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Learning Shared Control by Demonstration
for Personalized Wheelchair Assistance

Ayse Kucukyilmaz and Yiannis Demiris

Abstract—An emerging research problem in assistive robotics is the design of methodologies that allow robots to provide
personalized assistance to users. For this purpose, we present a method to learn shared control policies from demonstrations
offered by a human assistant. We train a Gaussian process (GP) regression model to continuously regulate the level of assistance
between the user and the robot, given the user’s previous and current actions and the state of the environment. The assistance
policy is learned after only a single human demonstration, i.e. in one-shot. Our technique is evaluated in a one-of-a-kind
experimental study, where the machine-learned shared control policy is compared to human assistance. Our analyses show
that our technique is successful in emulating human shared control, by matching the location and amount of offered assistance
on different trajectories. We observed that the effort requirement of the users were comparable between human-robot and
human-human settings. Under the learned policy, the jerkiness of the user’s joystick movements dropped significantly, despite
a significant increase in the jerkiness of the robot assistant’s commands. In terms of performance, even though the robotic
assistance increased task completion time, the average distance to obstacles stayed in similar ranges to human assistance.

Index Terms—Assistive robotics; assistive mobility; Gaussian processes; haptic shared control; human factors; human-like
assistance; intelligent wheelchairs; learning by demonstration; user modelling
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1 INTRODUCTION

T HE use of powered wheelchairs is essential to enhance
the independent living of individuals with mobility

limitations. However, the increase in the utility of powered
wheelchairs comes along with a raising concern about the
safe use of the technology. Reports indicate a growing
number of accidents, especially among elderly users, pro-
portional with the number of devices [1]. One way to
promote safe and effective use of powered mobility is
to implement intelligent shared control mechanisms onto
powered wheelchairs, which integrate the capabilities of
the user and the assistive technology in order to provide
proactive and effective assistance to the user.

Ideally, the assistance policy applied by an intelligent
wheelchair system should provide assistance targeted at
individual user needs and benefits. We suggest that an intel-
ligent wheelchair would be most effective if it can emulate
the operation of a human assistant, e.g. an occupational
therapist. Different studies have investigated human-human
interaction to learn from the behavioral mechanisms utilized
by humans (e.g. [2], [3], [4], [5], [6]). Recently, Ganesh et
al. [7] showed that the motor performance of physically
interacting individuals improves through motor adaptation.
Later, Takagi et al. [8] proposed a model, where interacting
dyads use haptic information to estimate each other’s goals
to improve individual performance. In essence, the idea of
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Fig. 1: Learning Shared Control by Demonstration Scenario: A
remote assistant (upper right), who is provided with a visualisation
(center right) and real-time camera capture (bottom right) of the
environment, offers assistance to the user (left) over haptic shared
control. The robotic system, in turn, models an assistive policy
through observations of the environment and the user commands.

learning the intricacies of the interaction between two hu-
mans and replicating them for generating robotic assistance
policies on a physical robot is new. In line with this goal, in
this study, we take a first step toward developing a shared
control wheelchair that provides personalized assistance to
its user by learning a continuous policy from a human.

The shared control technique proposed in this paper
adopts a user modelling approach to model the assistant’s
behavior to aid a wheelchair user. We propose a triadic
learning shared control by demonstration methodology, in
which an intelligent wheelchair learns an assistive policy
through modelling the dynamically coupled demonstrations
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given by a remote human assistant.
Learning-by-demonstration (LbD) has been successfully

applied to human-robot interaction for over a decade to
enable robots to imitate tasks performed by a human.
In LbD, the human acts as the teacher, and physically
demonstrates the task for the robot to generalize from [9],
[10], [11], [12]. Up to now, LbD has mostly focused on
dyadic human-robot interaction scenarios, where the human
is involved in the process only during demonstration, while
the robot models the demonstrated actions and reproduces
them autonomously.

In this paper, we focus on a complex triadic scenario,
where the user continuously interacts with the wheelchair
during both demonstration and reproduction. In our setup,
the teacher is not the user of the wheelchair, but a remote
human, who provides assistance when needed (See Fig. 1).
The proposed technique is outlined in the supplementary
video supplied as the online resource.

2 BACKGROUND
Powered wheelchair technologies went through important
advances in the last 40 years. Initial efforts implemented
simple safeguarding techniques involving collision avoid-
ance and trajectory following to make powered wheelchairs
intelligent [13], [14], [15], [16], [17]. Later on, the main
trend shifted toward estimating user goals and intentions.
Boy et al. proposed a mechanism that modulates the in-
telligent wheelchair’s trajectory corrections based on the
user’s capabilities by defining control mechanisms tailored
to specific disabilities [18]. Carlson and Demiris defined
possible actions in a particular environment, and dynami-
cally predicted the most probable actions that shall be taken
in near future to correct the orientation of the wheelchair
[19], [20]. Demeester et al. used Bayesian decision theory
to estimate the certainty of users in a navigation task
[21], followed by a comparison of popular approaches,
namely Maximum Likelihood (ML), Maximum A Poste-
riori (MAP), and a greedy Partially Observable Markov
Decision Process (POMDP), in order to evaluate navigation
plans [22]. Later, Hüntemann used the Bayesian approach
in conjunction with Gaussian processes to model user
driving behavior to reason about the user’s local navigation
plan [23].

Related to the estimation of user intentions, is the ques-
tion of setting the shared control parameters in assisted
driving. In essence, the shared control paradigm allows the
robot to change its autonomy level when interacting with
the human [24]. The autonomy changes can be triggered
explicitly by the user or hard coded through the interaction.
However, such implementations are inherently problematic,
as the former increases the mental load of the user and the
latter limits the system’s ability to accommodate different
user profiles. These shortcomings can be addressed by
dynamically controlling the autonomy level of the robot
depending on user inputs [25], [26], [27], [28]. Fernandez-
Carmona et al. [29] and Li et al. [30] used task performance
metrics to adapt the user’s control authority during robot-
assisted wheelchair operation. Goil et al. trained a Gaussian

mixture model to extract task variability in terms of angular
velocity as a measure of task complexity [31]. This variance
was used to set a blending coefficient to control the
allowable angular velocity that the user can apply.

Even though policy blending offers a structured solution
to manage the amount of assistance, it does not define
the assistance policy itself. Learning the assistive policy
is challenging, since wheelchair users’ control commands
may not always be sufficient per se to construct a consistent
assistive model (such as in the case of toddlers and people
with extreme cognitive or physical difficulties). Hence, it
is imperative to understand how assistance shall be shaped
to individual needs.

Recently, Soh and Demiris proposed that a robotic
wheelchair can learn from human guidance, where a human
can correct the user by means of taking over the control of
the wheelchair whenever necessary [32], [33]. Assuming
the coherence of human guidance, their approach learned
when to override user commands to assist the user. In the
current study, we take this idea one step further by learning
continuous assistance policies during interaction, where the
assistant does not take over the control of the task, but
shares it with the user at all times over a bidirectional
haptic interface. We envision that this will provide the user
more autonomy in situations where (s)he comes up with
navigation plans different from those of the assistant.

Another question relevant to the purpose of this study is
whether it is necessary to integrate a powered wheelchair
with haptic feedback capabilities, or not. Previous studies
indicated the effectiveness of force feedback in reducing
collisions [34], [35], [36], [37] and speeding up the learn-
ing process to gain the necessary abilities for driving a
wheelchair [38]. Marchal-Crespo et al. provided users with
modulated haptic feedback, where they gradually decreased
the stiffness of the haptic joystick, to guide the users toward
a given trajectory [39]. In a controlled study with children
of ages between 4 and 9, they showed that modulating the
forces in this manner allowed the users to gain necessary
driving skills faster when compared to those in the control
group. Later, Morere et al. presented a user study with 5
children with disabilities, to illustrate personal differences
in driving styles and the received benefit from haptics [40].

These studies use haptic feedback as a guidance mecha-
nism and illustrate its utility when compared to no guidance
conditions; but do not address the necessity of having haptic
feedback to close the control loop. By turning the haptic
feedback on and off while robotic assistance is active, the
current study puts an effort to investigate whether humans
benefit from haptics when working with an assistant.

3 SYSTEM OVERVIEW
This section describes the haptics-enabled wheelchair
ARTA and the shared control framework, through which
the remote human assistant presents assistance to the user.

3.1 Robotic Platform
In the experiments, we used ARTA (Assistive Robotic
Transport for Adults) powered wheelchair platform, devel-
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Fig. 3: Software architecture for ARTA

oped at Imperial College London, Personal Robotics Lab-
oratory (Fig. 2). ARTA is based on a mid-wheel powered
wheelchair. An Arduino controller is programmed to tap
into the PG Drives VSI controller so as to override the
joystick commands issued to drive the wheelchair. ARTA is
equipped with two Hokuyo URG-04LX-UG1 laser scanners
(front left and front right), a SICK Laser Measurement
Sensor LMS-200-30106 (back), a Phidgets spatial 3/3/3
inertial measurement unit (IMU), and a wireless router.
An on-board computational unit is installed to process
and integrate multi-sensory information, manage the haptic
shared control module, and run higher-level tasks, such as
assistive policy generation.

Fig. 3 summarizes the software components of ARTA,
which are built over the system described in [41]. The
software is developed using ROS, and each sensor is
managed by a separate ROS node, denoted via boxes with
rounded corners in Fig. 3. The Laser Combiner1 node

1. Laser combiner software, written by Harold Soh, is available from
the software section in http://imperial.ac.uk/PersonalRobotics.

combines the laser scan readings from three laser rangers
into a single coherent ROS message as explained by [42].
The Laser Scan Matcher2 implements incremental laser
scan registration using IMU measurements to estimate the
change of the orientation angle of the wheelchair. The
AMCL node3 runs the adaptive Monte Carlo localisation
algorithm to localise the wheelchair on a pre-existing laser-
based map using the combined laser scan and transform
messages, in order to output pose estimates. The Haptic
Negotiation4 node gets the joystick commands from the
user and the assistant, and combines them into a joint
command that drives the wheelchair.

3.2 Haptic Shared Control
By default, ARTA is driven by a spring-centered, propor-
tional control joystick that provides full directional control
within a 360◦ circle. In order to enable haptic feedback,
the traditional joystick commands are overriden using two
haptic controllers, shown in Fig. 2. In our setup, each agent
(i.e. the user and the assistant) uses a Novint Technologies
Falcon haptic controller, with up to 9 N continuous force
feedback capability and 400 dpi position resolution, to
collaboratively control the movement of the wheelchair.
The user’s haptic controller is placed on top of ARTA
and directly connected to the computational unit, whereas
the assistant’s controller is connected to a remote PC that
communicates with ARTA over the network.

The wheelchair motion is realized by manipulating
the haptic controllers on the horizontal plane: for-
ward/backward movements in z-axis are used for control-
ling the linear velocity and leftward/rightward movements
in x-axis are used for setting the angular velocity. A
deadband was used to avoid small joystick commands, the
magnitude of which are less than 0.3, from invoking motion
on the wheelchair. The position of the haptic interface point
directly translates to linear and angular velocity commands,
which vary in [−1 1] range. These commanding velocities
are sent to the controller to generate motor actuation.

The shared control scheme, which combines the op-
erations of the user and the assistant, is based on the
haptic negotiation model as described in [25]. Fig. 4 depicts
the haptic negotiation model that enables shared control
on the wheelchair. The user and the assistant drive the
wheelchair by moving the haptic controllers, the tooltip
positions of which are mapped to haptic interaction points
HIP1 and HIP2 in the virtual world, where HIP1 denotes
the user’s haptic interaction point and HIP2 denotes that
of the assistant. The axes lengths for the positions of
HIP1 and HIP2 are normalized to range between -1 and
1, regarding the minimum and maximum encoder limits
of the haptic device. The operations of the agents are
merged by introducing a negotiated interface point (NIP)

2. Software, written by Ivan Dryanovski and William Morris, is avail-
able from http://www.ros.org/wiki/laser scan matcher.

3. Software, written by Brian Gerkey and Andrew Howards, is available
from http://www.ros.org/wiki/amcl.

4. Haptic negotiation software written by Ayse Kucukyilmaz, is avail-
able from the software section in http://imperial.ac.uk/PersonalRobotics

http://imperial.ac.uk/PersonalRobotics
http://www.ros.org/wiki/laser_scan_matcher
http://www.ros.org/wiki/amcl
http://imperial.ac.uk/PersonalRobotics
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that is directly connected to the HIPs through virtual
spring-damper systems with zero rest lengths. Due to the
normalization of HIP ranges, the NIP position is also
guaranteed to lie between [−1 1], which can be directly
used as the commanded velocity sent to the controller in
order to generate the required motor actuation. In order to
simulate the spring-centered joystick behavior, NIP is also
attracted towards the origin by a spring-damper system.

The springs and dampers between interaction points
serve as proportional-derivative (PD) controllers driving the
interaction points. Hence, at each time step, the position of
NIP is influenced by three forces:

FH1N =Kp,hn (xHIP1
− xNIP ) +Kd,hn (ẋHIP1

− ẋNIP )

FH2N =Kp,hn (xHIP2
− xNIP ) +Kd,hn (ẋHIP2

− ẋNIP )

FON =−Kp,noxNIP −Kd,noẋNIP , (1)

where xi and ẋi, i ∈ {HIP1, HIP2, NIP}, respectively
denote the positions and velocities of HIP1, HIP2, and NIP,
whereas Kp and Kd values respectively denote proportional
and derivative gains. Utilized controller gains are hardware
specific and set experimentally as , Kd,hn = 0.25 N/m,
Kd,no = 0.2 N/m, and Kp,hn = Kp,no = 15 N/m.

FH1N and FH2N denote the forces that are applied on
NIP and reciprocally felt by the user and the assistant,
whereas FON is the force acting on NIP due to its attraction
towards the origin. NIP is represented as a unit mass of
m = 1 kg, governed by Newton’s second law of motion.
At the end of each time step of the haptic feedback loop,
the position of NIP for the next time step is calculated using
semi-implicit Euler integration:

FNIP =FH1N + FH2N + FON ,

ẍt
NIP =FNIP /m,

ẋt+1
NIP =ẋt

NIP + ẍt
NIP ∆t,

xt+1
NIP =xt

NIP + ẋt
NIP ∆t+ ẍt

NIP ∆t2, (2)

where ẍt and ẋt respectively denote the acceleration and
the velocity of NIP at time t, and ∆t = 1 msec.

This setup allows the agents to get physically coupled,
so that each is able to feel the forces exerted by the other
party as if holding the same joystick.

4 METHODOLOGY

In this study we are interested in making an inference about
the relationship between observation inputs (i.e. the envi-
ronmental information and the user’s control commands)
and appropriate assistance commands. For this purpose, a

Gaussian process (GP) method for regression is chosen
[43]. GP is a generalization of a multivariate Gaussian
distribution to infinitely many variables. Given training
data D = (X,y), consisting of N observations of D-
dimensional input vectors, X = [xD×1

i ]Ni=1, and corre-
sponding real-valued targets, y = [yi]

N
i=1, GP represents a

prior distribution over all functions of the form f : X 7→ R.
The entire function evaluation is drawn from a multi-

variate Gaussian distribution, fully specified by a mean
vector µ, which is often assumed to be a zero function,
and a covariance matrix K:

f = {f1, · · · , fn}T ∼ N (µ,K). (3)

In order to deal with noisy observations, Gaussian noise
with a zero mean and a variance of σ2

n: y = f(x+ε), where
ε ∼ N (0, σ2

n), is incorporated into the kernel matrix:

ΣN = K(x,x) + σ2
nI, (4)

where I is the N ×N identity matrix and σ2
n is the hyper-

parameter denoting noise variance.
For a test instance x∗, the predictive distribution of the

target value, y∗, is given by

p(y∗|x∗,D, Θ̂) =

N (y∗|k>Σ−1N y, k(x∗,x∗)− k>Σ−1N k + σ2
n), (5)

where kN×1 consists of elements [k]i = k(x,xi), and
Θ̂ denotes the optimal hyper-parameters related to the
covariance function and the error variance, which can be
estimated by maximizing the marginal-likelihood [44]:

p(y|X,Θ) = N (y|0,ΣN ). (6)

In order to facilitate the generalization of the model to
different environments, we used only context-invariant in-
puts to learn assistive joystick commands. Specifically, the
output of the model was the assistant’s joystick commands,
while the inputs were:

• 16 laser scan values denoting distances to nearby
obstacles. Raw scan data were sub-sampled every
22.5◦ over the full 360◦ circle around the wheelchair.

• Linear and angular velocity of the wheelchair
• User’s joystick commands

The model was trained using a squared exponential
covariance kernel:

k (f(xp), f(xq)) = exp

{
−|xp − xq|2

2l2

}
, (7)

where l is a free hyper-parameter that defines the char-
acteristic length-scale of the process, The initial length-
scale of the kernel was set to 6 seconds, and optimized
using maximum likelihood estimation. In order to reduce
the time required to train the model, automatic relevance
determination (ARD), which allows the model to identify
the directions in the input space that exhibit high relevance,
is turned off [45].
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5 EXPERIMENT AND DATA COLLECTION
An interaction scenario, in which non-disabled participants
were asked to manoeuvre with ARTA within the experiment
area, as shown in Fig. 1, was designed to a) evaluate the
ability of our technique to emulate human assistance, and
b) compare usage characteristics for human-human and
human-robot interaction scenarios under haptic and non-
haptic feedback conditions. Note that as only non-disabled
subjects were involved in the study, our purpose is to
provide a comparison between human-provided guidance
and robotic assistance policies, not to show therapeutic
benefits of the proposed technique.

The user study exhibits a mixed design, which includes
one between-subjects and two within-subjects variables:
1) interaction type (human-human versus human-robot sce-
narios), 2) feedback condition (haptic versus non-haptic
feedback), and 3) track type (complex versus simple).

5.1 Independent Variables
Interaction Type
The study involved two separate groups of participants:
The first group participated in a human-human interaction
scenario, called the HHI experiment, where a remote human
assistant presented guidance to the user via shared control
over the course of all trials. The data collected within the
HHI experiment is used to validate the ability of the GP
regression model to learn human provided assistance, as
will be discussed in Section 6. The second group was
involved in a human-robot interaction scenario, dubbed the
HRI experiment, where the assistance policy was learned
from a single initial human demonstration and was applied
by the robot to aid the user in following trials. The
inclusion of this factor provides valuable observations that
allow a comparison between human assistance and robotic
assistance policies. We assume that the human assistance
serves as the ideal assistance policy, hence it is desirable for
the robot to display comparable performance to that of the
human. For this purpose, the results of the HRI experiment
are contrasted with the results of the HHI experiment to
reflect on how the proposed robotic assistance policy com-
pares to actual human assistance, as detailed in Section 7.

Feedback Condition
In order to evaluate the utility of haptics during assisted
driving, we included a within-subjects factor that controls
the existence of haptic feedback at the user’s controller.
Hence, apart from comparing human and robotic assistance,
this study also explores how haptic communication affects
interaction performance and user operation during collabo-
rative driving on a powered wheelchair.

Feedback condition has two levels, which relates to the
existence and lack of force feedback at the user’s controller:

1) Haptic Condition (H): In the HHI experiment, both
the assistant and the subject feel the forces exerted by
their partner. In other words, the haptic devices are
fed back with F d,1 = −FH1N and F d,2 = −FH2N ,
as computed in (1), so that the assistant’s movements

are mirrored at the subject’s haptic device and vice
versa. In the HRI experiment, since the assistant is out
of the loop, the haptic controller at the assistant’s side
is deactivated. However, the assistance commands
generated by the model are used to compute FH1N

and FH2N in the same way as the HHI experiment,
and the user is fed back with F d,1 = −FH1N .

2) Non-Haptic Condition (NH): The subject does not
get any force feedback due to the actions of the
assistant. This is realized by feeding back the forces
to the subject as if his/her haptic device is directly
connected to the origin:

F d,1 = −Kp,hnxHIP1
−Kd,hnẋHIP1

. (8)

In the background, FH1N is computed using (2)
and is used to control the movement of NIP as
in the case of the H condition. This enables the
wheelchair to act alike under both H and NH. The
only difference is that the subject’s haptic device is
not actuated as a result of the actions of the assistant.
In the HHI experiment, the assistant is provided with
forces exerted by the partner as in H condition:
F d,2 = −FH2N .

Track Type
The user was asked to perform the task on two different
trajectories. Fig. 5 depicts a bird’s eye view sketch of the
experiment area, where the desired trajectories are marked
in dotted red lines. The first trajectory, as shown in Fig. 5(a),
involved maneuvering in between two obstacles, and looked
as if the subject is drawing a figure 8 on the track, and
will be called the figure 8 track in the rest of the paper.
The second trajectory, as depicted in Fig. 5(b), required the
subjects to drive around the two obstacles on a rectangle
shaped track, and will be called the rectangular track in the
rest of the paper. The rectangular track is designed to serve

(b) Trajectory 2: 

rectangular track

(a) Trajectory 1:

figure 8 track

Wheelchair Desired trajectoryExperimenter's desk

1.00 m

0.65 m

1.20 m

8
.9

0
 m

5.20 m

2
.1

0
 m

2
.1

0
 m

1.20 m
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Fig. 5: Bird’s eye view of the lab area and the tracks used in the
experiments. The red dotted lines denote the desired trajectories.
The wheelchair, experimenter’s desk, and obstacles are shown.
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as a simpler task than the figure 8. Also, as the user model
is learned over the figure 8 trajectory, the rectangular track
performance is used as indicative of the generalizability of
the assistance model to different trajectories.

5.2 Procedure

At the beginning of the experiment, the subjects gave
informed consent for their participation in the study. They
were verbally instructed about the wheelchair and its op-
eration with the haptic joystick, and were informed about
the trajectories. During the experiment, the experimenter
sat behind a curtain, which hid the haptic device from the
subject’s sight. The subjects were asked to pay attention to
any assistance they might feel during the sessions, noting
that it is possible that there might not be any assistance at
all. However, they were not informed about the conditions
nor about the existence of external human assistance.

The experimenter acted as a remote assistant, who mon-
itors the operation of the wheelchair by observing its
motion through rviz 3D visualization tool for ROS. She was
provided with a frontal camera view of the environment, as
well as laser scan readings matching the map of the envi-
ronment as shown in Fig. 1. The assistant was experienced
in teleoperating the wheelchair using the haptic joystick,
and was instructed to observe the task and assist the user
only if his/her operation may lead to dangerous situations,
e.g. too fast or prone to collisions.

The HHI and HRI experiments are performed on inde-
pendent groups. Within each group, the subjects experi-
mented under both feedback conditions (H and NH) to
drive on both tracks consecutively in a single day. The
conditions H and NH were presented to the subjects in
balanced random order to avoid ordering and learning
effects. In particular, the subjects were randomly assigned
to two equal-sized sub-groups, where the first sub-group
was presented with H, followed by NH, and the second
experimented with NH, followed by H. The experimenter
was also blinded from the condition, but was aware of the
details of the study. Since the experimenter’s interface was
always programmed to feedback the forces from the task
and the user, it was not possible for her to know whether
the user is working under H or NH condition. In this sense,
the experimenter bias was controlled.

Each experiment consisted of four sessions in a single
day: a practice session, followed by a demonstration session
and two experimental sessions, which were identical in
terms of the task that the subjects were asked to perform.
In the practice session, the subjects were asked to complete
a single lap on the rectangular track, followed by another
lap on the figure 8 track. After the practice session, the
subjects were asked to complete a single lap on the figure
8 track, where the assistant provided remote guidance,
which acted as the one-shot shared control demonstration.
At the end of the demonstration session, the users were
asked to fill in a questionnaire to provide demographics
information as well as particulars on past experience in
driving, powered wheelchairs, and haptic devices. This brief

period was sufficient to train the personalized user model
in the HRI experiment, and was used to keep the subjects
busy until the training is over without informing them about
the background operations.

In the experimental sessions, the subjects were presented
with either H or NH, followed respectively by NH and H,
depending on their group. In each session, the subjects were
asked to drive through the same trajectories to complete
eight laps (five on the figure 8 track, and three on the
rectangular track) as fast as they can and avoiding collisions
with walls and obstacles. The initial position, where the
subjects started the experiment was marked on the floor
and the subjects were instructed to pass through this spot
to complete the laps. A bell sound was played by ARTA
each time the subjects complete a lap; and at the end of
the first 5 laps they were notified to switch to the second
trajectory. At the end of each session, the subjects were
given a questionnaire and were asked to comment on their
experience. Table 1 summarizes the experimental protocol.

TABLE 1: The experimental protocol

SESSION TASK
Practice 1 lap x trajectory 2 (rectangular track)

1 lap x trajectory 1 (figure 8 track)
Demonstration 1 lap x trajectory 1 (figure 8 track)

Demographics and personal experience questionnaire
(Model is trained in HRI experiment)

Experimental 5 laps x trajectory 1 (figure 8 track)
Session 3 laps x trajectory 2 (rectangular track)

-A- User experience questionnaire
Experimental 5 laps x trajectory 1 (figure 8 track)

Session 3 laps x trajectory 2 (rectangular track)
-B- User experience questionnaire

5.3 Participants
24 able-bodied subjects (9 females and 15 males), aged
between 19 and 36 (mean = 26.8, std = 4.2), participated
in our study. All subjects were right-handed and used their
dominant hands when interfacing with the wheelchair. The
subjects interacted with the same remote assistant, who
was experienced in driving the wheelchair remotely using
the haptic interface. Prior to the experimental sessions, the
subjects rated their past driving experience and acquain-
tance with the wheelchair and haptic technologies on a 4-pt
Likert scale (1 = None, 2 = Little, 3 = Some, 4 = A Lot).
According to questionnaire responses, most subjects had
previous driving experience (median = 3, IQR = 2), but few
had previous acquaintance with haptic devices (median = 1,
IQR = 1) or powered wheelchairs (median = 1, IQR = 0).

6 MODEL EVALUATION

In order to evaluate the ability of our technique to emulate
human assistance, the data collected over the HHI condition
is analyzed. For this purpose, a GP model is trained using
the observations collected during the demonstration trial;
and then used to estimate the assistance signals offered
by the human in response to varying user commands and
environmental context in the upcoming trials.
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Fig. 6: Assistance command estimations for a representative user over four trials (a) on the figure 8 track (b) on the rectangular track
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Fig. 7: RMSE scores showing the normalized estimation error
over the trials for all users

Fig. 6 plots the ground truth assistance and the estimation
signals acquired using the GP model for a representative
user over two trials for each of figure 8 and the rectangular
tracks. Evidently, model-based estimations follow trends
similar to ground truth human assistance in both linear and
rotational velocity commands; hence is able to mimic the
operation of the human assistant. As seen in Fig. 6(b), the
model trained on the figure 8 track is able to generalize well
to the rectangular track. In line with this, Fig. 7 presents
the root mean squared error (RMSE) values between the
assistance estimations and the actual assistance given by
the human for linear and rotational velocity commands.
The model attains relatively low (< 0.06) errors for
command velocities for both trajectories, illustrating good
and consistent estimation performance over the course of
the experiment to predict human assistance. We note that
RMSE values are typically lower for the rectangular track,
since the level of assistance for this easier track is lower.
As shown in Fig. 8, the mean magnitude of assistance is
slightly lower than 0.5 for both tracks. This indicates that
the assistant was active for roughly half of the trials.

Fig. 9 plots some trajectories followed by two users.
Overlaying density plots mark the locations on the paths,
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Fig. 8: Mean magnitude of the assistance commands over the
trials for all users. Error bars indicate standard deviations.

where assistance was offered to the user either by the
human assistant or through the estimations achieved by
the GP model. The darker red areas indicate regions where
higher amounts of assistance was applied. Fig. 9(a) plots
the assistance density for the initial demonstration session.
Figs. 9(b) and 9(c) plot the paths overlayed with ground
truth assistance density as applied by the human and the
density of the assistance estimations, respectively under H
and NH conditions. Clearly, the model is able to capture
the intentions of the human assistant to reproduce his/her
operation under trajectories that are different than the
demonstration; hence has a generalization capability. These
results indicate that the model does not memorize where the
assistance shall be applied, but functions as a context and
user-aware technique for assistive mobility.

Upon closer inspection, Fig. 9 exemplifies two different
scenarios. In the first one, as shown in the upper set
of figures, the human assistant applies a not-so-strong
assistance policy during the demonstration. On the other
hand, (s)he diplays comparably stronger assistance during
the experimental trials. In response to the weak assistance
demonstration, the robot learns to act in a way that is
less active than the actual human assistance. In contrast,
the bottom set of figures show a demonstration where the
human assistant is dominant. As the figure indicates, in this
case, the model predictions tend to be stronger.

7 ASSISTIVE MOBILITY EVALUATION

This section provides an evaluation of the model under
an actual driving scenario. Learned assistance policy is
compared to a baseline condition of human assistance.
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Fig. 9: Example trajectories for two users, with overlaying density plots indicating the location and amount of the offered assistance.
Darker areas indicate higher amounts of assistance. a) Assistance density in the demonstration trial. These data were used to train the
GP regression model. b) Ground truth (left) and estimated (right) assistance densities under H. c) Ground truth (left) and estimated
(right) assistance densities under NH.

The analyses that will be presented in the rest of this
section investigate the statistically significant effects of the
interaction type (HRI vs. HHI), feedback condition (H vs.
NH), and the track (rectangular vs. figure 8) using three-
way mixed ANOVA. If no interaction effects are observed
for a dependent variable, only the main effects are reported.
In case of statistically significant interactions, follow up
tests exploring simple effects are carried out.

During operation, timestamped sensor data were col-
lected at 20 Hz to record the AMCL estimation for ARTA’s
pose in the inertial frame, the forces applied by the agents
(FHIP1

and FHIP2
), and the joystick commands issued

on the wheelchair by the user and the assistant. In the
evaluations, only the data collected within the experimental
sessions are used.

7.1 Task performance
Fig. 10 shows mean lap completion times and the
mean proximity to obstacles for each condition and

Rectangle Figure 8 Both Tracks
0

0.2

0.4

0.6

0.8

M
in

. 
d
is

ta
n
c
e
 [
m

]

H [HHI]

NH [HHI]

H [HRI]

NH [HRI]

Rectangle Figure 8 Both Tracks
0

20

40

60

80

100

120

L
a
p
 c

o
m

p
le

ti
o
n
 t
im

e
 [
s
]

H [HHI]

NH [HHI]

H [HRI]

NH [HRI]

Fig. 10: Mean lap completion times (left) and the proximity to
obstacles (right), and standard errors of the means

standard errors of the means. ANOVA results indicate
a statistically significant effect of the interaction type
(F (1, 376) = 11.631, p < .005) on lap completion
time. Particularly, in the HRI experiment, subjects spend
more time to complete the task than they do in the HHI
experiment. For both interaction types, HHI and HRI,
the lap completion times are consistent across feedback
conditions H and NH (F (1, 376) = 2.760, p = .111)
and they are significantly lower for the rectangular track
(F (1, 376) = 80.031, p < .001).

Regarding the mean driving proximity to obstacles,
ANOVA results indicate no main effect of interaction type
(F (1, 376) = .677, p = .419) or the feedback condition
(F (1, 376) = .394, p = .537), but a significant effect of the
track (F (1, 376) = 33.928, p < .001), with the proximity
to obstacles getting lower (i.e. less safer) when driving on
the Figure 8 track.

These results indicate that the addition of haptics does
not significantly affect the performance of the users. How-
ever, the integration of robotic shared control slows down
task execution.

7.2 Smoothness of motion
The smoothness of motion is quantified as a function of
jerk, i.e. the time derivative of acceleration. The jerk cost
equals to the time normalized integral of the square of jerk
in wheelchair position [46], and is computed separately to
quantify the smoothness of the joystick commands applied
by the user (JU ) and the assistant (JA):
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JU =
1

T

∫ T

0

‖...xHIP1‖2dt (9)

JA =
1

T

∫ T

0

‖...xHIP2‖2dt , (10)

where xHIP1 and xHIP2 respectively denote the HIP
position of the user and the assistant. In order to reduce
differentiation errors due to noise, in all jerk computations,
position data are filtered with a 4th order lowpass Butter-
worth filter with 5 Hz cut-off frequency. A two-way filter
is used to avoid phase shifts.

The jerk costs for the agents’ joystick movements, and
the standard errors of the means are shown in Fig. 11. A
statistically significant main effect of the interaction type
(F (1, 376) = 4.317, p < .05) for JU indicates that the
user’s hand motion is smoother under HRI than it is under
HHI. Also, a statistically significant main effect of track
type (F (1, 376) = 19.832, p < .001) illustrates that the
joystick motion characteristics of the subjects are jerkier
under the harder figure 8 track for both interaction types.

This result is accompanied by a significant increase in
the mean jerk cost in the assistant’s hand movement under
HRI (F (1, 376) = 13.690, p < .005). The jerkiness of
the assistant’s hand motion is consistent accross H and NH
(F (1, 376) = .012, p = .913), and is significantly higher
in the figure 8 track only under HRI (F (1, 376) = 26.977,
p < .001).

These indicate that haptic feedback does not affect the
smoothness of the subjects’ joystick motions. However, the
users tend to perform more smoothly when interacting with
robotic assistance, the signals of which are significantly
jerkier than the joystick trajectory of a human assistant.
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Fig. 12: Mean force contribution of the user (left) and the assistant
(right) and standard errors of the means

7.3 Individual forces applied by the agents
Mean magnitudes of individual interaction forces FHIP1

and FHIP2 , are reported to quantify the individual force
contributions of the user (FU ) and the assistant (FA) :

FU =
1

T

∫ T

0

‖FHIP1
‖dt (11)

FA =
1

T

∫ T

0

‖FHIP2
‖dt . (12)

Fig. 12 illustrates the mean magnitude of the forces
applied by the user and the assistant. The interaction type
has a significant simple effect on the amount of individual
forces applied by the user only under H (F (1, 376) =
34.368, p < .001), where the user applies lower forces
when working with a human assistant in the presence of
haptic feedback from the partner. The forces applied by
the user in HRI and HHI settings stay in similar higher
ranges under NH. Additionally, there is a significant main
effect of the feedback condition on the net force applied
by the user (F (1, 376) = 132.539, p < .001), where higher
forces are applied in the lack of haptic feedback from the
assistant, i.e. under NH. The forces are increased for the
figure 8 track when compared to the rectangular track under
H, only for HHI (F (1, 376) = 19.975, p < .001).

On the other hand, the forces applied by the assistant are
significantly increased in HRI (F (1, 376) = 104.697, p <
.001). The feedback condition does not affect the forces
applied by the assistant (F (1, 376) = 3.728, p = .066),
which is indicative of consistent assistance behavior for
both HRI and HHI settings. There is a significant ef-
fect of track for the assistant’s force contribution only
under HHI (F (1, 376) = 28.683, p < .001), whereas
assistance forces stay consistent across tracks under HRI
(F (1, 376) = .303, p = .582).

7.4 Subjective Evaluation
At the end of each session, the subjects were asked to
indicate their level of agreement or disagreement on a 7-
point Likert scale (1 = Totally Disagree, 7 = Totally Agree)
for a series of statements. The questionnaire consisted of
questions, six of which are taken from NASA-TLX task
load index [47], as well as those developed specifically for
the purpose of this experiment:
• Mental Demand: The task required a large amount of

mental and perceptual activity (e.g. thinking, deciding,
calculating, remembering, looking, searching, etc.)

• Physical Demand: The task required a large amount
of physical activity (e.g. pulling, pushing, turning,
controlling, activating, etc.)

• Temporal Demand: I needed to be quick to perform
the task.

• Performance: I was successful in accomplishing the
goals of the task set by the experimenter (or myself).

• Effort: I had to work hard (mentally and physically)
to accomplish the task.

• Frustration Level: I felt irritated / stressed / annoyed
during the task.
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Fig. 13: Boxplots showing the median and interquartile ranges of the subjective scores for each variable (1 = Totally disagree, 7 =
Totally agree)

• Enjoyment: I enjoyed driving the wheelchair.
• Haptic enjoyment: I enjoyed driving the wheelchair

particularly because I was using the haptic joystick.
• Comfort: I felt comfortable driving the wheelchair.
• Haptic comfort: Using the haptic joystick improved

my comfort level during the experiment.
• Responsiveness: Wheelchair responded to my actions.
• Assistance awareness: I got some external assistance

during operation.
• Control source: Three questions investigated the users’

perception of who is controlling the operation:
1) User control: The robotic wheelchair moved un-

der my command.
2) Human assistant control: The robotic wheelchair

was operated remotely by the experimenter.
3) Robotic assistant control: The robotic wheelchair

(i.e. not the experimenter) was interfering with
my operation.

Fig. 13 plots the mean values of the subjects’ responses
to the statements in the questionnaire. The differences
between the means for H and NH as well as HHI and HRI
groups are investigated through 2-way mixed ANOVA. No
statistically significant differences are observed for any of
the subjective measures between the feedback conditions
H and NH or between HHI and HRI. This indicates that
the robotic assistance was not perceived very differently
from actual human assistance, and haptic cues from partners
did not cause the subjects to feel an increased level of
work load, nor did they affect the subjects’ comfort or
enjoyment level. The subjects did not report any particular
positive tendency toward the haptic sensations that made
the task more comfortable or more enjoyable. In general,
the subjects thought that the wheelchair was responding to
their actions, but were aware that the wheelchair did not
move completely under their command. Interestingly, the
subjects were unable to distinguish whether the external
commands were exerted by a remote human being, or were
due to some programmed assistance function of the robotic
wheelchair. However, in all conditions, the subjects tended
to think that they interacted with a robot, not a human.

8 DISCUSSION AND CONCLUSIONS

In this study, we proposed a technique to learn shared
control policies from human-human interactions. The ca-
pability of this machine-learned model to generate and
generalize assistive policies for different trajectories is
illustrated by comparison with human data. The utility of
the proposed technique is further investigated through a
user study, where robotic shared control policies (HRI) are
compared with actual human assistance (HHI) for guiding
a wheelchair user. As a side goal, we investigated the utility
of haptic feedback during shared control with an assistant.
In our setup, the driver of the wheelchair was not informed
about whether (s)he was physically coupled with another
human or a robot during the task. This was done on purpose
to bypass the cognitive adaptation process and focus clearly
on motor adaptation [7].

As a result of the user study, we observed that the
trajectories under HRI and HHI scenarios were similar in
terms of the wheelchair’s average distance to obstacles.
Lap completion time was significantly increased when the
user operated with robotic assistance; yet the addition of
haptic feedback on the shared control setup did not affect
task performance. The forces applied by the human under
HRI stayed in consistent levels with those observed under
HHI, particularly when no haptic feedback is provided.
This indicates that the effort requirement of the users were
comparable between HRI and HHI settings. However, with
the inclusion of haptic feedback, the effort requirements of
the users dropped in HHI. Even though there is no direct
evidence that humans deliberately use forces to realize
interpersonal communication during physical joint action,
this observation may imply that the motor responses of
the users are affected by the existence of haptic sensations
from their partners, which reduces the effort requirements
of the human. However, why this effect is only visible for
human-human interaction and not apparent in a human-
robot setting arises an interesting research question that
requires further exploration.

On the other hand, the behaviors of the robotic and
human assistants, as defined by the force contribution
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and the jerkiness of the assistance commands, differed
significantly. We observed that these variables were not
affected by the presence or absence of force feedback
for HRI, yet we noticed some changes under HHI across
feedback conditions. Interestingly, these differences did not
manifest themselves in subjective task load scores. This
is particularly appealing, as it may mean that from the
perspective of the user, robotic assistance can replace a
human assistant without introducing extra task load, or
negatively affecting task comfort. However, as mentioned
earlier, an investigation of mutual adaptation mechanism
under both human-robot and human-human settings shall
be conducted before reaching any conclusions.

In the experiment, the same human, who was experienced
with the wheelchair in both collocated and teleoperated
settings, acted as the assistant. She attempted to observe
the task and assist the user if his/her operation felt dan-
gerous (e.g. too fast or prone to collisions). Despite these
qualifications, the assistant’s consistency during the trials
cannot be guaranteed. We designed this experiment with
the assumption that discrepancies in human behavior would
not affect the tested hypotheses. In planning future studies,
interaction scenarios with different assistants displaying
different assistance behaviors will be devised.

This paper has presented observations on general tenden-
cies toward a robotic assistant in physical shared control.
However, personal differences can also be highly effective
in determining the human responses to the use of assistive
technologies. Morere et al. have presented a user study
with disabled children on the use of haptics for wheelchair
control [40]. Their findings indicate personal differences in
receiving the benefits offered by the haptic technology. In
line with this, in [48], we had discussed that any assis-
tive system needs to be trained to accommodate personal
characteristics and should exploit individual preferences of
humans it interacts with. Our findings indicated that haptic
feedback did not play a very important role in this shared
control setup, especially when working with a robot. As
a future direction, we will investigate personal differences
in how individuals respond to machine learned assistive
policies, and in particular, process haptic information when
used as a communication medium.
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[23] A. Hüntemann, E. Demeester, E. Vander Poorten, H. Van Brussel,
and J. De Schutter, “Probabilistic approach to recognize local navi-
gation plans by fusing past driving information with a personalized
user model,” in Robotics and Automation (ICRA), 2013 IEEE Inter-
national Conference on. IEEE, 2013, pp. 4376–4383.

[24] J. d. R. Millán, R. Rupp, G. R. Müller-Putz, R. Murray-Smith,
C. Giugliemma, M. Tangermann, C. Vidaurre, F. Cincotti, A. Kübler,
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