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Abstract 

The gut microbiome is shaped by diet and influences host metabolism, but these links are complex and 

can be unique to each individual. We performed deep metagenomic sequencing of >1,100 gut 

microbiomes from individuals with detailed long-term diet information, as well as hundreds of fasting and 

same-meal postprandial cardiometabolic blood marker measurements. We found strong associations 

between microbes and specific nutrients, foods, food groups, and general dietary indices, driven especially 

by the presence and diversity of healthy and plant-based foods. Microbial biomarkers of obesity were 

reproducible across cohorts, and blood markers of cardiovascular disease and impaired glucose tolerance 

were more strongly associated with microbiome structure. While some microbes such as Prevotella copri 

and Blastocystis spp., were indicators of reduced postprandial glucose metabolism, several species were 

more directly predictive for postprandial triglycerides and C-peptide. The panel of intestinal species 

associated with healthy dietary habits overlapped with those associated with favourable cardiometabolic 

and postprandial markers, indicating our large-scale resource can potentially stratify the gut microbiome 

into generalizable health levels among individuals without clinically manifest disease. 
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Introduction 

Dietary contributions to health, and particularly to long-term chronic conditions such as obesity, metabolic 

syndrome, and cardiac events, are of universal importance. This is especially true as obesity and 

associated mortality and morbidity have risen dramatically over the past decades, and continue to do so 

worldwide 1. Despite intense study, the reasons for this relatively rapid change have remained unclear, 

with the gut microbiome implicated as one of several potentially causal human-environmental interactions 
2–5. Surprisingly, the details of the microbiome’s role in obesity and cardiometabolic health have proven 

difficult to define reproducibly in large, diverse human populations6 - contrary to their behaviour in mice - 

likely due to the complexity of habitual diets, the difficulty of measuring them at scale, and the highly 

personalized nature of the microbiome7. 

To overcome these challenges, we launched the Personalised Responses to Dietary Composition Trial 

(PREDICT 1) observational and interventional study of diet-microbiome interactions in metabolic health. 

PREDICT 1 included over 1,000 participants in the United Kingdom (UK) and the United States (US) who 

were profiled pre- and post- standardised dietary challenges using a combination of intensive in-clinic 

biometric and blood measures, nutritionist-administered free-living dietary recall and logging, habitual 

dietary data collection, continuous glucose monitoring, and stool shotgun metagenomic sequencing. The 

study was inspired by and generally concordant with previous large-scale diet-microbiome interaction 

profiles, identifying both overall gut microbiome configurations and specific microbial taxa and functions 

associated with postprandial glucose responses 8,9, obesity-associated biometrics such as body mass 

index (BMI) and adiposity 10–12, and blood lipids and inflammatory markers 13–15. By combining PREDICT’s 

extensive dietary and blood biomarker measures with high-precision microbiome analysis, we were also 

able to extend these findings to specific beneficial (e.g. Faecalibacterium prausnitzii) and detrimental (e.g. 

Ruminococcus gnavus) organisms, as well as to a highly-reproducible gut microbial signature of overall 

health that reproduced across multiple blood and dietary measures within PREDICT and in several 

previously published cohorts 16. 

Results 

Large metagenomically-profiled cohorts with rich clinical, cardiometabolic, and dietary 

information 

We performed a multi-national, single-arm (pre-post) intervention study of diet-microbiome-

cardiometabolic interactions, including a discovery cohort based in the United Kingdom (UK) and a 

validation population in the United States (US). The UK cohort recruited 1,002 generally healthy adults 

(non-twins, identical [monozygotic; MZ], and non-identical [dizygotic; DZ] twins) with detailed demographic 

information, quantitative habitual diet data, cardiometabolic blood biomarkers, and postprandial responses 

to both standardized test meals in the clinic and in free-living settings 17 (Fig. 1A). At-home collection of 

stool by our validated protocol (Methods) yielded 1,001 baseline samples for gut microbiome analysis. 

The US population employed the same enrollment and biospecimen collection protocols for 100 healthy, 

unrelated individuals (97 stool samples received). The data from the US cohort was analysed separately 

to the UK data to test the machine learning models trained in the UK cohort and independently validate 

microbiome-feature correlations. From a randomly-selected subset of UK participants (n=70), we 

additionally sequenced faecal metagenomes from a second stool sample 14 days after the first collection. 

All metagenomes were shotgun sequenced, taxonomically and functionally profiled, and assembled to 

provide metagenome-assembled genomes (MAGs, Fig. 1A, Methods). Collectively, these UK and US-

based results comprise the PREDICT 1 study. 
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Fig. 1: The PREDICT 1 study associates gut microbiome structure with habitual diet and blood cardiometabolic markers. 
(A) The PREDICT 1 study assessed the gut microbiome of 1,098 volunteers from the UK and US via metagenomic sequencing 
of stool samples. Phenotypic data obtained through in-person assessment, blood/biospecimen collection, and the return of 
validated study questionnaires queried a range of relevant host/environmental factors including (1) personal characteristics, such 
as age, BMI, and estimated visceral fat; (2) habitual dietary intake using semi-quantitative food frequency questionnaires (FFQs); 
(3) fasting; and (4) postprandial cardiometabolic blood and inflammatory markers, total lipid and lipoprotein concentrations, 
lipoprotein particle sizes, apolipoproteins, derived metabolic risk scores, glycaemic-mediated metabolites, and metabolites related 
to fatty acid metabolism. (B) Overall microbiome alpha diversity, estimated as the total number of confidently identified microbial 
species in a given sample (richness), was correlated with HDL-D (positive) and estimated hepatic steatosis (negative). Up to ten 
strongest absolute Spearman correlations are reported for each category with q<0.05. Top species based on Shannon diversity 
are reported in Supplementary Fig. 1A and all correlations are in Supplementary Table 1. 
 

Microbial diversity and composition are linked with diet and fasting and postprandial biomarkers  

We first leveraged a unique subpopulation of our study comprised of 480 twins to disentangle the 

confounding effects of shared genetics from other factors on microbiome composition. Our data confirmed 

that host genetics influences microbiome composition only to a small extent 18, as intra-twin pair 

microbiome similarities were significantly greater than those among unrelated individuals (p<1e-12, 

Supplementary Fig. 1B), and monozygotic twins showed slightly more similar microbiomes than dizygotic 

twins (p=0.06). Intra twin-pair microbiome similarity, regardless of zygosity, remained substantially lower 

than intra-subject longitudinal sampling (day 0 vs. day 14, p<1e-12, Supplementary Fig. 1B), a testament 

to the highly personalized nature of the gut microbiome attributable to a variable extent to non-genetic 

factors (Supplementary Fig. 1C,D). 

We initially investigated overall intra-sample (alpha) diversity of the gut microbiome as a broad summary 

statistic of microbiome structure 19. In our cohort of healthy individuals, we found links between alpha 

diversity (specifically species richness) and personal characteristics (e.g. age and anthropometry), habitual 

diet, and metabolic indices (Fig. 1B) with 109 significant associations (p<0.05) among the total 295 

Spearman’s correlation tests, and 56 after FDR-correction (q<0.05, Supplementary Table 1A). Participant 

BMI, absorptiometry-based visceral fat measurements, and probability of fatty liver (using a validated 

prediction model 20) were inversely associated with species richness. Consistent with previous findings for 

BMI 5,21, our findings suggest that the link between the microbiome and body habitus may be mediated in 

part by hepatic insulin resistance, particularly given the gut microbiome’s strong associat ion with liver 

disease and activity observed in this cohort and previously 22. With respect to habitual dietary factors, we 

found 18 of 126 total nominally significant (p<0.05) correlations (5 at q<0.05, Fig. 1B). 
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Among clinical circulating measures, HDL cholesterol (HDL-C) was positively correlated with species 

richness. However, emerging cardiometabolic biomarkers with strong associations with cardiometabolic 

diseases 23–26 that are not routinely used clinically, including lipoprotein particle size (diameter, “-D”), 

lipoprotein composition (cholesterol “-C” and TG “-TG”), apo-lipoproteins and GlycA (inflammatory 

biomarker; glycoprotein acetyls), were even more strongly associated with richness than the remaining 

traditional clinical measures (TG, Total-C, LDL-C and fasting glucose). These emerging biomarkers of 

reduced risk of chronic disease were positively associated with microbial diversity (e.g. extra large and 

large HDL-C, HDL-D, Apolipoprotein-A1) both at fasting and postprandially, whilst those associated with 

increased risk of chronic disease were inversely correlated with microbial diversity (e.g. GlycA, VLDL-D 

small-HDL-TG). These results for species richness provide initial evidence that the microbiome is 

modestly, but significantly, associated with some key classical and emerging cardiometabolic health 

indicators and diet, motivating more detailed investigations of the links between cardiometabolic health, 

diet, and specific gut microbiome components. 

 

Diversity of healthy plant-based foods in habitual diet shapes gut microbiome composition 

We assessed links between habitual diet (over the past year) and the microbiome in PREDICT 1 using 

detailed, validated semi-quantitative food frequency questionnaires (FFQs). These links were quantified 

using random forest (RF) regression and classification models, each trained on the whole set of 

quantitative microbiome features to predict one habitual diet feature (with training/testing via repeated 

bootstrapping, Methods). The performance of the models was evaluated with ROC AUCs for classification 

and with correlation between predicted and collected values for regression, thus quantifying the degree to 

which each dietary feature could be estimated based on microbiome composition. 

Dietary features assessed in this manner included individual food items, food groups, nutrients (energy 

adjusted and non-adjusted), and dietary patterns (Fig. 2). We assessed individual foods and food groups, 

the latter after collapsing items into bins according to Plant-based Diet Index (PDI) 27 groupings 

(Supplementary Table 2). Several foods and food groups exceeded 0.15 median Spearman’s correlation 

over bootstrap folds (denoted as “⍴”) between predicted and FFQ-estimated values (20/165 or 12.1%) and 

AUC>0.65 (14/165, 8.5%; Fig. 2A). The strongest association among food items was coffee (⍴=0.45), 

which appeared to be dose-dependent (Fig. 2D) and validated in the US cohort when the model trained in 

the UK cohort was applied in the US (Fig. 2E). We found particularly tight coupling between energy-

adjusted derived nutrients and the taxonomic composition of the microbiome, especially compared to foods 

and food groups (Fig. 2A). Almost one-third of the energy-normalized nutrients (Supplementary Table 2) 

had correlations above 0.3 (14/47) with the highest correlations achieved for saturated fatty acids (SFAs, 

⍴=0.46, AUC 0.82), zinc (⍴=0.39, AUC 0.76), and starch (⍴=0.39, AUC 0.75). 
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Fig. 2: Food quality, regardless of source, is linked to overall and feature-level composition of the gut microbiome. (A) 
Specific components of habitual diet comprising foods, nutrients, and dietary indices are linked to the composition of the gut 
microbiome with variable strengths as estimated by machine learning regression and classification models. Boxplots report the 
correlation between the real value of each component and the value predicted by regression models across 100 training/testing 
folds (Methods). Circles denote median area-under-the-curve (AUC) values across 100 folds for a corresponding binary classifier 
between the highest and lowest quartiles (Methods). (B) Single Spearman correlations adjusted for BMI and age between 
microbial species and components of habitual diet with asterisks denoting significant associations (FDR q<0.2). The 30 microbial 
species with the highest number of significant associations across habitual diet categories are reported. All indices of dietary 
patterns are reported, whereas only food groups and nutrients (energy-adjusted) with at least 7 associations among the top 30 
microbial species are reported. Full heatmaps of foods and unadjusted nutrients are reported in Supplementary Fig. 2, and the 
full set of correlations is available in Supplementary Table 4. (C) Number of significant positive and negative associations 
(Spearman’s correlation p<0.2) between foods and taxa categorized by more and less healthy plant-based foods and more and 
less healthy animal-based foods according to the PDI. Taxa shown are the 20 species with the highest total number of significant 
associations regardless of category. (D) The association between the gut microbiome and coffee consumption in UK participants 
is dose-dependent, i.e. stronger when assessing heavy (e.g. >4 cups/d) vs. never drinkers, (E) and was validated in the US cohort 
when applying the UK model across cohorts. (F) Among general dietary patterns and indices, the Healthy Food Diversity index 
(HFD) was validated in the US cohort when using the UK model, thus showing consistency between the two populations on this 
important dietary index. The other indices are also generally validated as reported in Supplementary Fig. 3. 

Because of the complex and interacting nature of dietary intake, as well as to offer practical 

recommendations, we then summarized constituent foods and food groups into several established dietary 



 

indices (Supplementary Table 2), including the Healthy Food Diversity index (HFD) 28, the Healthy and 

Unhealthy Plant-based Dietary Indices (H-PDI and U-PDI), and the Alternate Mediterranean Diet score 

(aMED) 29. The HFD, unlike the other food scores, incorporates a measure of dietary diversity (greater is 

considered better) and food quality according to dietary guidelines, whereas the PDI characterizes a given 

diet on the basis of type and quantity of the plant-based foods categorized as ‘more-healthy’/‘healthy’ or 

‘less-healthy’/‘unhealthy’ based on epidemiological evidence 27. These scores have been associated with 

lower cardiovascular disease risk 29, T2D risk 27, metabolic syndrome 30, and all-cause mortality 31. The 

aMED dietary score is based on dietary patterns in Mediterranean countries and has been associated with 

reduced risk of chronic disease and mortality 32,33. We demonstrated tight correlations between values 

predicted from gut microbial composition and all the indices (HFD, H-PDI, U-PDI, and aMED) in the UK 

(⍴=0.36, 0.34, 0.33, and 0.23, respectively) and in the US validation cohort (⍴=0.39, 0.23, 0.31, and 0.38, 

respectively; Fig. 2A and Supplementary Fig. 3), highlighting the relationship between the microbiome 

and healthy dietary patterns. Additionally, these results indicate that diet-microbiome associations are 

consistent and generalizable from UK to US populations, adding confidence to the suggested biological 

targets explored below and alleviating concerns of overfitting. 

Microbial species segregate into groups associated with more healthy and less healthy plant- and 

animal-based foods 

We proceeded to undertake feature-level testing to identify the specific microbial taxa most responsible for 

these diet-based community associations (Fig. 2B). By focusing on prevalent species (i.e., those detected 

in >20% of samples) and adjusting for age and BMI, we found that 30 species (17%) were significantly 

correlated with at least five defined dietary exposures at False Discovery Rate (FDR) q<0.2 

(Supplementary Table 4). This included a confirmation of expected associations (Supplementary Fig. 

2), such as the relative enrichment of the probiotic taxa Bifidobacterium animalis 34 and Streptococcus 

thermophilus with greater full-fat yogurt consumption (⍴=0.22 and 0.20 respectively). The strongest 

food/microbe association was between the recently characterized butyrate-producing Lawsonibacter 

asaccharolyticus 35 and coffee consumption (Fig. 2B). However, due to the low precision of dietary data 

collected by FFQ, the complexity of dietary patterns, nutrient-nutrient interactions, and clustering of 

‘healthy’/‘less-healthy’ food items within diets, it is challenging to disentangle the independent associations 

of single nutrients and single foods with microbial species. Indeed, considering the top 30 species most 

strongly associated with various dietary determinants (based on number of significant correlations; Fig. 

2B), we found a clear segregation of species into two distinct clusters with either more healthy plant-based 

foods (e.g. spinach, seeds, tomatoes, broccoli) or with less healthy plant-based (e.g. juices, sweetened 

beverages, and refined grains) and animal-based foods, as defined by the PDI 36 (Supplementary Table 

4).  

Taxa linked to diets rich in more healthy plant-based foods (Fig. 2B,C and Supplementary Fig. 2) mostly 

included butyrate producers, such as Roseburia hominis, Agathobaculum butyriciproducens, 

Faecalibacterium prausnitzii, and Anaerostipes hadrus, as well as other uncultivated species from clades 

typically capable of butyrate production (Roseburia CAG 182) or predicted to have this metabolic capability 

(Firmicutes CAG 95, with 92% of its 166 MAGs encoding for butyrate kinases). Clades correlating with 

several ‘less-healthy’ plant-based and animal-based foods included several Clostridium species 

(Clostridium innocuum, C. symbiosum, C. spiroforme, C. leptum, C. saccharolyticum). The relationship 

between C. leptum and the intake of unhealthy foods is particularly worth noting, as prior experimental 

evidence has demonstrated their counts can be modulated by diet in mice 37. The segregation of species 

according to animal-based ‘healthy’ foods (e.g. eggs, white and oily fish) or animal-based ‘less-healthy’ 

foods (e.g. meat pies, bacon and dairy desserts) using a novel categorisation developed for this analysis 
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based on epidemiological evidence outlined in Methods, was also distinct and was similar to taxa linked 

to patterns for ‘healthy’ and ‘less-healthy’ plant foods (Fig. 2C and Supplementary Fig. 2). The few food 

items that did not fit into the ‘healthy’ cluster despite being categorised as ‘healthy plant’ foods, were (ultra) 

processed foods according to the NOVA classification 38 (e.g. sauces, tomato ketchup, and baked beans; 

Group 4 and 3, respectively; Supplementary Fig. 2). This emphasises the importance of food quality (e.g. 

highly processed vs. unprocessed), food source (e.g. plant vs. animal), and food heterogeneity (i.e. not all 

plant foods are healthy and animal foods unhealthy, nor vice versa) both in overall health and in 

microbiome ecology.  

Poorly characterized microbes drive the strongest microbiome-habitual diet associations  

Many of the strongest microbial associations with food items, food groups, and dietary indices occurred 

with only recently-isolated organisms or still uncultured taxa including, for example, five species defined 

using co-abundance gene groups (CAGs) from metagenomics 39. Among indices, the HFD, which 

prioritizes diversity of all food items while considering dietary guidelines, was most tightly coupled to 

feature-level abundances (Fig. 2A), significantly correlated with 41 of the 174 prevalent species (i.e. those 

found in >20% samples), highlighting the synergistic impact of dietary diversity, dietary quality, and gut 

microbial responsiveness. Among species whose abundance was highly correlated to the HFD (Fig. 2B) 

were taxa also associated with ‘healthy’ or ‘less-healthy’ foods, such as Firmicutes CAG 94 (⍴=-0.25) and 

Roseburia CAG 182 (⍴=0.13). The highest correlation was observed for Lawsonibacter asaccharolyticus 

(⍴=-0.29), the aforementioned and recently characterized 35 and sequenced species 40. This microbe has 

two additional known genomes with the conflicting species name of Clostridium phoceensis 41, and we 

predicted that it encodes butyrate-producing enzymes from metagenome-assembled genomes enzymes 
42 (49 of the 53 MAGs in the L. asaccharolyticus SGB15154 encode for butyrate kinase EC 2.7.2.7). The 

link between the HFD and L. asaccharolyticus is particularly noteworthy and not likely a consequence of 

our previously observed association with coffee, as the HFD index does not include non-caloric beverages, 

including coffee, mineral water, and tea, as well as alcoholic beverages. This may suggest alternative and 

complementary strategies to modulate this microbe through both coffee intake and adherence to a diverse 

diet.  

Among other dietary indices and nutrients, we observed general concordance with the two sets of microbes 

associated with healthy and less-healthy foods. A greater animal-based food score, which is derived based 

on the relative amount of ‘healthy’ (positive score) and ‘less-healthy’ (inverse score) animal foods 

consumed (Supplementary Table 4), was associated with the 'healthy' cluster, suggesting that a diet rich 

in healthier animal-based foods is associated with the more favourable diet-microbiome signature, 

although this likely also reflects an overall healthier dietary pattern by healthy animal-based food 

consumers. The healthy and unhealthy PDI, which have been shown to differentially affect disease risk 
27,36 also had distinct clusters, again emphasising the oversimplification of conventional plant and animal-

based food groupings. The strongest representatives for the two clusters (i.e. taxa with the highest 

correlations) are Firmicutes CAG 95 and Firmicutes CAG 94 for healthy and unhealthy diet, respectively, 

and the lack of cultivated representatives for these two candidate species may explain why these links 

were previously overlooked even in large analyses 8,11. The PREDICT 1 validation cohort in the US 

generally confirmed these associations despite its comparatively smaller sample size: among the subset 

of derived pattern/index scores shared between the UK and US cohorts, of the 52 associations that were 

significant both in the UK cohort (FDR q<0.2) and in the US cohort (p<0.05), 78.8% were concordant for 

the direction of the correlation. 
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Microbial indicators of obesity are reproducible across varied populations 

Microbiome links to obesity have attracted much interest although results have varied in human 

populations 5,6. We thus explored them in the PREDICT 1 populations with RF regression and classification 

(as above, Methods) using either taxonomic or functional features. We found visceral fat measured by 

DEXA scan to be more strongly linked to gut microbial composition than BMI 43, a finding we validated in 

our US participants when applying UK-trained models (Fig. 3A). Some obesity-associated taxa—assessed 

either by BMI or visceral fat—were also associated with poor dietary patterns after controlling for BMI (e.g. 

Clostridium CAG 58, Flavonifractor plautii), whereas markers of healthier low visceral fat mass (e.g. 

Faecalibacterium prausnitzii) were more strongly linked to healthier foods and patterns of intake, illustrating 

that diet and obesity signatures overlap but are not identical (Fig. 3B). 

Microbiome models to predict BMI developed and trained on the UK-based cohort were validated not only 

in the PREDICT US cohort, but also in six additional independent datasets 13,44–48 that have been uniformly 

pre-processed and harmonized using curatedMetagenomicData 16 (cMD), lending credence and 

generalizability to our findings (Methods). Despite substantial differences 49,50 in the microbiomes among 

people from different populations, the PREDICT 1 UK model improved cohort-specific cross-validation 

accuracy in the majority of cases, on par with the leave-one-out approach that notably also includes the 

UK cohort (Fig. 3D). Interestingly, BMI was not predictable at all for two included datasets when using just 

their own samples. However, predictions and classification improved when using the PREDICT 1 UK 

model. Of the 17 species surpassing our FDR threshold of q<0.05, three had an (absolute) ⍴>0.1 in the 

smaller US cohort and two of these three were concordant with those in the UK cohort (I. butyriciproducens 

negatively and R. torques positively correlated with BMI; Fig. 3C). Across our harmonized independent 

cMD datasets, all but two median association estimates were consistent with the PREDICT 1 UK 

signatures, and 12 of the 14 were concordant despite different sample collection and DNA extraction 

methods. 
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Fig. 3: Random forest machine learning models based on microbial or functional profiles are capable of predicting 
obesity phenotypic markers, even when tested against separate, independent cohorts. (A) Whole-microbiome machine 
learning models can assess personal factors with RF regression (boxplots and left-side vertical axis) using only taxonomic or 
functional (i.e. pathway) microbiome features. Classification models (circles and right-side vertical axis) exceed AUC 0.65 except 
for waist-to-hip ratio (WHR) and smoking. (B) We observed the highest correlations between the relative abundance of microbial 
species and age, BMI, and visceral fat. The link between microbial features and visceral fat was of greater effect and more often 
significant than with traditional BMI. (C) Using several independent datasets 16 we confirmed correlations between single microbial 
species and BMI with blue points denoting significant associations at p<0.05. (D) The machine learning model for BMI trained on 
PREDICT 1 data is reproducible in several external datasets (Supplementary Fig. 5), achieving correlations with true values 
exceeding those obtained in cross-validation of a single given dataset in five of seven cases. When the PREDICT 1 microbiome 
model is expanded to include other datasets (excluding those ones used for testing, i.e. leave-one-dataset-out/LODO approach) 
the performance remains comparable, affirming the generalizability of the PREDICT 1 model on obesity-related indicators. 

 

Fasting cardiometabolic markers associated with specific microbiome structures 

To explore the connections between the gut microbiome and markers of cardiometabolic health, we 

performed fine-scale evaluations of microbial community membership and their biochemical functions 

against established clinical and emerging cardiometabolic biomarkers. We developed ML prediction 

models for each of these outcomes built using both species-level taxonomic abundances and functional 

potential profiles and tested how accurately they were able to estimate host biomarkers.  

We found modest concordance between microbiome classifiers and several traditional clinical fasting 

cardiometabolic biomarkers (Fig. 4A). These include near-term metrics, such as systolic and diastolic 

blood pressure, heart rate, lipids (TG, TC, HDL-C, LDL-C) and fasting glucose, as well as glycosylated 
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haemoglobin (HbA1c), a widely-used clinical test reflecting mean glucose levels over weeks-to-months. 

Notably, the difference between total and high-density lipoprotein (HDL) cholesterol (e.g. non-HDL), 

recently considered a clinically useful aggregate count of atherogenic cholesterol fractions 51, was also 

linked to gut microbial features (⍴=0.17; AUC 0.61). These associations were largely recapitulated in a 

clinical prediction model incorporating most of these factors to estimate latent 10-year risk of heart disease 

or stroke using the AtheroSclerotic CardioVascular Disease (ASCVD) algorithm 52. 

From our remaining compendium of blood biomarkers (Fig. 1A), we found stronger correlations between 

the microbiome and an inflammatory surrogate (glycoprotein acetyls, GlycA, Fig. 4A), as well as various 

emerging lipid measures linked to host health, such as HDL and VLDL particle size (HDL-D and VLDL-D, 

⍴=0.3 and 0.28 respectively), the lipid content of lipoprotein subfractions (including XL-HDL-L and L-HDL-

L, ⍴=0.39 and 0.37 respectively), and circulating polyunsaturated fatty acids (PUFA) fatty acid (omega-6 

[FA⍵6/FA] and PUFA [PUFA/FA] to total fatty acid ratios, ⍴=0.31 for both). GlycA 26 and VLDL-D have 

been strongly associated with increased risk for the metabolic syndrome, CVD, and T2D, whereas HDL-D 

and its lipid constituents, omega-6, and PUFA have strong inverse associations 23,24,53. The strongest 

association for all circulating markers was observed for large HDL particle lipid concentrations (XL-HDL-L 

and L-HDL-L, with ⍴=0.41 and 0.38, and AUC=0.70 and 0.69, respectively), which also have the strongest 

inverse association with CVD and T2D of all the lipid measures 23,24,53. Similarly, the majority of glycaemic 

indicators such as insulin, C-peptide (a surrogate of insulin secretion), and to a much lesser extent, 

impaired glucose tolerance (IGT) were also coupled to human gut microbiome composition (Fig. 4A,B). 

Derived predictors of insulin sensitivity (QUantitative Insulin sensitivity Check Index or QUICKI) 54 and 

hepatic steatosis (Liver Fat Probability) were also reasonably captured using microbiome-based ML 

classifiers (⍴=0.22 and 0.18; AUC 0.66 and 0.64 respectively).  

Species-based predictors proved more accurate for RF-based learning tasks than pathway abundance 

profiles (Supplementary Fig. 4), consistent with other microbiome-wide training exercises 55. Despite a 

smaller study population and a more restricted panel of fasting circulating metabolites, our primary findings 

were generally replicated in the US validation cohort (Fig. 4A), corroborating the existence of a strong, 

previously overlooked link between the gut microbiome and surrogate markers of cardiometabolic health.  

The gut microbiome is a better predictor of postprandial triglycerides and insulin concentrations 

than of glucose levels 

Fasting blood assays are the standard for most research and clinical investigations; however, in free-living 

conditions, individuals consume multiple meals throughout the day and therefore spend most of their 

waking hours in the postprandial state. Mixed nutrient meals (carbohydrate, fat and protein) result in 

person-specific food-induced elevations in triglycerides (TG), glucose, insulin, and other related 

metabolites, impacting personalized cardiometabolic responses and downstream health outcomes 56. 

Whilst prior efforts have demonstrated that postprandial glucose responses may, in part, be predicted by 

the gut microbiome 8, the relationship between the microbiome and ‘real-life’ variations in both postprandial 

lipid and glucose-mediated metabolites has not been explored. We therefore assessed postprandial 

metabolic responses to foods of varying nutrient composition in the clinic and free-living settings by 

considering the overall magnitude of the response by iAUC, as well as its peak concentrations, and its 

change from fasting (i.e. rise). 

Firstly, we measured postprandial TGs, glucose, C-peptide, insulin, and circulating metabolite 

concentrations at regular intervals (0-6h) in the clinic after the administration of two formulated, sequential 

test meals (890 kcal, 50g fat and 85g carb at 0h [breakfast] and 500 kcal, 22g fat and 71g carb at 4h 
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[lunch]; Fig. 4D,E). Notably, we found that the magnitude of postprandial TG (0-6h iAUC), insulin, and C-

peptide (both 0-2h iAUC) responses were more strongly associated with the gut microbiome (⍴=0.15, 0.19, 

and 0.21, respectively; AUC >0.63 for each) compared with postprandial glucose (0-2h iAUC) responses 

(⍴=0.12 and AUC 0.59, Fig. 4D), findings replicated in our US validation cohort (Fig. 4D). 

Following the in-person clinic day, we also measured glucose concentrations via continuous glucose 

monitoring over the subsequent 13-day at-home period 17 that included responses to isocaloric 

standardized meals, in duplicate, with different macronutrient compositions (fat, carbohydrate, protein and 

fibre; Supplementary Table 3). However, contrary to our clinic meal responses (Fig. 4D) and previous 

work 8, the glucose 0-2h iAUCs following these meals did not achieve high correlations with the microbiome 

regardless of their macronutrient composition (all ⍴<0.11 and AUC<0.58, Fig. 4E). Whilst this may be due 

to the lower energy, fat, and carbohydrate dose in at-home isocaloric meals (500 kcal) compared to our 

successive clinic meals (total 1,390 kcal for breakfast and lunch), reducing discrimination between 

interindividual responses, Zeevi et al 8 found associations using meals of <500kcal. However, the stool 

sample in our study was collected within 24h of the metabolic clinic meal(s), whereas the standardised at-

home meals were consumed (in random order) between days 2-13 post-home stool collection, introducing 

additional variability due to short-term fluctuations in microbiome composition 57. Taken together, these 

results suggest that the microbiome is a stronger predictor of postprandial lipaemia (TG) than glycaemia, 

with the strength of association for glycaemic responses influenced by overall metabolic load and short-

term variations in microbial composition rather than differences in macronutrient composition. 

Postprandial rises in lipid- and glucose-mediated measures are differentially predicted by the 

microbiome compared with fasting levels 

Postprandial measures (iAUC and peak) depend both on the corresponding fasting measure and the meal-

induced rise. Therefore, we compared the differential prediction accuracy of the gut microbiome for fasting 

levels, postprandial (peak) total levels, and postprandial rises (Fig. 4C). When looking at lipid and glucose-

mediated metabolites from the clinic day measures, despite a similar strength of association between peak 

(6h), magnitude (iAUC) and fasting TG concentrations, the rise (6-0h) was not similarly correlated (Fig. 

4A,G,H). In contrast, the microbiome associations with glycaemic measures were comparable between 

fasting, peak, and rise (Fig. 4A,F).  
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Fig. 4: Fasting and postprandial cardiometabolic responses to standardized test meals associated with the microbiome. 
(A) The strongest observed links according to correlation of the predicted versus collected measures between the gut microbiome 
and fasting metabolic blood markers. For measures of lipid concentration in lipoproteins, we report the five strongest correlations 
only. Indices are grouped in nine distinct categories, and boxplots report the correlation between the prediction of RF regression 
models trained on microbial taxa or pathway abundances across 100 training/testing folds. Circles denote AUC values for RF 
classification, while stars report regressor performance when trained on the UK cohort and evaluated on the independent US 
validation cohort. (B) Fasting levels of C-peptide, insulin, and glucose were strongly linked to the gut microbiome, with AUCs 
higher than what we observed for HbA1c and IGT (Panel A). (C) Fasting and postprandial performance indices (correlation of the 
regressors’ outputs) were more tightly linked to gut community structure than were their corresponding postprandial rises. (D-H) 
Performance of our microbiome-based ML-model in estimating postprandial absolute levels and postprandial increases in 
cardiometabolic markers. Stars denote regression model results in our US validation cohort for postprandial measurements (not 
rises; Supplementary Fig. 6 and 7). (D) RF regression and classification performance in predicting postprandial metabolic 
responses for clinic Meal 1 (breakfast) measured as iAUC at 6h for triglycerides and iAUC at 2h for glucose, C-peptide, and insulin. 
(E) Glycaemic-mediated postprandial iAUCs at 2h for the other meals (Supplementary Table 7), and (F) glycaemic-mediated 
markers absolute levels vs. rise. (G) Postprandial inflammatory measures (concentration and rise). (H) RF microbiome-based 
model performance with postprandial changes (concentrations and rise) in lipoprotein concentration, composition, and size. 



 

Of particular interest were the lipoprotein subfraction concentrations, composition, and size 

(Supplementary Fig. 6 and 7), which are remodelled postprandially, resulting in the generation of 

atherogenic lipoproteins (e.g. Large VLDL particles and TG-enriched LDL, and HDL particles) 58,59. We 

found that these atherogenic particles were predicted at comparable accuracy for both fasting and 

postprandial peak 6h concentrations (Fig. 4A,C,H), and notably, HDL and VLDL size (“-D”, key lipoproteins 

associated with cardiometabolic risk) achieve modestly stronger correlations (⍴=0.32 and 0.31, 

respectively) postprandially (Fig. 4H). However, as with TG, we found that the microbiome was 

substantially less predictive for the postprandial rise (6h - fasting) in all lipid metabolite measures compared 

with fasting and postprandial 6h peak concentration (Fig. 4A,C,H). For example, HDL-D is closely 

associated with gut microbial composition at fasting and 6h postprandially (⍴=0.30 and 0.32; AUC 0.71 

and 0.72 respectively; Fig. 4A,C,H), but not with the rise (Fig. 4H). These differential associations suggest 

that the microbiome may influence postprandial lipid-mediated measures via effects on fasting measures, 

but may impact the postprandial glucose rise more independently of fasting levels.  

Distinct microbial signatures discriminate between positive and negative metabolic health 

indices under fasting conditions 

Motivated by the observed potential of the gut microbiome to predict the fasting and postprandial levels of 

circulating metabolic markers, we next sought to identify the specific taxa and functions driving these 

associations. Among three general risk indices of cardiovascular health (ASCVD, liver fat probability, and 

insulin sensitivity or QUICKI) which demonstrated significant although rather modest correlation of 

predictions (~0.2) using our microbiome-wide RF model (Fig. 4), we found eight species that were 

significantly correlated with all three (negatively or positively, p<0.05). Seven of these eight were 

concordantly correlated in the direction of a more healthful metabolic profile (i.e. correlated for greater 

QUICKI values and lower ASCVD and fatty liver risk), hinting at a global underlying microbial signature of 

improved metabolic health. These taxa included Flavonifractor plautii and Clostridium innocuum (higher 

cardiometabolic risk, Fig. 5A-C) and Oscillibacter sp 57_20, Haemophilus parainfluenzae, and 

Eubacterium eligens (lower risk, Fig. 5A-C) that we had previously linked with healthy and less-healthy 

dietary habits (Fig. 2).  

We found similarly distinct separations between two opposing and clearly defined clusters of species either 

positively or negatively correlated with fasting cardiometabolic measures (Fig. 5A), including blood 

pressure, inflammatory markers, lipid concentrations, lipoprotein sizes and fractions, and apolipoproteins 

(Fig. 5A,B). As per the association with diet, species correlated with positive markers included some taxa 

generally regarded as healthy (e.g. F. prausnitzii) but also many uncultivated and under-characterized 

bacteria (7 from the cluster of 18). With the notable exception of three species of Prevotella (P. copri, P. 

clara, and P. xylaniphila) the positive cluster included many distinct genera, pointing at a large functional 

richness and diversity. In contrast, the cluster of species negatively correlated with positive markers again 

included many Clostridium species (5 of the 12 in the cluster) and the recurrent negatively connotated R. 

gnavus and F. plautii. Large HDL particles (and their lipid compositions, Supplementary Fig. 8-10), which 

have strong inverse associations with cardiometabolic outcomes 23,24 as well as with the microbiome (Fig. 

4A), were associated with the healthy cluster. Conversely, lipoproteins associated with increased risk of 

CVD and T2D (VLDL of all sizes; XXL, XL, L, M, S and lipid composition) and atherogenicity 60 (S-LDL, M-

HDL and S-HDL TG), were associated with the less-healthy cluster (Supplementary Fig. 8-10).  

Circulating omega-6 and total polyunsaturated fatty acids (PUFA), which reflect dietary intake due to the 

lack of endogenous production of these fatty acids 61, were associated with the healthy cluster for which 

Firmicutes bacterium CAG95 was the most correlated representative, and F. plautii the strongest negative 
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correlation (Fig. 5A and Supplementary Table 5). Both omega-6 and PUFA have been linked to reduced 

risk of chronic disease, whether measured from dietary inventories 62 or directly assayed from the 

circulation 23,24,63. In contrast, circulating monounsaturated fatty acids (MUFA) in blood were associated 

with the unhealthy cluster, with an under-characterized Oscillibacter species (sp. 57_20) and Clostridium 

bolteae responsible for the strongest negative and positive associations respectively. Measures of 

circulating MUFA 24,23 but not dietary intake of MUFA 64,65 have been associated with increased risk of CVD 

and T2D. Differences in circulating vs. estimated dietary intakes of MUFA may be a function of endogenous 

MUFA production, as well as the divergent animal and plant dietary sources of MUFA 66,67, complicating 

their relationship with chronic health outcomes 61. Taken together with our findings (Fig. 2), these results 

suggest that food sources of MUFA play an important role in the relationship between MUFA and health.  

Both favourable and unfavourable microbial signatures of metabolic health were maintained 

under postprandial conditions 

Links between postprandial levels of cardiometabolic and inflammatory measures corresponded with the 

segregation of healthful vs. detrimental taxa observed under fasting conditions (Fig. 5B and 

Supplementary Fig. 8-10). Notably, fasting and postprandial GlycA, which we found highly correlated with 

postprandial TG concentrations 68, were strongly linked with the microbiome (62 species significantly 

correlated at 6 hours and 67 at fasting), substantially exceeding IL-6 (5 and 26 significant postprandial and 

fasting associations, Fig. 5B). F. plautii and R. gnavus were the two species most correlated with increased 

inflammation both in fasting and postprandial conditions, whereas H. parainfluenzae and Firmicutes 

bacterium CAG95 were the strongest associations with reduced GlycA levels. VLDL lipoprotein 

subfractions (markers of adverse cardiometabolic effects) were also consistently associated with the less-

healthy cluster both at fasting and postprandially.  

Postprandial rises, rather than absolute postprandial levels, were frequently uncoupled from the microbial 

associations with fasting markers; several positive correlations between microbial species and fasting and 

peak metabolites measures became negative when correlating the same species with the rise from fasting 

(and vice versa, Fig. 5D). For example, the rise in total LDL cholesterol and size (-D, Fig. 5B) was 

differentially associated with clusters compared to fasting levels (especially for T. sanguinis, B. animalis, 

and R. mucilaginosa). S- and XL- HDL total lipid (-L) and cholesterol (-C) levels also paralleled this 

behaviour (Supplementary Fig. 8,9), possibly reflecting postprandial lipoprotein remodelling and 

reciprocal exchange of TG and cholesterol, between these particles and TG-rich lipoproteins (chylomicrons 

and VLDL) 69. In contrast, the associations of the microbial species with absolute fasting and postprandial 

peak levels were fully consistent (Fig. 5D), again reflecting the close relationship between fasting levels 

and postprandial responses.  

We observed the same “favourable” vs. “unfavourable” clustering of microbiome features when analyzing 

microbial pathways and gene families (Supplementary Fig. 11,12). This supports the segregation of many 

taxa, even at the species level (and likely more so among strains), by their underlying biochemical activities 

in the microbiome. The strengths of microbe-blood marker associations measured using Spearman’s 

correlation were consistent with the estimated microbe relevance by the random forest model 

(Supplementary Fig. 13). Importantly, these associations were confirmed in the PREDICT 1 US validation 

cohort; we had a total of 62,366 microbe-index correlations for indices present in both cohorts, and for the 

292 that were significant both in the UK cohort (q<0.2) and in the US cohort (p<0.05) the concordance in 

the sign of the correlation reached 90.8% for the associations in fasting conditions and 91.2% 

postprandially. 
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Fig. 5: Species-level segregation into healthy and unhealthy microbial signatures of fasting and postprandial 
cardiometabolic markers. (A) Associations (Spearman correlation, q<0.2 marked with stars) between single microbial species 
and fasting clinical risk measures and (B) glycaemic, inflammatory, and lipaemic indices. (C) Correlation between microbial 
species and the iAUC for glucose and C-peptide estimations based on clinical measurements before and after standardized meals. 
The 30 species with the highest number of significant correlations with distinct fasting and postprandial indices are shown. (D) 
Microbe-metabolite correlations are very consistent when evaluated for fasting versus postprandial (6h) conditions (left panel). 
Associations with postprandial variations (rise) conversely often show opposing relationships, with several species positively 
correlated with fasting measures being negatively correlated with postprandial variation of the same metabolite (or vice versa, 
central panel). This was mitigated somewhat when comparing absolute postprandial responses with rise (right panel). (E) 
Significant species-metabolite Spearman’s correlations are generally in agreement with the relevance score assigned by the RF 
classifier to each species in the learning models (Supplementary Fig. 13). 

 

Prevotella copri diversity and Blastocystis presence are markers of improved postprandial 

glucose responses 

Some ecologically unusual microbes hypothesized to have population-scale health effects solely based on 

their presence or absence appeared among our microbial signatures. Among them, Prevotella copri is a 

frequent and highly abundant inhabitant of the gut 70,71, but its beneficial or detrimental role in human health 
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remains controversial 72,73. Previous reports have yielded conflicting accounts of P. copri in glucose 

homeostasis, with some studies suggesting health benefits 74,75 and others suggesting deleterious effects 
76 possibly due to subspecies diversity 77,78. Our data largely find P. copri to be associated with beneficial 

cardiometabolic markers, being weakly negatively correlated with estimated visceral fat (⍴=-0.09, p=0.009, 

q=0.098), fasting VLDL-D (⍴=-0.07, p=0.06, q=0.21), and fasting GlycA (⍴=-0.12, p=0.0001, q=0.005) 

among others (Supplementary Table 4). While almost no habitual diet foods, nutrients, or scores were 

associated with P. copri, this bacterium showed a very strong correlation with postprandial increases of 

several circulating metabolic markers when compared with corresponding absolute fasting or postprandial 

levels. Postprandial rises in glucose (⍴=-0.12, p<0.0002) and polyunsaturated and omega-6 fatty acids 

(⍴=0.11 and 0.10, respectively, and p<0.001) were among the top-scoring correlations and were more 

strongly connected with the microbiome than were corresponding fasting and postprandial levels, in sharp 

contrast with what we observed for the overall microbiome (Fig. 4A,D), suggesting a potentially unique 

role for P. copri in host metabolism.  

As P. copri has a relatively low prevalence in Western-lifestyle populations but is highly abundant when 

present 77, we tested whether the presence of one or more of the subtypes of this species 77 is associated 

with markers of improved glucose metabolism. P. copri is present in the form of at least one of its subtypes 

in 29.8% of the PREDICT 1 individuals, and we identified significant differences in P. copri carriers 

consisting of lower C-peptide (-9.2%, p=0.002), insulin (-14%, p=0.006), and lower TG levels (-3.2%, 

p=0.003) compared to individuals without this species (Supplementary Fig. 14). Similarly, postprandial 

blood glucose spikes after breakfast were significantly less pronounced in individuals with P. copri (-20.4% 

glucose iAUC at 2h, p=0.002, Supplementary Fig. 14C), and visceral fat was significantly lower (-12.5%, 

p=3E-7, Supplementary Fig. 14A). Although these observations are only associative, and the direct effect 

of P. copri on these markers of glucose metabolism is unknown, this positive association further supports 

that the presence of P. copri in the gut microbiome could be beneficial in glucose homeostasis. 

Blastocystis is a unicellular eukaryotic parasite increasingly regarded as a commensal member of the gut 

microbiome rather than a potential pathogen 79–81. It shares with P. copri a limited prevalence in Western-

lifestyle populations 82 coupled with high relative abundance when present, unique among eukaryotic 

organisms in the gut to date. By assessing microbiome characteristics in presence or absence of 

Blastocystis, we found evidence that Blastocystis-positive individuals (28.1% in our cohort) also have a 

favourable glucose homeostasis and lower estimated visceral fat (-14.9% glucose iAUC, -21.7% visceral 

fat, p<0.01, Supplementary Fig. 14). The latter confirms that Blastocystis is less prevalent in overweight 

and obese individuals compared to individuals with BMI in the normal range, as previously shown 82 in 

multiple cohorts 5,39,83,84. Interestingly, the effect of the simultaneous presence of P. copri and Blastocystis 

(12.8% of the individuals) appears to further promote healthier metabolic function. Visceral fat is 9.4% 

lower on average (p=0.028, Supplementary Table 8) for individuals positive for both P. copri and 

Blastocystis compared to individuals with only one or the other and 22.6% lower (p=3.3E-7) compared with 

individuals lacking both. Triglycerides and C-peptide were also consistently lower (although not individually 

significant, Supplementary Table 8) when both microbes were present. 

 

A clear microbial signature of health levels consistent across diet, obesity indicators, and 

cardiometabolic risks 

In the preceding analyses, we observed a consistent set of microbial species that were strongly linked to 

(1) foods and food indices reflecting different levels of a “healthy” diet, (2) indicators of obesity and of 

general health, (3) fasting circulating metabolites connected with cardiometabolic risks, and (4) 

postprandial responses to food. To test the consistency of such a signature, we selected a representative 
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set of “health” indicators from each of the four categories (diet, personal characteristics, fasting and 

postprandial biomarkers) and ranked each microbial species based on their correlation coefficient. By 

averaging the ranks of the association (or inverted ranks for “unhealthy” indicators), we found remarkable 

agreement among microbes associated with different positive or negative indicators of health (Fig. 6, 

Supplementary Table 9). 

 

 

Fig. 6: The panel of 30 species showing the strongest overall correlations with a selection of markers of nutritional and 
cardiometabolic health. The 30 species with the highest and lowest average ranks with diverse positive and negative health 
indicators, respectively, are shown here. The rank of each microbe’s correlation with individual health indicators is written within 
cells when significant (p<0.05). For each of the main categories of indices, we selected up to five representative quantitative 
markers (for “Personal” we considered only four as the remaining were highly correlated with visceral fat or not relevant in this 
context). Indices can be considered “positive” and “negative” depending on whether higher or lower values are a proxy for more 
or less healthy conditions.  

  



 

 

In particular, Firmicutes CAG 95 is the uncultivated species with the most beneficial score (average rank 

7.14) and ranked within the top 5 correlated species for 13 of the 20 indicators. Of the “health”-associated 

microbial species only R. hominis (23.76) was already convincingly linked with health in case/control 

disease investigations 85, even though others such as F. prausnitzii 86 and P. copri were highly ranked 

(average ranks 31.7 and 37.2 respectively, 18th and 21st best ranks) but not in the top 15. The beneficial 

signature also included several known species such as E. eligens (16.6) and H. parainfluenzae (6.4) 

without clear roles in health, and additional species without cultivated representatives such as Roseburia 

CAG 182 (15.5), Oscillibacter sp 57_20 (13.6), Firmicutes bacterium CAG 170 (20.1), Oscillibacter sp 

PC13 (24.5), Clostridium sp CAG 167 (24.8), and Ruminococcaceae bacterium D5 (24.8). Species that 

were conversely consistent with indicators of poor overall health (Fig. 6) included the already discussed 

set of Clostridia (C. spiroforme - 149.7, C. bolteae CAG 59 - 149.9, C. bolteae - 154.8, Clostridium CAG 

58 - 157.5, C. symbiosum - 157.4, C. innocuum - 155.1). The two strongest microbial indicators of poor 

cardiometabolic and diet-related health were the mucolytic microbe R. gnavus (158.8) and F. plautii 

(169.1), again previously found to be associated with disease conditions 87–92. Overall, this set of 30 species 

serves as a marker of overall good or poor general health and dietary patterns in non-diseased human 

hosts. 

Discussion 

PREDICT 1 represents the first diet-microbiome clinical intervention study to identify both individual 

components of the microbiome and an overall gut microbial signature associated with multiple measures 

of dietary intake and cardiometabolic health. These signatures reproduced across UK and US populations, 

across multiple previously-published study populations, and for multiple dietary, biometric, and blood 

markers of health and cardiometabolic risk, including individual food items, nutrients, dietary patterns, 

adiposity, BMI, circulating lipids, inflammatory markers, blood glucose, and interactions between baseline 

and postprandial response levels. Notably, microbiome signatures robustly grouped both microbiome and 

dietary components into health-associated and anti-associated clusters, the latter in agreement with dietary 

quality and diversity scores (such as the Plant-based Diet Index [PDI] and Healthy Food Diversity [HFD] 

index) known to be health-associated 28,93 and often unlinked from macronutrient source (e.g. more vs. 

less healthy plant- and animal-based foods). The diversity of a healthy diet (measured by the HFD and 

PDI) was particularly predictable by the microbiome, surpassing other indices such as the Mediterranean 

diet index that has been independently linked with microbiome composition 94. The segregation of 

favourable and unfavourable microbial clusters according to the heterogeneity of the food source (healthy 

or unhealthy animal or plant), quality (processed vs unprocessed), and dietary patterns highlights the 

importance of looking beyond nutrients and single foods in diet-microbiome research. The substantially 

greater detail and consistency in our results relative to prior diet-microbiome work 8,10–12,14,95 may be due 

to the quality in the metagenomic profiling and the large sample size. However, given the limitations of 

FFQ dietary data (which can be highly scalable but noise-prone 96), future diet-microbiome studies would 

benefit further from more detailed weighed food record data complemented with nutritionist/dietitian 

support.  

Several aspects of the gut microbiome associations and matched signatures across diet, obesity, and 

metabolic health measures are striking with respect to their potential novel epidemiology and microbial 

biochemistry. A surprising proportion of diet- or health-associated taxa in these results are represented 

solely by existing or newly-generated metagenomic assemblies 42, in addition to very recently isolated 

organisms with limited cultured strains. This was true for Lawsonibacter asaccharolyticus, the taxon most 

strongly associated with individual food items (particularly coffee) and nutrient intake, for which only two 
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recent publications with limited and conflicting microbial physiology and taxonomy exist 35,41. Both of the 

taxa most abundant in diets rich in healthy plant-based foods were represented only by previous 

metagenomic assemblies 39 (Firmicutes CAG 95 and Roseburia CAG 182), as was the strongest microbial 

association with adiposity (Clostridium CAG 58) and several of the most reproducible microbes associated 

with (un)healthy blood markers (C. bolteae CAG 59, Clostridium CAG 167). Other microbes found here to 

have dietary or cardiometabolic associations, such as Prevotella spp. or Blastocystis spp., have been 

characterized in greater biochemical detail, but their prevalence and population structure in the human 

microbiome have only recently begun to be appreciated 77,82. The latter in particular may be only one of 

many examples of eukaryotic, fungal, or viral members of the gut microbiome not amenable to most current 

high-throughput experimental or analytical approaches, but with unexpected and potentially key positive 

roles in dietary metabolism or cardiometabolic health. 

Likewise, these new, highly specific contributions of the gut microbiome to human dietary responses may 

help to explain some of the heterogeneity and apparent contradictions seen among previous population 

studies 6,8,95,97. First, diet-microbiome-blood marker associations were overall strongest with respect to 

circulating lipid levels (triglycerides, lipoproteins, etc.) relative to glycemic indices (e.g. blood glucose, 

insulin sensitivity). This may have both biochemical and clinical implications. It is possible that gut microbial 

metabolism contributes relatively more to circulating lipid levels than to carbohydrate derivatives, either 

directly or via mediating processes such as gastrointestinal or systemic bile acid signalling 97,98. 

Alternatively, host metabolism may play a greater role in circulating glucose and insulin levels relative to 

microbial bioactivity. The lipoprotein features most closely associated with the microbiome (such as L-

HDL-L) are also more strongly associated with cardiovascular risk compared with typically measured lipids 

(e.g. TC, HDL-C, LDL-C), suggesting a closer look may be warranted at their utility as clinical biomarkers 

or as targets for beneficial gut microbiome manipulation.  

Finally, an important conclusion of these results with respect to overall microbiome epidemiology is the 

limitation and coarseness of phenotypic associations achievable by using simple diversity or microbiome 

summary statistics. Even when we identified a variety of significant species-specific dietary and molecular 

associations in the gut, their effect sizes were often limited, likely reflecting both strain-specific functionality 

not assessed in these profiles 42,50,99–101 and ecological signals among multiple interacting microbes as 

captured by our richer machine learning models 102. Similarly, with respect to host physiology, many 

postprandial responses relative to individual-specific fasting values (e.g. triglyceride levels, lipoproteins, 

insulin concentrations) were moderately more associated with the gut microbiome than the pre-existing 

fasting values themselves. This may speak to the interaction of both host metabolism and microbial 

metabolism impacting digestive and metabolic pathways, shaping long- and short-term diet-host effects 

on health and disease 103. Overall, this is the first study to identify a shared diet-metabolic-health microbial 

signature, segregating favourable and unfavourable taxa with multiple measures of both dietary intake and 

cardiometabolic health. We hope that these initial PREDICT 1 results, targeted clinical and microbial follow-

up based on them, and future iterations of the PREDICT study will aid as a resource both in utilization of 

the gut microbiome as a biomarker for cardiometabolic risk and in strategies for reshaping the microbiome 

to improve personalized dietary health. 
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Methods 

 

The PREDICT 1 study 

The PREDICT 1 clinical trial (NCT03479866) aimed to quantify and predict individual variations in 

metabolic responses to standardised meals. We integrated data from a cohort of twins and unrelated adults 

from the UK to explore genetic, metabolic, microbiome composition, meal composition, and meal context 

data to distinguish predictors of individual responses to meals. We then validated these predictions in an 

independent cohort of adults from the US. The trial was a single-arm, single-blinded intervention study that 

commenced in June 2018 and completed in May 2019. 

For full protocol, see Berry et al, 2020 17. In brief; 1,002 generally healthy adults from the United Kingdom 

(UK; non-twins, and identical [monozygotic; MZ] and non-identical [dizygotic; DZ] twins) and 100 healthy 

adults from the United States (US; non-twins; validation cohort) were enrolled into the study (see Berry et 

al 56 for eligibility criteria) and completed baseline clinic measurements. The study consisted of a 1-day 

clinical visit at baseline followed by a 13-day at-home period. At baseline (Day 1), participants arrived 

fasted and were given a standardised metabolic challenge meal for breakfast (0h; 86g carbohydrate, 53g 

fat) and lunch (4h; 71g carbohydrate, 22g fat). Fasting and postprandial (9 timepoints; 0-6h) venous blood 

was collected to determine serum concentrations of glucose, triglycerides (TG), insulin, C-peptide (as a 

surrogate for insulin), and metabolomics (NMR). Stool samples, anthropometry, and a questionnaire 

querying habitual diet, lifestyle and medical health were obtained at baseline. During the home-phase 

(Days 2-14), participants consumed standardised test meals in duplicate varying in sequence and in 

macronutrient composition, while wearing digital devices to continuously monitor their blood glucose 

(continuous glucose monitor; CGM), physical activity, and sleep. Capillary blood was collected using dried 

blood spot cards, during the clinic visit and at home, to analyze fasting and postprandial concentrations of 

TG and C-peptide. Participants were supported throughout the study with reminders and communication 

from study staff delivered through the ZOE study app. A second stool sample was collected at home by 

participants following completion of the study, and all devices and samples were mailed back to study staff. 

To monitor compliance, all test meals consumed by participants were logged in the Zoe app (with an 

accompanying picture) and reviewed in real-time by the study nutritionists. Only test meals that were 

consumed according to the standardised meal protocol (outlined in Berry et al 202056) were included in the 

analysis. 

The recruitment criteria, meal intervention challenges, outcome variables, and sample collection and 

analysis procedures relevant to this paper are described elsewhere 56,104. The trial was approved in the UK 

by the Research Ethics Committee and Integrated Research Application System (IRAS 236407) and in the 

US by the Partners Healthcare Institutional Review Board (IRB 2018P002078). The core characteristics of 

study participants at baseline were not significantly different between UK and US cohorts 56.  

Overview of microbiome sequencing and profiling 

We performed deep shotgun metagenomic sequencing (mean 8.8±2.2 gigabases/sample) in stool samples 

from a total of 1,098 PREDICT 1 participants (UK n=1,001; US n=97). From a random subset of these 

participants (n=70), we additionally sequenced faecal metagenomes from a second stool sample collected 

14 days after the first collection (Fig. 1A) for a total of 1,168 metagenomes. Computational analysis was 

performed using the bioBakery suite of tools 105 to obtain species-level microbial abundances for the 769 

taxa identified using the newly updated MetaPhlAn 2.96 tool 106, functional potential profiling of >1.91 M 

microbial gene families, 445 KEGG pathways with HUMAnN 2.0 107, and reconstruction of 48,181 
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metagenome-assembled genomes (MAGs) of medium or high-quality using our validated pipeline 42, which 

includes assembly with MegaHIT 108, binning with MetaBAT2 109, and quality-control with CheckM 110.  

Microbiome sample collection 

Participants were mailed a pre-visit study pack with a stool collection kit and relevant questionnaires and 

asked to collect an at-home stool sample at two timepoints (one prior to their in-person clinical visit on day 

0 and the next at the conclusion of their home-phase, day 14). Those who did not collect a sample prior to 

their in-person, baseline visit completed the collection as soon as possible during the home-phase. 

Baseline samples in the UK were collected using the EasySampler collection kit (ALPCO, NH, US), 

whereas post-study samples, as well as the entirety of the US collection was conducted using the 

Fecotainer collection kit (Excretas Medical BV, Enschede, the Netherlands). For baseline samples, one 

fresh unfixed sample was deposited into a sterile universal collection container (Sarstedt, Australia, Cat 

#L0263-10) and one into a tube containing DNA/RNA Shield buffer (Zymo Research, CA, US, Cat 

#R1101). Samples were stored at ambient temperature until return to the study staff. Follow-up samples 

were collected similarly, but only sampled into a DNA/RNA Shield buffer tube and sent by standard mail to 

study staff. Upon receipt in the laboratory, samples were homogenized, aliquoted, and stored at -80°C in 

Qiagen PowerBeads 1.5 mL tubes (Qiagen, Germany). This sample collection procedure was tested and 

validated internally comparing different storage conditions (fresh, frozen, buffer), different DNA extraction 

kits (PowerSoilPro, FastDNA, ProtocolQ, Zymo), and different sequencing technologies (16S rRNA, 

shotgun metagenomics, and arrays), data not shown. 

DNA extraction and sequencing 

DNA was isolated by QIAGEN Genomic Services using DNeasy® 96 PowerSoil® Pro from all Day 0 

(baseline) DNA/RNA shield fixed microbiome samples. A random subset of Day 14 (end of at-home phase) 

samples (n=70) were also extracted. Optical density measurement was done using Spectrophotometer 

Quantification (Tecan Infinite 200). Before library preparation and sequencing, the quality and quantity of 

the samples were assessed using the Fragment Analyzer (Agilent Technologies, Inc.) according to 

manufacturer's guidelines. Samples with a high-quality DNA profile were further processed. The 

NEBNext® Ultra II FS DNA module (cat# NEB #E7810S/L) was used for DNA fragmentation, end-repair, 

and A-tailing. For adapter ligation, the NEBNext® Ultra II Ligation module (cat# NEB #E7595S/L) was 

used. The quality and yield after sample preparation were measured with the Fragment Analyzer. The size 

of the resulting product was consistent with the expected size of approximately 500-700 bp. Libraries were 

sequenced for 300 bp paired-end reads using the Illumina NovaSeq6000 platform according to 

manufacturer's protocols. 1.1 nM library was used for flow cell loading. NovaSeq control software NCS 

v1.5 was used. Image analysis, base calling, and the quality check was performed with the Illumina data 

analysis pipeline RTA3.3.5 and Bcl2fastq v2.20. 

Metagenome quality control and pre-processing 

All sequenced metagenomes were QCed using the pre-processing pipeline as implemented in 

https://github.com/SegataLab/preprocessing. Pre-processing consists of three main steps: (1) read-level 

quality control; (2) screening of contaminant, i.e. host sequences; and (3) split and sorting of cleaned reads. 

Initial quality control involves the removal of low-quality reads (quality score <Q20), fragmented short reads 

(<75 bp), and reads with >2 ambiguous nucleotides. Contaminant DNA was identified using Bowtie 2 

(Langmead and Salzberg 2012) using the --sensitive-local parameter, allowing confident removal of the 

phiX174 Illumina spike-in and human-associated reads (hg19). Sorting and splitting allowed for the 

creation of standard forward, reverse, and unpaired reads output files for each metagenome. 
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Microbiome taxonomic and functional potential profiling 

The metagenomic analysis was performed following the general guidelines 100 and relying on the bioBakery 

computational environment 105. The taxonomic profiling and quantification of organisms relative 

abundances of all metagenomic samples have been quantified using MetaPhlAn2 (version 2.9.21 and 

marker database release 2.9.4) 106. The updated species-specific database of markers was built using 

99,237 reference genomes representing 16,797 species retrieved from Genbank (January 2019). From 

this set of reference genomes, we extracted a total of 1,077,785 markers able to profile 10,586 species. 

Compared to the previous version of the MetaPhlAn2 database (mpa_v20_m200), the updated database 

is able to profile 8,102 more species. Metagenomes were mapped internally in MetaPhlAn2 against the 

marker genes database with BowTie2 version 2.3.4.3 with the parameter “very-sensitive”. The resulting 

alignments were filtered to remove reads aligned with a MAPQ value <5, representing an estimated 

probability of the likelihood of the alignments. 

For estimating the microbiome species richness of an individual from the taxonomic profiles of PREDICT 

1 participants, we computed two alpha diversity measures: the number of species found in the microbiome 

("observed richness"), and the Shannon entropy estimation. Microbiome dissimilarity between participants 

(beta diversity) was computed using the Bray-Curtis dissimilarity and the Aitchison distance on microbiome 

taxonomic profiles. 

Functional potential analysis of the metagenomic samples was performed using HUMAnN2 (version 0.11.2 

and UniRef database release 2014-07) 107 that computed pathway profiles and gene-family abundances. 

Metagenomic assembly 

Metagenomic samples were processed to obtain metagenome-assembled genomes (MAGs) following the 

procedure we used elsewhere 42. In brief, we used MEGAHIT (version 1.2.9) 108 with parameters “--k-max 

127” for assembly and assembled contigs ≥1.5kb were considered for the binning step performed using 

MetaBAT2 (version 2.14) 109 with parameters: “-m 1500 --unbinned”. Quality control of the obtained MAGs 

was performed using CheckM (version 1.0.18) 110 using default parameters. High-quality and medium-

quality microbial genomes were integrated into the existing database of >150,000 human MAGs. 

Collection and processing of habitual diet information 

Habitual diet information was collected using food frequency questionnaires (FFQ). For the UK, the 

European Prospective Investigation into Cancer and Nutrition (EPIC) FFQ was used and in the US, the 

Harvard semi-quantitative FFQ was used.  

For the UK, we used the 131-item EPIC FFQ that was developed and validated against pre-established 

nutrient biomarkers for the EPIC Norfolk 111. The questionnaire captured average intakes in the past year. 

Nutrient intakes were determined via consultation with McCance and Widdowson's 6 th edition, an 

established nutrient database 112. US participants completed the Harvard 2007 Grid 131-item FFQ 

previously validated against two-week dietary records 113. Nutrient intakes were estimated using the 

Harvard Nutrient Database. Submitted FFQs were excluded if greater than 10 food items were left 

unanswered, or if the total energy intake estimate derived from FFQ as a ratio of the subject’s estimated 

basal metabolic rate (determined by the Harris-Benedict equation 114) was more than two standard 

deviations outside the mean of this ratio (<0.52 or >2.58).  

The following dietary indices were calculated as described below and according to categorisation listed in 

Supplementary Table 2,4. 
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Healthy Food Diversity Index. The Healthy Food Diversity (HFD) index considers the number, distribution, 

and health value of consumed foods. To obtain this index, food frequency questionnaire foods were first 

aggregated into 15 food groups according to the HFD 28. Health values were then derived from the German 

Nutrition Society (DGE) dietary guidelines (https://www.dge.de/en/) and the weight of each food group was 

multiplied by its corresponding health value (hv). Scores were divided by the maximum (hv=0.26) to bind 

values between 0-1 before multiplication with the Berry-Index. The original HFD was used instead of the 

US-HFD for the following reasons: the original HFD gives greater emphasis to plant-based foods and less 

to meat than the US-HFD which would more closely align with hypothesised microbiome-plant food/fibre 

interactions, and converting UK g/serving to US volume measures (as required for the US-HFD) would 

introduce additional error to the FFQ estimates.  

The plant-based diet index. Three versions of the plant-based diet index 36 were considered: the original 

plant-based diet index (PDI), the healthy plant-based index (h-PDI), and the unhealthy plant-based index 

(u-PDI). Eighteen food groups (amalgamated from the FFQ food groups; Supplementary Table 2) were 

assigned either positive or reverse scores after segregation into quintiles, as outlined in Supplementary 

Table 4 36. Participants with an intake above the highest quintile for the positive score received a score of 

5. Those below the lowest quintile intake received a score of 1. A reverse value was applied for the reverse 

scores. The scores for each participant were summed to create the final score. For the PDI, a positive 

score was applied to the “healthy” and “less-healthy”/“unhealthy” plant foods, and a reverse score applied 

to the animal-based foods. For the h-PDI, positive scores were applied to the “healthy” plant foods, and a 

reverse score to the “less-healthy”/“unhealthy” plant foods and the animal-based foods. For the u-PDI, a 

positive score was applied to the “less-healthy”/“unhealthy” plant foods and a reverse score applied to the 

“healthy” plant foods and the animal-based foods.  

Animal score. The animal-based score categorised animal foods into “healthy” and “less-

healthy”/“unhealthy” categories according to previous epidemiological studies 115–124. A similar approach to 

the PDI scoring was applied to the animal-based food groups, with either a positive (“healthy”) or reverse 

(“less-healthy”/“unhealthy”) quintile scoring (Supplementary Table 2 and 4).  

The aMED score. Adherence to the aMED diet was calculated by following the method outlined by Fung 

et al. 29. Nine food/nutrient categories were included (Supplementary Table 4) and the score ranged from 

0 to 9 (“least” to “most” Mediterranean). To form groups, weekly intake frequencies were first multiplied for 

assigned foods by the amount in grams per serving and then divided by 7 to determine grams per day. 

Next, food gram amounts were summed to make the final category total. For all food categories as well as 

the fatty acid intake ratio, the median intake of each category was calculated. A score of 0 (no aMED) or 

1 (aMED) was given for each category depending on whether the participant was above or below the 

median intake. For alcohol intake, a range was used for score assignment: females: 5-25 g/d; males:10-

50 g/d were assigned a score of 1, while those above or below this range were assigned a score of 0. 

Finally, the aMED was then generated by summation of each category score. 

Food groups. For individual analyses of food groups-microbe interaction, food groups were formed by 

aggregation of FFQ foods into the 18 PDI food groups plus margarine and alcohol (Supplementary Table 

4).  

Percentage of plants within diet: The percentage of plants within diet was calculated as weight in grams of 

plant foods within total weight (g) of diet after adjustment of FFQ foods into quantities (g) per week.  

Number of plant foods. For the number of plant foods, each plant food item within the FFQ above the value 

of 0g was allocated a score of 1 and summed for each participant. For the total number of plants and the 
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number of “healthy” and “unhealthy” plants, FFQ food items were allocated into groups according to the 

PDI food groupings.  

Collection and processing of fasting and postprandial markers 

Venous blood samples were collected as outlined in the accompanying protocol paper 104. In brief, 

participants were cannulated, and venous blood was collected at fasting (prior to a test breakfast) and at 

9 timepoints postprandially (15, 30, 60, 120, 180, 240, 270, 300, and 360 minutes). Plasma glucose and 

serum C-peptide and insulin were measured at all timepoints. Serum TG was measured at hourly intervals, 

and serum metabolomics (NMR by Nightingale Health, Helsinki, Finland) at 0, 4 and 6h. Fasting samples 

were analysed for lipid profile, thyroid-stimulating hormone, alanine aminotransferase, liver function panel, 

and complete blood count (CBC) analysis.  

Continuous glucose monitoring on day 2-14 was measured every 15 minutes using Freestyle Libre Pro 

continuous glucose monitors (Abbott, Abbott Park, IL, US), fitted on the upper, non-dominant arm at 

participants’ baseline clinical visit. Given the CGM device requires time to calibrate once fitted to a 

participant, CGM data collected 12 hours and onwards after activating the device was used for analysis.  

Dry blood spot analysis of TG and C-peptide was completed by participants on the first 4 days of the home-

phase while consuming test meals. The timepoints were dependent on the test meal as described 

elsewhere 56,104. Test cards were stored in aluminum sachets with desiccant once completed and placed 

in the refrigerator at the end of the study day or until participants mailed them back to the study site. DBS 

cards were frozen at -80 °C upon receipt in the laboratory until being shipped to Vitas for analysis (Vitas 

Analytical Services, Oslo, Norway). 

Specific timepoints and increments for TG, glucose, insulin, and C-peptide were selected for the current 

analysis to reflect the different pathophysiological processes for each measure as described in our protocol 
104. The incremental area under the postprandial TG (0-6h), glucose (0-2h), and insulin (0-2h) curves 

(iAUC) were computed using the trapezium rule 125. 

Detailed descriptions of sample collection, processing and analysis have been reported in 17,56. 

Machine learning 

The machine learning (ML) framework employed is based on the scikit-learn Python package 126. The ML 

algorithms used for the prediction and classification of personal, habitual diet, fasting, and postprandial 

metadata are based on Random Forest (RF) regressor and classification. We selected RF-based methods 

a priori as it has been repeatedly shown to be particularly suitable and robust to the statistical challenges 

inherent to microbiome abundance data 55,102 For both the regression and classification tasks, a cross-

validation approach was implemented, based on 100 bootstrap iterations and an 80/20 random split of 

training and testing folds. To specifically avoid overfitting as a result of our twin population and their shared 

factors, we removed any twin from the training fold if their twin was present in the test fold. 

For the regression task, we trained an RF regressor to learn the feature to predict, and simple linear 

regression to calibrate the output for the test folds on the range of values in the training folds. From the 

scikit-learn package, we used the RandomForestRegressor with “n_estimators=1000, criterion='mse'” 

parameters and LinearRegression with default parameters. For the classification task, we divided the 

continuous features into two classes: the top and bottom quartiles. From the scikit-learn package we used 

the RandomForestClassifier function with “n_estimators=1000” parameter. 
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We used RF classification and regression on both species-level taxonomic relative abundance and 

functional potential profiles. For taxonomic abundances, we used the relative abundances of MetaPhlAn2 

(see above) with all the abundances of all microbial clades from phylum to species normalized using the 

arcsin-sqrt transformation for compositional data. For functional profiles, we considered both raw relative 

abundance estimates of single microbial gene families, as well as pathway-level relative abundance as 

provided by HUMAnN2. 

As an additional control, we verified that when random swapping the target labels or values (classification 

and regression, respectively), the performances were reflecting a random prediction, hence an AUC very 

close to 0.5 and a non-significant correlation between the predicted with values approaching 0. 

Statistical analysis 

Spearman’s correlations (reported with “⍴” in the text), have been computed using the cor.test from the 

stats R package and a modified version of the pcor.test from the ppcor package (available at 

http://www.yilab.gatech.edu/pcor.R) that permits to control for a set of covariates rather than single ones, 

respectively. Correlations and the p-values were computed for each couple of metadata and species and 

p-values were corrected using FDR through the Benjamini-Hochberg procedure, which are reported in the 

text as q-values. We considered significant correlations with a q<0.2. Significant species have been 

selected by ranking them according to their number of significant associations for the panel of metadata 

considered, and then the top thirty unique species are considered for each panel of metadata. In the 

heatmaps for partial correlations, the asterisk indicates that the correlation index for the corresponding 

species-metadata pair is significant at FDR≤0.2. 

The contribution of metadata variables to microbiota community variation was determined by distance-

based redundancy analysis (dbRDA) on species-level Bray-Curtis dissimilarity and Aitchison distance with 

the capscale function in the vegan R package 127. Correction for multiple testing (Benjamini–Hochberg, 

FDR) was applied and significance was defined at FDR <0.1. The cumulative contribution of metadata 

variables or metadata categories was determined by forward model selection on dbRDA (stepwise dbRDA) 

with the ordiR2step function in vegan, with variables that showed a significant contribution to microbiota 

community variation in the previous step. Only metadata variables with <15% missing data and without 

high collinearity with other variables (Spearman’s rho <0.8) were used as input in the stepwise model. 

Data validation on the US cohort and on the cMD datasets 

As independent validation, we considered the publically available datasets collected in the 

curatedMetagenomicData version 1.16.0 R package (cMD) 16. Of the 57 datasets available we selected 

those that have samples with the following characteristics: (1) gut samples collected from healthy adult 

individuals at first collection (“days_from_first_collection”=0 or NA), (2) samples with age and BMI 

data available and BMI interquartile range (IQR) of these samples between 3.5 and 7.5 (± 2 with 

respect to the PREDICT 1 UK IQR of 5.5, Supplementary Fig. 5). For each dataset with samples 

meeting the above criteria, only datasets with at least 50 samples were considered: CosteaPI_2017 

(84 samples out of 279), DhakanDB_2019 (88 samples out of 110), HanenLBS_2018 (58 samples out 

of 208), JieZ_2017 (157 samples 385), SchirmerM_2016 (396 samples out of 471), and ZellerG_2014 

(59 samples out of 199). 

We used the previously selected validation datasets from cMD in two analyses: one based on machine 

learning to verify the reproducibility of the ML model we trained using the PREDICT 1 UK samples, and 

the second to verify the species-level correlations found in the PREDICT 1 UK cohort. For the first task, 

we applied a regression algorithm to predict BMI and age. Three different cross-validation approaches 
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were used. First, using each dataset independently in 100 bootstrap iterations and an 80/20 random split 

of training and testing folds. Second, one more iteration was performed using the PREDICT 1 UK dataset 

as training fold and each dataset as testing fold. Third, a final prediction was made using Leave-One-

Dataset-Out cross-validation (LODO), meaning that all datasets (PREDICT 1 UK, PREDICT 1 UK, and the 

cMD datasets) were considered together and each validation dataset was successively used as the test 

fold while all others were used for training. An additional validation performed using the cMD datasets 

was done by applying a pairwise Spearman correlation for each species in each cMD dataset against 

BMI and age. For each correlation we selected the top associated species in PREDICT 1 UK (FDR 

q<=0.05) and reported their correlation in cMD. For those species found also in the PREDICT 1 US, 

we reported their correlation as well. 

Data availability 

Metagenomes are being deposited in EBI ENA and will be made publicly available upon acceptance of 

the paper. 
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