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ABSTRACT 1 

The current study investigated the role of an in-vehicle digital voice-assistant (VA) in 2 

conditionally automated vehicles, offering discourse relating specifically to contextual factors, 3 

such as the traffic situation and road environment. The study involved twenty-four participants, 4 

each taking two drives: with VA and without VA, in a driving simulator. Participants were 5 

required to takeover vehicle control following the issuance of a takeover request (TOR) near 6 

the end of each drive. A parametric duration model was adopted to find the key factors 7 

determining takeover time (TOT). Paired comparisons showed higher alertness and higher 8 

active workload (mean NASA-TLX rating) during automation when accompanied by the VA. 9 

Paired t-test comparison of gaze behavior prior to takeover showed significantly higher 10 

instances of checking traffic signs, roadside objects, and the roadway during the drive with 11 

VA, indicating higher situation awareness. The parametric model indicated that the VA 12 

increased the likelihood of making a timely takeover by 31%. There was also some evidence 13 

that demographic factors influenced the TOT of drivers. Male drivers likely to resume control 14 

1.72 times earlier than female drivers. The study findings highlight the benefits of adopting a 15 

futuristic in-car voice assistant to keep the drivers alert and aware about the recent traffic 16 

environment in partially AVs.   17 

Keywords 18 

Voice-user interfaces (VUI), conditional/partial automation, SAE Level 3, passive fatigue, 19 

driver takeover.  20 



INTRODUCTION 1 

The advances in vehicle automation allow the drivers to disengage from driving and become a 2 

passive monitor of the system. However, the shift in driver responsibility from an active 3 

operator to a passive observer in an automated vehicle (AV) leads to the loss of active task 4 

engagement, thereby compromising drivers’ alertness required to intervene at such critical 5 

moments (1–4). Such a decline in alertness, caused by ‘task-disengagement’ or ‘low workload’ 6 

conditions during automated driving, induces a passive fatigue state, resulting in loss of 7 

awareness of the current traffic situation(1, 5, 6).  8 

Passive fatigue is specifically a problem in partially autonomous vehicles (level 2 or level 3 9 

automation according to SAE International, (7)), in which the system will issue a takeover 10 

request (TOR) to the driver in situations that fall outside its capability. Ensuring a safe takeover 11 

of vehicle control is therefore one of the major challenges for highly automated driving. Hence, 12 

it is suggested that some form of system feedback is required during periods of automation, to 13 

maintain driver alertness with appropriate situation awareness, prior to taking over vehicle 14 

controls (8).   15 

Automation and alertness 16 

Automation in vehicles can lead to long periods of driver inactivity leading to loss of alertness. 17 

Some studies showed a significant increase in symptoms of fatigue after only 15-20 minutes 18 

of automated driving in an autonomous vehicle (AV) (2, 3, 8). A study by Neubauer et al. (2) 19 

found that 30 minutes of automated driving increased proneness to fatigue, indicated by the 20 

mean Driver Stress Inventory (DSI). Gonçalves et al. (10) noticed that after only 15 minutes 21 

of automated driving there was significant increase in Stanford Sleepiness Scale (SSS) rating 22 

indicating increased sleepiness among drivers, leading to poor driving performance. Further, 23 

Neubauer et al. (2) found significant correlations between the fatigue ratings and lower task 24 

engagement using the Dundee Stress State Questionnaire (DSSQ). Saxby et al. (6) observed 25 

that the automation led to lower workload ratings on NASA-TLX scale(11) indicating low-26 

workload. Wu et al. (8) reported a significant increase in eye blink duration and subjective 27 

sleepiness captured through Karolinska Sleepiness Scale (KSS) after 30-minutes of automated 28 

driving indicating fatiguing effects, irrespective of drivers’ age. Vogelpohl et al. (3) noticed 29 

that 20 minutes of automated driving led to same level of fatigue among drivers as experienced 30 

after 40-50 minutes of manual driving, where fatigue was indicated using KSS sleepiness rating 31 

and indicators such as yawning, blinking, eye-closure etc. Collectively, these studies suggest 32 

that a period of automated driving lasting 20 minutes or longer is sufficient to significantly 33 

lower the task engagement and cause a significant decline in driver alertness.  34 

Takeover time  35 

The need for human intervention in partially automated vehicles is conveyed through pre-36 

defined alerts, called as a takeover request (TOR). The takeover time (TOT) is the response 37 

time of drivers to the TOR. It includes both, the time it takes a driver to make an assessment of 38 

the traffic situation, i.e. regain their situation awareness (SA) (12), and demonstrate their 39 

readiness to drive by re-engaging with the driving controls (13, 14). Many studies have used 40 

the driver’s response time to a hazard scenario at TOR as takeover time (8, 13, 15–17). 41 



However, in the case of a potential collision event, the response is often reflexive, typified by 1 

sudden, emergency braking  (14, 17). Therefore, it would seem prudent to avoid a reflexive 2 

braking response to measure the absolute time to motor readiness when a TOR is issued, and 3 

therefore avoid a hazard scenario. This approach was taken by Merat et al. (18), who reported 4 

that an average time to respond to resume steering and brakes in response to TOR was between 5 

10 and 15 seconds, where the drivers responded at their ease in the absence of any hazard 6 

detection event at TOR.  7 

Gaze behavior and situtation awareness 8 

Passive fatigue due to mental underload situations can reduce the visual attention of drivers 9 

resulting in additional time required to regain self-alertness before building their SA in 10 

response to TOR (3, 17). Visual, or gaze behavior can be a useful method to explore the process 11 

of allocating attention (19). Factors such as the duration and frequency of glances spent 12 

checking the speedometer, the road ahead, and side and rear-view mirrors, which are all 13 

associated with building situation awareness(12, 13, 16). Furthermore, a combination of hands 14 

on steering, placing feet on the pedals and looking at road ahead are indicative of motor 15 

readiness or readiness to drive (13, 14, 17). Few previous studies report driver’s involvement 16 

in checking rear and side mirrors to gain situational awareness in response to a TOR (using a 17 

collision event at TOR)(14, 18, 20). Vogelpohl et al. (3) found that fatigue due to automation 18 

delayed drivers’ reponse (i.e. resuming manual control) to a TOR by 5 to 8 seconds. Moreover, 19 

the first glance to speedometer (in the dashboard) was reported at 14 to 15 seconds after the 20 

TOR. The time required for visual and cognitive processing of the situation  is therefore 21 

influenced by the driver’s state of alertness (17). This highlights the need to develop driver 22 

assistance systems to keep the drivers engaged with driving and the traffic environment to 23 

ensure a safe and timely takeover.  24 

Factors influencing takeover time 25 

There are several demographic factors influencing takeover time after highly automated driving 26 

(13, 17, 18, 21, 22). For example, Warshawsky-livne and Shinar (23) found that gender made 27 

no significant difference on perception time, although male drivers had slower brake-28 

movement time compared to females in response to brake lights in a leading vehicle. However, 29 

Mehmood and Easa (24) found that female drivers had longer reaction time than male drivers. 30 

Gomez et al. (25) found that women tended to exhibit more exploratory visual behavior, 31 

including longer fixations and scan path lengths during a task, and this could potentially 32 

lengthen takeover time. Nevertheless, Zeeb et al. (17) studied the process of takeover using 33 

driver’s visual behavior and found that age, gender, mileage and experience with driver 34 

assistance systems did not influence visual behavior.  35 

Most of the studies have used analysis of variance (ANOVA) technique to study the effect of 36 

these covariates on TOT (8, 13, 15–17). Zeeb et al. (17) adopted an integrated model approach 37 

to emphasize that primarily cognitive processes such as gaze behaviour determine the TOT. 38 

However, the study findings were limited to an emergency scenario post TOR without 39 

accounting for other factors e.g. gender, mileage etc. Therefore, it would be beneficial to model 40 

the takeover time, to quantify the contribution of such factors (age, gender, gaze behavior etc.) 41 

on the time to motor readiness at TOR. Existing studies in transportation research have widely 42 



used a parametric duration modelling approach to model the response time of drivers 1 

considering several covariates (26). As takeover time is a form of response time to the prompt 2 

of takeover request, this modelling approach can be extended to study the influence of factors 3 

such as alertness, gaze behavior etc. on takeover time.  4 

Conversation to counter passive fatigue 5 

Various studies have claimed the alerting effects of engaging in an active conversation for the 6 

drivers while driving (27, 28). These benefits of conversation can be extended to mitigate the 7 

effects of passive fatigue during automated driving, and specifically the impact on the process 8 

of gaining motor readiness (29), (30). A few studies have proposed the use of a digital voice 9 

assistant(VA) conversing with the driver throughout the journey (31, 32). These studies found 10 

that short intermittent conversations with a VA improved driver alertness and avoided potential 11 

driving performance decrements due to low alertness (27). Large et al. (31) showed that general 12 

conversations about calendar reminders, news, radio or music etc. with the VA were less 13 

cognitively demanding than a cell phone conversation but were equally effective in maintaining 14 

the alertness of drivers during fatigued manual driving conditions. Thus, literature suggests that 15 

the content of conversation and frequency of exchanges is likely to play a significant role in 16 

avoiding fatigue without being distracting(29), (30). Drews, Pasupathi and Strayer, (33) found 17 

that a naturalistic conversation between the driver and their passengers about the surrounding 18 

traffic mitigated the distracting effect of conversation. In such a case, a speech-based interface 19 

or VA, could play the role of a driving coach or assistant, providing feedback to the driver 20 

about recent or upcoming traffic situations during automated driving. Such information may 21 

help the driver to effectively regain situation awareness during a takeover(12, 18, 33). 22 

However, providing traffic narrative at the point of takeover is likely to distract the driver and 23 

could influence their driving performance. An alternative would be to provide additional traffic 24 

information intermittently throughout a long journey. This is likely to improve driver alertness 25 

and awareness may additionally reduce the takeover time. 26 

Study motivation and hypothesis 27 

This study aimed to examine how a digital voice assistant can help in mitigating passive fatigue 28 

induced by automation and in improving situation awareness at takeover through traffic-related 29 

information. Therefore, it is hypothesized that intermittent, traffic-related conversation with a 30 

voice assistant (VA) will reduce delays in takeover time caused by passive fatigue and 31 

disengagement from driving during highly automated driving. Secondly, we hypothesize that 32 

the traffic status updates provided by VA prior to the TOR, will help redirect drivers’ attention 33 

to the road, traffic or traffic signages, as per the messages, which can be confirmed through 34 

their gaze behavior. Thirdly, previous studies show the possible influence of various factors on 35 

TOT (age, experience, gender, involvement in secondary tasks, etc.) in isolation. However, 36 

they act as covariates to influence the takeover process. Further, the effectiveness of a VA 37 

proposed here, also depends on the ease and interest of drivers to use such technology. 38 

Therefore, this study focuses on modelling the TOT to determine how the presence of VA, 39 

(either directly or indirectly by influencing the gaze behavior or other factors gender or 40 

accustomed to use of voice assistants), can be effective in assisting takeover or resuming 41 

manual control after automated driving.  42 



METHOD 1 

The study was conducted using a medium fidelity, fixed-base driving simulator at the 2 

University of Nottingham Human Factors laboratory (Figure 1a). This driving simulator 3 

comprises an Audi TT car located within 270 degrees field of view. Three inobtrusive cameras 4 

were installed at different positions inside the car to capture drivers’ hand and feet movements 5 

in response to TOR, and any physical signs of sleepiness during the experiments (yawning, 6 

extended blinks etc.). This simulator has been used in various previous studies (27, 31), and is 7 

capable of providing an experience of driving level 3 automated vehicle. VA mainly conveyed 8 

driving-related information to the drivers, and thus, aimed to enhance the process of (re)gaining 9 

situation awareness, which was subsequently assessed using gaze behavior i.e. checking 10 

mirrors, road in front or traffic signs/signals etc. – factors that reflect the takeover time(TOT) 11 

among drivers (14, 17). The TOT was modelled using a parametric duration approach 12 

illustrating the influence of VA and related situation awareness (as covariates) on TOT.  13 

Participants 14 

Participants were invited using flyers displayed around the University campus. A pre-driving 15 

questionnaire was used to identify and exclude participants reporting any sleep-related 16 

disorders and/or an Epworth Sleepiness Score (ESS) >16 (34). In addition, participants were 17 

specifically instructed to refrain from consuming caffeine, mint or alcohol for a few hours 18 

before the study and to take adequate sleep prior to the day of study. Thirty-one eligible 19 

participants volunteered for the study. Three participants did not turn up for the experiment and 20 

four dropped out partway through due to simulator sickness. The final data is reported from the 21 

remaining twenty-four participants (Table 1). Each participant received due compensation for 22 

their time. The study protocol was approved by the Faculty of Engineering Research Ethics 23 

Committee, University of Nottingham, UK. 24 

Experimental Set-up 25 

The study involved a within-subject design with two driving sessions – one with and one 26 

without the voice assistant. A bespoke scenario was created using STISIM Drive 3 software. 27 

The route represented a transition from an initial two miles of two-lane urban road to a standard 28 

UK dual carriageway (Figure 1b) and back to the same urban scene. The posted speed limit 29 

varied from between 30-40mph in the urban scene to 50-70mph in the dual carriageway, in line 30 

with normal UK road conventions. The same driving scenario was used in both the sessions 31 

with minor changes in environment such as buildings, types of cars etc. The roadside 32 

environment was intentionally sparse, with limited additional traffic, to minimise auditory and 33 

visual stimuli and increase monotony(3). Each drive lasted approximately 30minutes in the 34 

driving simulator with approximately 25 minutes of automated drive – considered to be 35 

sufficient to induce passive fatigue (2, 3, 8, 10).  36 



a.  

b.  
 1 

Figure 1 Experimental set-up: a. Driving Simulator and b. design view of dual carriageway 2 

All participants drove in both the driving conditions (with and without VA) in a 3 

counterbalanced order to avoid any learning effects. A general layout of the experiment design 4 

and protocol is illustrated in Figure 2. 5 

 6 

Figure 2 General layout of the experiment involving two drives on the driving simulator. 7 

Drive with Voice Assistant (VA) 8 

In the drive with VA (employing vocal interactions), VA introduced its capabilities such as 9 

providing surrounding traffic feedback, route navigation, event reminders or operating music 10 

or radio to the driver prior to the start of the drive. Drivers could either respond to or initiate 11 

Observer’s set-up 

Driving simulator 



conversation with VA using natural, conversational language. To achieve this, a 1 

comprehensive set of pre-recorded spoken messages were embedded in the STISIM scenario. 2 

These were played by the experimenter as per evolving scenario conditions, for example, 3 

changing speed limits, gap from leading vehicle, suggestions for rest/ refreshment spots, 4 

expected traffic congestion etc. The first message was played after 5-minutes from the start of 5 

the drive, based on the expected onset of fatigue symptoms after 5 to 7 minutes of automation 6 

(8). Each participant received the same opening gambits, however, the follow up statements 7 

differed slightly based on individual’s response. For example, 8 

VA: “There is a pedestrian crosswalk ahead. Please be engaged in the drive or would you like 9 

to slow down?”  10 

Driver: “yes”,  11 

VA: “Reducing speed. You are now driving at ‘x’ miles per hour.”,  12 

However, this part of conversation will end if the driver responds “no”.  13 

In situations where an appropriate reply was not available from the pre-recorded messages, VA 14 

responded with error messages such as “sorry! no network connectivity at the moment to 15 

perform this task”, “sorry! This function is not available currently” (although in practice, these 16 

were rarely used). VA initiated a new conversational exchange or topic at approximately every 17 

3 minutes, and these would last for at least 30-60 seconds (29). There was no conversation 18 

initiated during 60 seconds prior to the TOR, although VA had already informed drivers about 19 

the upcoming change in the posted speed-limit and the approaching pedestrian crosswalk. 20 

Takeover event 21 

Prior to the test drives, participants undertook a practice drive involving multiple instances of 22 

takeovers, so that they become familiar with switching controls from ‘manual’ to ‘automation’, 23 

and vice-versa. The instruction to transfer control was intimated with a voice message followed 24 

by three consecutive beeps indicating the precise moment of the transfer of control, thereby 25 

avoiding any visual distraction. During the test drives,  participants were pre-informed that they 26 

may be required to resume manual control at a certain point, but otherwise, should relax (35). 27 

After completing 1-minute into the drive, automation was engaged at a fixed point at 0.75 miles 28 

(1.2km) in each test scenario. After approximately 25 minutes into the drive or at 21.6 miles 29 

(35 km) – participants received a takeover request (TOR). To emphasize the need of a timely 30 

response to the prompted TOR without imposing a critical hazard, a construction zone was 31 

created on the roadside at about 61m (200ft) from the onset of TOR with a gravel pile spilling 32 

on the roadside (Figure 3). In addition, a red-light traffic signal with a pedestrian cross-walk 33 

was presented at 152 m (approximately 500ft) from the point of TOR, and drivers were 34 

naturally expected to apply brakes in response to the signal. During the drive with VA, drivers 35 

received a notification few minutes prior to TOR, that they were approaching a pedestrian 36 

cross-walk. 37 



 1 

Figure 3 Scenario at takeover request (design view in STISIM at 100ft or 30.5m after onset of 2 
TOR)  3 

Measures 4 

Visual characteristics 5 

SMI ‘natural gaze’ eye-tracking glasses were used to collect visual behavioral data at a 6 

sampling rate of 30 Hz. Pupil diameter, eye blink frequency and eye-blink durations were 7 

collected as indicators of fatigue during automation in each drive (10, 12, 13, 18, 27, 36, 37). 8 

In order to determine drivers’ awareness of the road environment (i.e. their ‘situation 9 

awareness’), immediately prior to the TOR, glance duration and frequency were calculated for 10 

defined areas of interest (AOIs) using semantic gaze mapping (with BeGaze 3.7 software). The 11 

following AOIs were selected: external mirrors (side-view mirrors), rear mirror, road ahead of 12 

the driver (windshield), roadside objects (obstacles), speedometer, traffic signs and signal in 13 

line with similar studies (12, 13, 18, 36). Visual behavior was analysed during the 60 seconds 14 

prior to the red-light stop signal, which appeared approximately 195m (640ft) following the 15 

onset of TOR voice message (17).  16 

Takeover time(TOT)  17 

The TOT or response time to takeover request (TOR) was calculated as the time from the start 18 

of the stimulus (i.e. end of TOR voice message and start of beeps) to the time at which drivers 19 

acquired motor readiness i.e. hands on steering, feet on pedals and looking ahead (or eyes on 20 

the road). The time to resume steering and pedals were determined using frame-by-frame 21 

analysis of videos captured during the drive, whereas the time to resume glances on road was 22 

noted from the eye tracking. The maximum of the three times was noted as the TOT.  23 

Subjective sleepiness and workload ratings 24 

In addition to the visual indicators of fatigue, drivers rated their level of alertness using the 25 

Karolinska Sleepiness Scale (KSS) (ranging from ‘1-very alert’ to ‘9-very sleepy’) and 26 

cognitive workload using NASA-TLX workload index (increasing scale of 1 to 21), (2, 11, 27, 27 

28). The subjective ratings were collected on three occasions during each drive: firstly, prior 28 

to each drive, secondly, towards the end of automated drive (prior to TOR) and finally, after 29 

resuming manual drive. To avoid any interference during the drive, the latter two ratings were 30 

Construction 

zone 

Signage 



collected at the end of each drive. Also, the experimenter manually noted the relevant 1 

symptoms of sleepiness e.g. frequency of yawning and incidents of ‘nodding off’, when 2 

automation was engaged. 3 

Post-drive Questionnaire 4 

Finally, a questionnaire was used to collect data such as driver demographics, exposure to 5 

various in-car driver assistance systems (DAS) and voice-assistants, such as Google, Siri, 6 

Alexa etc. At the end of experiment, drivers were also asked to provide their subjective 7 

feedback on usefulness of VA. 8 

ANALYSIS AND RESULTS 9 

Dataset 10 

The participant characteristics are summarized in Table 1. Most of the drivers already used 11 

voice-based assistants for either route navigation or as a music player (Figure 5), but did not 12 

use these to stimulate any conversations, for example, voice-based web search etc. In this study, 13 

individual responses to each suggested use (as listed in Figure 5) of a voice assistant (rated on 14 

a 1 to 5 Likert scale) were summed. This provided a single covariate indicating the frequency 15 

of using VAs rated on a linear scale varying from 1-20 (mean in Table 1). 16 

 17 

Figure 4 Frequency of using Voice Assistants such as Google, Alexa, Siri etc in different ways.  18 

 19 

Table 1 also provides the paired t-test comparisons of subjective alertness, workload and 20 

response time to TOR in the two drives.  21 

0 10 20 30 40 50 60 70 80 90 100

Assistance while driving ( voice navigation, traffic

updates etc.)

As a Voice based entertainment player ( to play

music, radio, news etc.)

As a companion to initiate conversation when you

are bored ( e.g weather, news, general speech based

online search etc.)

Digital calender organizer (to set reminders etc.)

Proportion of participants

never = 1 occasionally = 2 sometimes = 3 often = 4 always = 5



TABLE 1 Preliminary statistics of subjective data through questionnaires and visual indicators 1 
of sleep/fatigue 2 

Categorical Variables (N=24) Categories Frequency Mean  SD (±) 

Gender 
Male = 0 14   

Female = 1 10   

Likeliness to sleep in an automated 

vehicle if it is allowed 

very likely =4 6 

2.63 1.498 

somewhat likely =3 9 

neither likely nor unlikely = 2 2 

somewhat unlikely = 1 2 

very unlikely = 0 (reference) 5 

Continuous Variables (N=24) Min Max Mean SD (±) 

Age 22 59 30.1 8.4 

Annual mileage 150 15000 4315.1 4114.1 

No. of years of holding a valid driving licence 2 33 10.5 6.9 

Average duration of sleep/day 5.00 9.00 7.2 0.9 

Frequency of using VAs while in car (max.20) 4 14 6.8 3.2 

Frequency of experiencing sleepiness symptoms while driving 

(max.40) 
9 22 14.7 3.6 

Subjective Rating (N=24)  Min Max Mean SD (±) t(df) 

NASA TLX workload scale 

during automated drive 

without VA 6 72 35.5 13.8 -2.45(23)* 

with VA 8 64 41.0 12.0  

Visual indicators of sleepiness/fatigue (N=23)      

Average eye blink duration 

during automation (ms) 

without VA 233.5 700.0 388.2 120.8 -- 

with VA 217.6 700.0 365.3 103.4  

Average pupil diameter in mm 

during automation 

without VA 1.7 5.4 3.6 0.8 -2.26(21)* 

with VA 2.2 5.1 3.8 0.7  

Average eye blink frequency 

during automation (blink rate) 

without VA 0.0 1.1 0.4 0.2 -- 

with VA 0.0 1.2 0.5 0.2  

Response time to TOR (paired t-test comparison)   Mean SD (±) t(df) 

Time to resume steering 
without VA   3.2 1.57 2.01(22)** 

with VA   2.7 1.22  

Time to resume pedals 
without VA   2.1 0.88 -1.95(21)** 

with VA   2.8 1.82  

Time of first glance at road 

ahead 

without VA   2.9 1.46 -- 

with VA   3.0 1.70   

Note: t(df) indicate the pairwise t-test comparison between two drives at significance level ‘*’ (p<0.05), 3 

** (p=0.05), ‘--’ insignificant value (p>0.05) 4 

Alertness measures 5 

The mean KSS and NASA-TLX workload ratings were compared using paired-samples t-tests 6 

(Figure 6 and Table 1). The t-tests showed a significant increase in mean KSS scores during 7 

automation (prior to TOR) from pre-drive in both the drives (Figure 6a). This indicates the 8 

fatiguing effects of automation, which sustain post-takeover as indicated by the KSS ratings, 9 

specifically in the absence of VA. However, the mean KSS rating during automation was 10 

significantly lower in the drive with VA (t(23) = 3.391, p<0.005) indicating higher alertness in 11 



presence of VA. Further, the NASA-TLX workload ratings were significantly higher during 1 

automation when the drivers were accompanied by VA suggesting higher alertness – during 2 

the drive with the VA, confirming that automation for long periods lowers cognitive workload 3 

and makes the drivers vulnerable to symptoms of passive fatigue. The paired comparisons of 4 

visual indicators of fatigue during automation i.e. average pupil diameter was significantly 5 

larger during the drive with VA, suggesting higher alertness with VA compared to the drive 6 

without VA.  7 

 

a. Higher mean KSS scores during automation indicating loss of alertness (*indicating 

significant values i.e. p<0.005) 

  

b. Increase in mean NASA workload ratings during automation in the drive with VA 

Figure 5 Low alertness and underload conditions observed during automation without VA  8 

Situation awareness near TOR 9 

The AOI data are compared in Figure 7 for the two drives. The percent time spent for each AOI 10 

was calculated from the total glance duration of each participant. The time spent and glance 11 

frequency data for each AOI is then compared using a non-parametric Wilcoxon signed rank 12 

test across the two drives. Only four pairs showed significant differences as indicated in Figure 13 

7. Participants spent significantly more time glancing at the rear-view mirrors in the drive 14 

without VA (Mean= 3.55%, SD =±5.74%) compared to the drive with VA (Mean = 0.73%, SD 15 

= 0.85%). Comparison of glance frequency showed that drivers directed significantly more 16 

glances to the road in front, roadside objects (construction zone or parked vehicles on roadside) 17 
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and traffic signage when provided in the drive with VA, compared to the drive without VA, 1 

suggesting that they were more alert and engaged with the driving task when accompanied by 2 

the VA. 3 

 

 

Figure 6 a. Proportion of time spent calculated from total glance duration and b. Glance 4 
frequency both averaged over all participants in each drive. The AOI statistics are compared 5 

using paired Wilcoxon signed rank test across two drives at takeover (* the pairs with 6 
significant differences in the two drives are indicated with their p-values) 7 

Modelling takeover time (TOT) 8 

The comparison of the alertness indicators and AOI statistics provide preliminary evidence of 9 

engaging effects of VA, which is likely to influence the takeover time. Therefore, a parametric 10 

duration model, or survival analysis approach was adopted to quantify the contribution of these 11 

factors on takeover time (26, 38).  12 
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Parametric duration model 1 

Parametric duration modelling is a probabilistic approach to analyse the conditional probability 2 

of the elapsed time until the event of interest, provided the event continues to time, t (38). In 3 

this study, the event is defined as “gaining motor readiness as shown by hands-on-wheel, feet 4 

on pedals and eyes on road” and the length of time to gain complete motor readiness in response 5 

to TOR is the duration variable (T). The probability of resuming manual control after the 6 

time ‘t’ (i.e. after the construction zone appeared) is called the survivor function, S(t). The 7 

hazard function, h(t) which is also called the instantaneous failure rate, gives the conditional 8 

probability that the event will occur between the time t and (t+dt) provided the event has 9 

continued for ‘t’ or more duration (38). In this study, accelerated failure time (AFT) model was 10 

used. An AFT model allows the covariates to rescale (accelerate) time directly in the baseline 11 

survivor function (38). Here, as the probability of completing the takeover is likely to increase 12 

over time, it indicates a monotone hazard rate that increases exponentially with time. Thus, 13 

Weibull distribution is suitable to model the takeover time data, with scale-parameter (P > 0) 14 

and location-parameter (λ > 0) is given by (38): 15 

𝑓(t) = h(t)EXP[−(λt)p] ; 𝑖𝑓 𝑃 > 1 𝑤ℎ𝑒𝑛 ℎ𝑎𝑧𝑎𝑟𝑑 𝑖𝑠 𝑚𝑜𝑛𝑜𝑡𝑜𝑛𝑜𝑢𝑠𝑙𝑦 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔            (1) 16 

In the Weibull duration model, the hazard function and survival function are expressed as: 17 

h(𝒕) = (λP) (λt)𝑃−1          (2) 18 

S(𝒕) = 𝐸𝑋𝑃 (−λt𝑃)                     (3) 19 

Here, the repeated observations were collected across the two drives with the same participants, 20 

which can cause intra-group heterogeneities. To account for such heterogeneities, Weibull AFT 21 

model with clustered heterogeneity and gamma frailty were developed and compared using 22 

Stata SE-16 (at 95% significance level). Among all comparable models with the covariates 23 

(variables related to glance behavior, driver demographics, drive condition, workload and 24 

frequency of using voice assistants), the final model with clustered heterogeneity, with 25 

minimum Akaike’s information criteria (AIC) and Bayesian information criteria (BIC) values 26 

(38) is reported in Table 2. The scale parameter p = 4.53 (>1) confirms that the hazard rate 27 

increased with time. Table 2 summarizes the estimated exponential of coefficients (hazard 28 

ratio) which directly represents the relative change in survival time duration with unit 29 

increment in the covariates. The model results show that participants were likely to gain motor 30 

readiness 31% quicker in the drive with VA compared to the other drive. There was a slight 31 

influence of cognitive workload, which was relatively higher during drive with VA. Also, the 32 

model results show that male drivers are likely to resume control 1.72 times earlier than female 33 

drivers. In addition, individuals who indicated that they frequently used VAs are likely to take 34 

3% less time to resume control. Higher annual mileage and checking rear mirror did not 35 

influence the takeover time significantly.  36 

  37 



TABLE 2 Weibull AFT (with gamma frailty) model estimates with the time to gain motor 1 
readiness following TOR as dependent variable 2 

Variable Exp (B) 
Coefficient 

(B) 

Robust 

Std. Error 
z p-value 

1. Test condition      

With VA (compared to Without VA) 0.69 -0.374 0.156 -2.4 <0.05 

2. Gender (female compared to male) 1.72 0.54 0.193 2.8 <0.001 

3. Mileage 1.00 0.00 0.00 -1.69 <0.1 

4. Using VAs 0.97 -0.033 0.017 -1.98 0.05 

5. WL_TOR 0.99 -0.01 0.004 -2.43 <0.05 

6. Likeliness of sleeping in AV 1.13 0.12 0.037 3.27 0.001 

Glance frequency       

7. Road ahead 0.97 -0.032 0.022 -1.46 <0.1 

8. Roadside 1.11 0.106 0.022 4.91 <0.001 

9. Exterior mirrors 0.91 -0.099 0.039 -2.5 <0.05 

%glance duration (or %time spent)     

10. Rear mirror 0.97 -0.028 0.029 -0.96 ns 

11. Traffic signs 0.91 -0.095 0.019 -5.09 <0.001 

Intercept  2.06 0.42 4.87 <0.001 

Log psuedolikelihood   -4.61 - p<0.001   

Scale parameter-p   4.53 1.35     

    N df AIC BIC 

Model estimates (with clustered heterogeneity) 24 13 35.21 50.52 

Model estimates (with gamma frailty) 24 14 37.21 53.71 

Note: ns: not-significant; VA: Voice assistant (Vid); WL_TOR: workload rating during 3 

automation (prior to takeover), AV: automated vehicle 4 

The takeover probabilities were calculated for the two driving conditions (with and without 5 

VA) at different TOTs in Figure 8(a, b and c). All other variables were either kept at their 6 

reference category or corresponding means were substituted using Table 1, Figure 7. 7 

 8 

Figure 8a Survival curves for the two test conditions i.e. probability of not responding early 9 
to the TOR early 10 



 1 

Figure 8b Effect of gender on probability of delayed response to takeover request 2 

 3 

Figure 8c Reduction in probability of delayed takeover with higher frequency of using different 4 
types of voice assistants 5 

DISCUSSION 6 

VA and alertness 7 

Automation relieves the driver from the task of assessing the traffic scenario and taking 8 

required physical actions for driving, which results in low-workload conditions(1, 5, 6). 9 

Therefore, as hypothesized, the intermittent conversational exchanges with VA during 10 

automation led to a significant increase in driver workload as indicated by NASA-TLX ratings 11 

(Figure 6b). The lower KSS ratings and larger pupil dia in the drive with VA, indicated 12 

efficiency of VA in maintaining driver alertness during automation (27, 39, 40). Also, as noted 13 

by the experimenter, none of the drivers were observed sleeping during the drive with VA, 14 

whereas six drivers had short episodes of “nodding off” during automation in the drive without 15 

VA, and were notably startled by the takeover request. It is concluded that the regular 16 

conversational interludes made by the VA interrupted the monotony of the automated drive. In 17 

combination with this, providing traffic–related conversations, such as informing drivers of the 18 

speed limit, upcoming intersections etc. kept the drivers more engaged with the driving 19 

environment.  20 



Traffic feedback and situation awareness 1 

The paired comparison of AOI statistics between the two drives showed the differences in 2 

allocation of visual attention in response to the traffic feedback provided by VA near the TOR, 3 

supporting our second hypothesis. The higher glances associated with checking exterior 4 

mirrors, concentrating on the road ahead and checking traffic signs during the drive with VA 5 

(Figure 7), relate to the verbal message delivered by VA (about the new speed limit and an 6 

approaching pedestrian crossing), a few minutes prior to TOR which shows that verbal cues 7 

can direct drivers’ visual attention in the driving scene. Secondly, information about the 8 

pedestrians might have led to increased mirror-checks and additional focus made by drivers on 9 

the road ahead to prepare themselves for any remedial action that might be required. Increased 10 

mirror checks are generally associated with the cognitive processes to gain situation awareness 11 

at takeover (14, 17, 21). Drivers tended to shift their gaze to the speedometer, immediately 12 

after the posting of a new speed limit, resulting in no difference in glances at the speedometer 13 

between both driving conditions. However, it may also suggest a lack of trust and acceptance 14 

by drivers (for automation and the digital assistant), although this may change over time, as 15 

drivers’ experience with such systems will increase. Another interesting finding was the 16 

increase in glances towards the rear-view mirror in the absence of VA. During the one-minute 17 

period of AOI analysis, there was no vehicle or event to reserve drivers’ attention in the rear-18 

view mirror which is otherwise a positive step in gaining SA (17, 36). As mentioned by a few 19 

participants during a post-drive discussion, they were curiously observing the simulated objects 20 

in the scenario, indicating a potential distraction. Furthermore, without any vocal alerts to 21 

redirect their gaze at this time, drivers may have remained distracted by the virtual environment 22 

in rear-view mirror. 23 

VA and takeover 24 

For a timely takeover, the drivers were expected to check the surrounding environment prior 25 

to the construction zone to gain situation awareness (SA) and motor readiness by resuming 26 

driving controls, to avoid the risk of the car heading into the construction zone. The survival 27 

graph in Figure 8a shows the probability of a longer TOT is relatively higher during the drive 28 

without VA, compared to the drive with VA. During the drive with VA, drivers were more 29 

alert, to notice the construction zone following the TOR. Moreover, VA pre-informed them 30 

about an intersection signal ahead and the new speed limit, to engage them with driving 31 

environment, even in absence of any TOR. As shown by comparative AOI analysis (Figure 7), 32 

this information appears to have influenced drivers’ gaze behavior, encouraging them to check 33 

for traffic signs, their speed etc., prior to TOR, thereby improving their ability to regain SA 34 

and reducing the TOT by 3% to 9% (see ‘glance frequency’ in Table 2). Zeeb et al. (17) also 35 

claimed that gaze behavior is a significant indicator of cognitive process at TOR, influencing 36 

the TOT. However, during the drive without VA, drivers were not only fatigued and sleepy, 37 

but had been provided with no such traffic information. Therefore, it is suspected that the 38 

process of becoming alert and building SA would have been responsible for delaying the 39 

takeover process during this drive. 40 

According to the model results, female drivers are likely to take longer to takeover (i.e. to 41 

demonstrate motor readiness) than male drivers (Figure 8b). Such a finding is interesting and 42 



could reflect  a more cautious approach amongst female drivers, who may spend more time 1 

exploring and assessing the driving scene – similar results were reported by (24, 25). Among 2 

the various non-driving activities that drivers could perform during automation, sleeping might 3 

also be a voluntary action rather than just induced by the automation (35). Therefore, in this 4 

study, the drivers who expressed that they would be likely to sleep in an automated vehicle 5 

could suffer an increase in the probability of delayed takeover by 13% (Table 2). Nevertheless, 6 

willingness to sleep also suggests high trust and acceptance in the technology.  7 

It was apparent that drivers who frequently used other voice-based digital assistants felt more 8 

comfortable using VA, and this may have encouraged them to engage more in conversations 9 

(which might also be in terms of attentive listening). The drivers expressed their intention to 10 

use similar voice-based driver assistant systems in the future, which is likely to have a positive 11 

impact on driver alertness and SA (17). A hypothetical increase in rating from 0 (drivers who 12 

have never used any voice assistant) to 20 (very often or always using different types of voice 13 

assistants) as shown in Figure 4, suggests an increase in adoption of such technology. The 14 

survival curves plotted in Figure 8c also suggest that higher use of these systems (indicated by 15 

increase in rating) could potentially increase their effectiveness in assisting the drivers during 16 

takeover after automation.  17 

CONCLUSION 18 

Extended periods of highly automated driving can disengage drivers from the driving task and 19 

reduce their alertness. Therefore, the AOI analysis and model findings show clear advantages 20 

of conversing with VA: 21 

i. to counter the effects of passive fatigue.  22 

ii. traffic-related information by VA can direct driver’s cognitive process through 23 

relocating visual attention to traffic signs, mirrors or road-ahead. 24 

iii.  VA could effectively assist the drivers in a timely takeover.  25 

Further, the parametric model of takeover time highlighted the gender-based differences in 26 

takeover time of drivers. The younger drivers are expected to be more tech-savvy and 27 

therefore more likely to use voice-based technologies than older drivers – who may 28 

subsequently not receive the benefits highlighted in the study. However, the current study 29 

did not explore the effect of factors such as driver age, exposure to various in-car driver 30 

assistance systems due to limited sample size. The findings highlight the need of VA 31 

systems to maintain appropriate alertness and SA, especially for the drivers who may choose 32 

to sleep in highly automated vehicles. However, the positive effects of conversing with VA 33 

are likely to be transient, and therefore more research is required to investigate the lasting 34 

effects of such interventions.  35 
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