extended Data Fig. 1) are 492 

calculated as the normalized product of the skill and independence weights so that their sum is 493 

unity
39,72

, i.e.,  27

1
( ) 1oi

w i


 . The independence weight of member , ( )ui w i , is computed as 494 

the inverse of the summation of pairwise similarity score,  ,i jS  , which ranges between 1 (for 495 

identical members) and 0 (for the most distinct members). Mathematically,496 

 
27

,

1
( )

1
u

i jj i

w i
S 






. The pairwise similarity score is calculated as a function of the 497 

Euclidean distance
39

 between the members ,( )i j , represented by the RMSE of the continent-498 

level average TWS seasonal cycle from two members, and a parameter called the radius of 499 

similarity  uD : 

2

,

,( ) exp
i j

i j

u

S
D




  
   
   

, where ,i j  is normalized by the mean of pairwise inter-500 

model distances (Extended Data Fig. 2). The parameter uD  is the distance below which models 501 

are marked as similar and is resolved for each continent as a fraction of the distance between the 502 

best performing member (i.e., the model with the smallest RMSE) and GRACE through an 503 

iterative process
39

. The skill weighting of member , ( )qi w i , is calculated based on the stretched 504 

exponential function
73

 of the distance from GRACE ( ,i GRACE ; the normalized RMSE of 505 

member i’s TWS seasonal cycle against GRACE for 2002-2016) and the radius of model quality 506 
2

,
( ) : ( ) exp

i GRACE

q q

q

D w i
D

  
       

, where smaller distances from the GRACE seasonal cycle 507 

result in larger skill score/weight. The parameter qD  is also defined as a fraction of the distance 508 

between the best performing member and GRACE. This parameter controls the strength of the 509 

skill weighting. That is, when qD  approaches zero, most of the simulations get significantly 510 

down-weighted and only the best performing model is assigned a high skill score. Conversely, as 511 

qD  approaches infinity, all ensemble members are allotted a high (i.e., close to 1) skill score 512 

alike and therefore, the multi-model weighted mean approaches the non-skilled weighted mean. 513 

Finally, the continent-based qD values are estimated for 2002-2016 period and tested for RCP6.0 514 

late-century simulations following a perfect model test and through an iterative procedure
39

. The 515 

perfect model test is conducted to ensure that out of sample simulations (i.e., simulations out of 516 

the GRACE period) are also improved with the weighting scheme. Note that the model weights 517 

are estimated by using the seasonal cycle of TWS, rather than the trend or inter-annual 518 

variability, because the original study
39

 that described the weighing scheme used the seasonality 519 

of climate variables, and no studies have demonstrated the applicability or robustness of the 520 
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schemes based on trend or inter-annual variability. Further, the GRACE data period is relatively 521 

short to rely on temporal trends, which are highly sensitive to the time window chosen.   522 

 523 

Simulated TWS, GRACE data, model evaluation, and TWS variability under climate 524 

change. The monthly-scale simulated TWS is derived by vertically integrating the surface and 525 

subsurface water storages, which include snow, canopy, river, reservoir (if simulated), lake (if 526 

simulated), wetland (if simulated), soil, and groundwater storages
74,75

. TWS derived from 527 

GRACE satellite measurements is used to evaluate the simulated TWS for the 2002-2016 period. 528 

We use the mean of mascon products
76

 from two processing centers: Center for Space Research 529 

(CSR) at the University of Texas at Austin, and Jet Propulsion Laboratory (JPL) at the California 530 

Institute of Technology. For model results, since the evaluation period is not covered completely 531 

by HIST simulations, we combine the results from HIST simulations (2002-2005) with results 532 

from RCP 2.6 (2006-2016). The seasonal mean of TWS anomalies (Extended Data Fig. 5 and 533 

Supplementary Fig. 1) is derived by first calculating the climatological mean seasonal cycle of 534 

TWS for the evaluation period and then taking the mean for each season. For consistency, the 535 

same reference period (2002-2016) is used in calculating the seasonal anomalies for both 536 

GRACE data and model simulations. Changes in TWS for the mid (2030-2059) and late (2070-537 

2099) twenty-first century (for the two RCPs) are calculated by taking the difference of mean 538 

TWS for those periods to the mean TWS for the historical baseline period of 1976-2005, which 539 

is the last 30-year period of the historical simulations; simulations from year 2006 are conducted 540 

under future climate scenarios.  541 

 542 

Quantification of uncertainty in TWS simulations. The contribution of uncertainties from 543 

GCMs (i.e., forcing data) and GHMs/LSMs to TWS is quantified by using the sequential 544 

sampling approach
77

. In this approach, the uncertainty contribution of GCMs and GHMs/LSMs 545 

is calculated using the range statistic
77

 of monthly TWS (represented as the quantile-based TWS 546 

index) averaged over the SREX regions for the historical baseline period, and mid- and late-547 

twenty-first century. The GCMs (GHMs/LSMs) uncertainty—characterized as the range of mean 548 

in the quantile-based TWS index—for a given RCP scenario is computed by first averaging the 549 

quantile-based TWS index across all GHMs/LSMs (GCM) for each of the GCMs (GHMs/LSMs) 550 

and then calculating the range across GCMs (GHMs/LSMs). The quantile-based TWS index, 551 

spatially averaged over SREX regions, is calculated
31

 by (1) fitting a non-parametric kernel 552 

density function to TWS data, (2) estimating the PDF, and (3) numerically integrating the PDF 553 

between zero and the simulated TWS. 554 

 555 

Component contribution of soil moisture to total TWS. A dimensionless metric, the 556 

component contribution ratio (CCR
16,78

), is used to quantify the contribution of soil moisture to 557 

total TWS (Extended Data Fig. 6). CCR represents the ratio of seasonal amplitude of soil 558 

moisture to that of TWS. The CCR is used to assess the differences between the drought 559 

projected by TWS-DSI and soil moisture drought index (SMI). The contribution of other TWS 560 

components could not be examined as those variables are not currently available from ISIMIP2b 561 

simulations. 562 

 563 

TWS Drought Severity Index (TWS-DSI) and drought severity under climate change. 564 

Monthly TWS drought severity index (TWS-DSI) is estimated for all ensemble members 565 
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following Zhao et al.
5
; TWS-  , ,i j i j j jDSI TWS    , where ,i jTWS  is the TWS anomaly in 566 

year i and month j, and j  and j  are the climatological mean and standard deviation, 567 

respectively, of monthly TWS anomalies for the reference period. TWS-DSIi,j is a non-568 

dimensional index that defines droughts with varying degrees of severity, also representing wet 569 

conditions (Supplementary Table 1). In calculating the mean and standard deviation of TWS for 570 

any specified period, a common reference period set to 1861-2099 is used to avoid potential 571 

exaggeration in the estimates of TWS variability and drought evolution
79

, and for consistent 572 

comparison. The drought trend (Figs. 4a-b) is calculated as the linear least-square trend using the 573 

time series of annual drought occurrence presented in days per year. The significance of trend 574 

values is evaluated using the non-parametric Mann-Kendall trend test
80,81

 with 5% significance 575 

level. Note that for the trend calculations, four droughts types are re-grouped into two major 576 

categories for simplicity: moderate-to-severe  1.6<TWS-DSI 0.8    and extreme-to-577 

exceptional  TWS-DSI 1.6   droughts (see Supplementary Table 1 for more details).  578 

 579 

The frequency of droughts with varying severities used for continental-scale drought analysis 580 

(Figs. 4c-h) is estimated by considering the TWS-DSI calculated for all ensemble members, 581 

normalized such that the results show the probability density function (PDF) at bins 582 

corresponding to the classes of drought and wet conditions (Supplementary Table 1). For the 583 

analysis of global population affected by drought, we use the time-varying (2006-2100) gridded 584 

global population data generated by scaling the 2005 population data from the Center for 585 

International Earth Science Information Network (CIESIN) at Columbia University 586 

(https://sedac.ciesin.columbia.edu/) with the country-level future population growth rate 587 

(https://tntcat.iiasa.ac.at/SspDb) for the Shared Socioeconomic Pathways 2 (SSP2)
82

. Among the 588 

five SSPs, SSP2 reflects an intermediate, middle of the road scenario in which population growth 589 

is medium
83

. The changes in future population under drought are estimated relative to the 590 

baseline period of 1976-2005 but using static population data for 2005. Finally, the PDFs for 591 

each IPCC SREX regions (Fig. 5) are estimated using the non-parametric kernel-density 592 

method
84

 and by considering all ensemble members. There is a bimodality in the PDF of TWS-593 

DSI in some regions as a result of preferential states in water stores such as soil moisture
85,86

, 594 

thus using the non-parametric kernel-density method is more apt compared to the parametric 595 

unimodal distributions with underlying assumptions such as normality
27,31

. We find that using 596 

kernel-density method to estimate the PDF of TWS-DSI results in almost identical PDF 597 

estimation (not shown) to that from the conventional standardized drought indices
29

—i.e., by 598 

first fitting the TWS data to a secondary distribution (e.g., gamma, Pearson Type III) and then 599 

transforming it to standard normal distribution.  600 

 601 

The standardized precipitation index (SPI
29

) and standardized runoff index (SRI
33

) are calculated 602 

by first fitting the monthly precipitation and runoff data, respectively, to the gamma distribution 603 

function to obtain monthly climatological distributions for the reference period (1861-2099). 604 

These distributions are then used to estimate the cumulative probability of the variable 605 

(precipitation or runoff) for a certain period. Finally, the cumulative probabilities are converted 606 

to standard normal deviate (    and    ) by inversing the respective cumulative distribution 607 

function (CDF). The SMI is estimated based on two approaches. For the direct comparison with 608 

TWS-DSI, SMI is obtained using the same methodology as TWS-DSI
5
, however using soil 609 

https://sedac.ciesin.columbia.edu/data/collection/gpw-v4/documentation
https://tntcat.iiasa.ac.at/SspDb
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moisture data instead of TWS (Extended Data Fig. 9). Additionally, a more conventional 610 

quantile-based SMI (Extended Data Fig. 10) is calculated following Samaniego et al.
31

 and 611 

Sheffield and Wood
32

. To do so, soil moisture is first fitted to a non-parametric kernel density 612 

function to derive the monthly climatological PDFs for the reference period (1861-2099). The 613 

quantile-based drought index corresponding to a given soil moisture for month   (  ) is then 614 

derived by numerically integrating the respective PDF
31

 ( ̂) as:      ∫  ̂     
  

 
. The PDFs 615 

of drought indices (SPI, SRI, and SMI) are generated for different periods using kernel-density 616 

method (Extended Data Figs. 7-10). 617 
 618 

Data Availability 619 

The model results are freely available from the ISIMIP project portal 620 

(https://www.isimip.org/outputdata/) and the two GRACE products used for model evaluation 621 

can be obtained from http://www2.csr.utexas.edu/grace/ and https://podaac.jpl.nasa.gov/GRACE. 622 

The processed data used to generate the figures in the main text are available on CUAHSI 623 

HydroShare and Figshare (DOI: 10.6084/m9.figshare.13218710).  624 

 625 

Code Availability 626 

All figures are produced using the freely available visualization libraries in Python 3.5 (such as 627 

Matplotlib), and statistical analysis is performed using built-in functions in Python 3.5. The 628 

relevant portions of the computer code used to process the results and develop the figures are 629 

available at https://doi.org/10.5281/zenodo.4266999. 630 

 631 

 632 
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 748 

Fig. 1 | Impact of climate change on TWS. Shown are the changes (multi-model weighted mean) in 749 
TWS, averaged for the mid (2030-2059; a and c) and late (2070-2099; b and d) twenty-first century under 750 
RCP 2.6 (a and b) and RCP 6.0 (c and d) relative to the average for the historical baseline period (1976-751 
2005). Color hues show the magnitude of change and saturation indicates the agreement, among ensemble 752 
members, in the sign of change. The graph on the right of each panel shows the latitudinal mean.  753 

 754 

Fig. 2 | Uncertainty in TWS simulations. Shown are contributions of GCMs and GHMs/LSMs to the 755 
uncertainty in TWS simulations (the range statistic of quantile-based TWS index; see Methods), averaged 756 
over the sub-continental regions defined by the Intergovernmental Panel on Climate Change (IPCC) 757 
Special Report On Extremes (SREX; region description is provided in Supplementary Fig. 3). The 758 
horizontal axis denotes historical baseline period (1976-2005) and mid- (2030-2059) and late- (2070-759 
2099) twenty-first century. A lighter color marks a smaller variability in TWS simulations across GCMs 760 
or GHMs/LSMs.  761 
 762 

Fig. 3 | Seasonal TWS variations averaged over the selected IPCC SREX regions. The seasonal cycle 763 
(weighted mean; same continental weights are used for all simulations) is estimated from the TWS time 764 
series for the respective periods (see legends), but the anomalies are calculated by using the mean for 765 
1861-2099 period, generated by combining the results from HIST simulations with the corresponding 766 
RCP scenario. Labels and unit are shown in the inset for the entire globe. A description of SREX regions 767 
is provided in Supplementary Figure 3. 768 

 769 

Fig. 4 | Projected changes in occurrence and time evolution of droughts under RCP6.0. The maps 770 
show the trend (days/year) in the frequency of moderate-to-severe (a) and extreme-to-exceptional (b) 771 
droughts for the 2006-2099 period. Single and double hatches show regions where >50% and >75% of the 772 
ensemble members, respectively, agree in the sign of change. Stippling marks regions where >50% of 773 
ensemble members show a significant trend (Mann-Kendall test at 5% significance level).  The 774 
histograms on the right (c-h) show the frequency of droughts with varying severity indicated by monthly 775 
TWS-DSI on the x-axis (see Methods and Supplementary Tables 1 and 4), averaged over the continents 776 
for the baseline period (HIST; 1976-2005) and late-twenty-first century (2070-2099). The bottom panels 777 
present the change in fractional global land area (excluding Greenland, Antarctica) (i) and population 778 
projections under SSP2 (j) to experience moderate-to-severe (blue) and extreme-to-exceptional (red) 779 
droughts; shaded areas indicate ±1 standard deviation (SD) from the ensemble mean, representing the 780 
spread in the projection among ensemble members. Results for RCP2.6 are shown in the Supplementary 781 
Figure 4. 782 
 783 
Fig. 5 | Probability density function of monthly TWS-DSI for the late-twenty-first century. Shown 784 
are ensemble simulations grouped for different cases (i.e., HIST, PIC, RCP2.6, and RCP6.0). Labels are 785 
indicated in the inset for the entire globe; x-axis labels indicate TWS-DSI (Supplementary Table 1). A 786 
description of SREX regions (background map) is provided in Supplementary Figure 3. Similar results for 787 
the mid-twenty-first century are shown in Supplementary Figure 5. 788 

 789 
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1. Terrestrial water storage (TWS) drought severity index (TWS-DSI) 
Supplementary Table 1 | TWS drought severity index (TWS-DSI). The index values represent 
the range of relative categories of drought and wet conditions used to define drought severity1. For 
the calculation of drought trends, the four drought categories are grouped into two major drought 
types, namely the moderate-to-severe  and extreme-to-exceptional 

 droughts.   

 

Description TWS-DSI Value 
Exceptional Drought ≤ −2.0 
Extreme Drought −2.0 < '() ≤ −1.6 
Severe Drought −1.6 < '() ≤ −1.3 
Moderate Drought −1.3 < '() ≤ −0.8 
Abnormally Dry −0.8 < '() ≤ −0.5 
Near Normal −0.5 < '() < +0.5 
Slightly Wet +0.5 ≤ '() < +0.8 
Moderately Wet +0.8 ≤ '() < +1.3 
Very Wet +1.3 ≤ '() < +1.6 
Extremely Wet +1.6 ≤ '() < +2.0 
Exceptionally Wet ≥	+2.0 

 
  

( )1.6<TWS-DSI 0.8- £ -

( )TWS-DSI 1.6£ -
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2. Ensemble Simulations and Hydrology Models 
Supplementary Table 2 | Summary of multi-model ensemble simulations.  

GH
M

/L
SM

 Radiative Forcing Preindustrial Control 
(PIC) 

Historical 
(HIST) RCP2.6 RCP6.0 

Simulation Period 1861-2005 2006-2099 1861-2005 2006-2099 
        Socio-economic  
                     Scenario 
 
GCM Hi

st
so

c*
 

20
05

so
c*

*  

20
05

so
c 

H i
st

so
c 

20
05

so
c 

20
05

so
c 

20
05

so
c 

CL
M

 4
.5

 GFDL-ESM2M   X X   X X X 
HADGEM2-ES   X X   X X X 
IPSL-CM5A-LR   X X   X X X 
MIROC5   X X   X X X 

CW
at

M
 GFDL-ESM2M X    X  X   X X 

HADGEM2-ES X    X  X   X X 
IPSL-CM5A-LR X   X X   X X 
MIROC5 X   X X   X X 

H0
8 

GFDL-ESM2M X   X X   X X 
HADGEM2-ES X   X X   X X 
IPSL-CM5A-LR X   X X   X X 
MIROC5 X   X X   X X 

LP
J-m

L 

GFDL-ESM2M X   X X   X X 
HADGEM2-ES X   X X   X X 
IPSL-CM5A-LR X   X X   X X 
MIROC5 X   X X   X X 

M
PI

-H
M

 GFDL-ESM2M X   X X   X X 
HADGEM2-ES Not Available 
IPSL-CM5A-LR X   X X   X X 
MIROC5 X   X X   X X 

PC
R-

GL
OB

W
B GFDL-ESM2M X   X X   X X 

HADGEM2-ES X   X X   X X 
IPSL-CM5A-LR X   X X   X X 
MIROC5 X   X X   X X 

W
at

er
GA

P2
 GFDL-ESM2M X   X X   X X 

HADGEM2-ES X   X X   X X 
IPSL-CM5A-LR X   X X   X X 
MIROC5 X   X X   X X 

 *Histsoc: time-varying, historical socio-economic scenarios.  

 **2005soc: socio-economic scenarios fixed at 2005 level. 
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Supplementary Table 3 | Details of models used in this study.  
Models Model 

Type 
Evapotranspiration 
Scheme 

Snow Scheme Groundwater 
Scheme 

Runoff Scheme  
(Surface Runoff/ 
Subsurface 
Runoff)  

River Routing 
Scheme 

Reservoir 
Operation 

Human Water 
Use  

References 

CLM4.5 LSM
a
 Monin-Obukhov 

Similarity Theory 

Physically 

based snow 

module 

Explicit (single 

reservoir) 

Infiltration excess 

and saturation 

excess, 

groundwater 

discharge   

River Transport 

Model 

No  Irrigation  

 

Refs.
2,3

 

CWatM GHM
b
 Penman-Monteith 

formulation 

Degree-day 

method 

Explicit (single 

reservoir) 

Saturation excess, 

baseflow  

Kinematic water 

formulation 

Yes Irrigation, 

domestic, 

industry, 

livestock 

Ref.
4
 

H08 GHM Bulk formulation Energy 

balance 

method 

Explicit 

(renewable and 

non-renewable 

reservoirs) 

Saturation excess, 

baseflow 

Linear reservoir 

model 

Yes irrigation  

 

Refs.
5-7

 

LPJmL DGVM
c
 Priestley-Taylor 

formulation modified 

for transpiration 

Degree-day 

method with 

precipitation 

factor 

Groundwater 

recharge and 

runoff based on 

seepage from 

soil column 

Saturation excess Continuity 

equation derived 

from linear 

reservoir model 

Yes Irrigation  

 

Refs.
8,9

  

 

MPI-HM GHM Penman-Monteith 

formulation 

Degree-day 

method 

Implicit Saturation excess; 

Beta function 

Linear reservoir 

cascade 

No Irrigation  

 

Ref.
10

 

PCR-

GLOBWB 

GHM Hamon formulation Degree-day 

method 

Explicit (single 

reservoir) 

Saturation excess; 

groundwater 

discharge 

Travel time routing 

(characteristic 

distance) linked 

with dynamic 

reservoir operation 

Yes Irrigation, 

domestic, 

industry, 

livestock 

Ref.
11

 

WaterGAP2 GHM Priestley-Taylor with 

varying alpha-values 

for arid and humid 

areas 

Degree-day 

method 

Explicit (single 

reservoir) 

Saturation excess, 

Beta function 

Linear reservoir 

cascade 

Yes Irrigation, 

domestic, 

electricity, 

manufacturing, 

livestock 

Ref.
12

 

 
a
Land Surface Model; 

b
Global Hydrological Model; 

c
Dynamic Global Vegetation Model. 
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3. Changes in Drought Frequency  
Supplementary Table 4 | Continent-based normalized frequency of TWS drought and its 
change from the historical baseline period (HIST) to the end of the twenty-first century 
(RCP6.0). Shown are the numbers associated with the histograms presented in Figures 4c-h in 
the main text. “Bin width” represents the width of each bin on the x-axis of the histograms. The 
last two columns present the cumulative area (i.e., cumulative normalized frequency for HIST 
and RCP6.0 simulations). The cells color-coded green show the cumulative normalized 
frequency for TWS-DSI categories considered as droughts (Supplementary Table 1). For 
example, the cumulative frequency for Africa changed from 21.44 to 38%, suggesting an 
increase of ~17%; the same for South America is ~34% and those for the other continents 
(except Asia) are in between. 

Co
nt

in
en

t 

TWS-DSI Bin 
Width 

Norm. 
Freq. 
(HIST) 

Norm. 
Freq. 
(RCP6.0) 

Cum.  
Area 
(HIST, 
%) 

Cum. 
Area 
(RCP6.0, 
%) 

 

Co
nt

in
en

t 

TWS-DSI Bin 
Width 

Norm.  
Freq.  
(HIST) 

Norm.  
Freq.  
(RCP6.0) 

Cum. 
Area 
(HIST, 
%) 

Cum.  
Area 
(RCP6.0, 
%) 

Af
ric

a 

-3.0 ~ -2.0 1 0.0061 0.0495 0.61 4.95  

Eu
ro

pe
 

-3.0 ~ -2.0 1 0.0131 0.0491 1.31 4.91 
-2.0 ~ -1.6 0.4 0.0405 0.1702 2.23 11.76  -2.0 ~ -1.6 0.4 0.0359 0.1477 2.75 10.82 
-1.6 ~ -1.3 0.3 0.0868 0.2531 4.83 19.35  -1.6 ~ -1.3 0.3 0.0568 0.1876 4.45 16.45 
-1.3 ~ -0.8 0.5 0.1508 0.2443 12.37 31.57  -1.3 ~ -0.8 0.5 0.1125 0.2295 10.08 27.92 
-0.8 ~ -0.5 0.3 0.3023 0.2145 21.44 38.00  -0.8 ~ -0.5 0.3 0.1823 0.2482 15.54 35.37 
-0.5 ~ +0.5 1 0.4367 0.2504 65.11 63.04  -0.5 ~ +0.5 1 0.3571 0.3144 51.25 66.81 
+0.5 ~ +0.8 0.3 0.3725 0.3108 76.29 72.37  +0.5 ~ +0.8 0.3 0.4544 0.3185 64.89 76.36 
+0.8 ~ +1.3 0.5 0.2758 0.2549 90.08 85.11  +0.8 ~ +1.3 0.5 0.3758 0.2499 83.68 88.86 
+1.3 ~ +1.6 0.3 0.1518 0.1886 94.63 90.77  +1.3 ~ +1.6 0.3 0.2765 0.1742 91.97 94.08 
+1.6 ~ +2.0 0.4 0.0762 0.1202 97.68 95.58  +1.6 ~ +2.0 0.4 0.1354 0.1017 97.39 98.15 
+2.0 ~ +3.0 1 0.0232 0.0442 100.00 100.00  +2.0 ~ +3.0 1 0.0261 0.0185 100.00 100.00 

As
ia

 

-3.0 ~ -2.0 1 0.0085 0.0377 0.85 3.77  

N
or

th
 A

m
er

ic
a  

-3.0 ~ -2.0 1 0.0057 0.0905 0.57 9.05 
-2.0 ~ -1.6 0.4 0.0337 0.1637 2.20 10.32  -2.0 ~ -1.6 0.4 0.0268 0.3274 1.64 22.15 
-1.6 ~ -1.3 0.3 0.0673 0.1739 4.22 15.54  -1.6 ~ -1.3 0.3 0.0734 0.3388 3.84 32.31 
-1.3 ~ -0.8 0.5 0.1658 0.1705 12.51 24.06  -1.3 ~ -0.8 0.5 0.1241 0.2336 10.05 43.99 
-0.8 ~ -0.5 0.3 0.2602 0.1646 20.31 29.00  -0.8 ~ -0.5 0.3 0.2216 0.1548 16.70 48.63 
-0.5 ~ +0.5 1 0.4689 0.1904 67.20 48.04  -0.5 ~ +0.5 1 0.4329 0.1909 59.99 67.72 
+0.5 ~ +0.8 0.3 0.4792 0.3096 81.58 57.33  +0.5 ~ +0.8 0.3 0.5359 0.3457 76.06 78.10 
+0.8 ~ +1.3 0.5 0.2657 0.4136 94.86 78.01  +0.8 ~ +1.3 0.5 0.3351 0.2984 92.82 93.02 
+1.3 ~ +1.6 0.3 0.0923 0.3588 97.63 88.77  +1.3 ~ +1.6 0.3 0.1317 0.1465 96.77 97.41 
+1.6 ~ +2.0 0.4 0.0378 0.1941 99.15 96.53  +1.6 ~ +2.0 0.4 0.0504 0.0529 98.79 99.53 
+2.0 ~ +3.0 1 0.0084 0.0346 99.99 99.99  +2.0 ~ +3.0 1 0.0121 0.0047 100.00 100.00 

Au
st

ra
lia

 

-3.0 ~ -2.0 1 0.0025 0.0267 0.25 2.67  

So
ut

h 
Am

er
ic

a  

-3.0 ~ -2.0 1 0.0063 0.0916 0.63 9.16 
-2.0 ~ -1.6 0.4 0.0207 0.1802 1.08 9.88  -2.0 ~ -1.6 0.4 0.0346 0.2642 2.01 19.73 
-1.6 ~ -1.3 0.3 0.0537 0.3203 2.69 19.49  -1.6 ~ -1.3 0.3 0.0746 0.29 4.25 28.43 
-1.3 ~ -0.8 0.5 0.1574 0.3854 10.56 38.76  -1.3 ~ -0.8 0.5 0.1484 0.3117 11.67 44.01 
-0.8 ~ -0.5 0.3 0.303 0.3588 19.65 49.52  -0.8 ~ -0.5 0.3 0.2638 0.3066 19.59 53.21 
-0.5 ~ +0.5 1 0.4026 0.2796 59.91 77.48  -0.5 ~ +0.5 1 0.4001 0.2534 59.60 78.55 
+0.5 ~ +0.8 0.3 0.3615 0.1973 70.75 83.40  +0.5 ~ +0.8 0.3 0.4343 0.1955 72.63 84.42 
+0.8 ~ +1.3 0.5 0.2669 0.1565 84.10 91.23  +0.8 ~ +1.3 0.5 0.3132 0.1379 88.29 91.31 
+1.3 ~ +1.6 0.3 0.1756 0.1151 89.37 94.68  +1.3 ~ +1.6 0.3 0.1898 0.1062 93.98 94.50 
+1.6 ~ +2.0 0.4 0.1438 0.068 95.12 97.40  +1.6 ~ +2.0 0.4 0.1045 0.0771 98.16 97.58 
+2.0 ~ +3.0 1 0.0488 0.026 100.00 100.00  +2.0 ~ +3.0 1 0.0185 0.0242 100.01 100.00 
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4. Comparison of simulated TWS seasonality with GRACE data 

 
Supplementary Fig. 1 | Monthly seasonal cycle (2002-2016) of TWS for the major global 
river basins. GRACE data are the mean of two mascon products (CSR and JPL; see Methods for 
more details). Gray shading indicates the spread among 27 ensemble members expressed as one 
standard deviation (SD) from the mean. The method used to calculate the anomalies is similar to 
that used in Extended Data Figure 5. Note that we use the simple ensemble average, not the 
weighted mean, for these comparisons to provide an unbiased evaluation of the models and to 
ensure that the model-GRACE agreement is not a result of the weighting that is based on the 
GRACE data. Green shading indicates the range between the two GRACE products. 
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Supplementary Fig. 2 | Comparison of simulated TWS with GRACE data. The same results 
as in Supplementary Figure 1, but shown as complete time series (2002-2016) for a subset of basins 
located in different geographic and climatic regions. 
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5. The Selected IPCC SREX Regions 

 
Supplementary Fig. 3 | Geographic location and description of the selected IPCC SREX 
regions. These are the sub-continental regions defined by the Intergovernmental Panel on Climate 
Change (IPCC) Special Report on Extremes (SREX).  
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6. Changes in drought conditions under climate change  

 
Supplementary Fig. 4 | Projected changes in occurrence and time evolution of droughts. 
Same as in Figure 4 in the main text but for RCP2.6.  
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7. Changes in TWS drought PDFs for SREX regions  
 

 
Supplementary Fig. 5 | Probability density function of monthly TWS-DSI for IPCC SREX 
regions. Same as in Figure 5 in the main text but for the mid-21st century.  
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