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Abstract

A ray dynamics describing wave transport on curved and smooth thin
shells can be obtained from the underlying wave equations via the Eikonal
approximation. We analyse mid-frequency effects near the ring frequency
for curved plates consisting of a cylindrical region smoothly connected to
two flat plates. Using classical shell theory, we treat a corresponding ray-
tracing limit derived in the short wavelength regime for bending, shear
and pressure incident waves. A treatment based on real rays gives either
total reflection or total transmission; the solution of the full wave equations
shows in contrast a smooth transition and exhibits resonant states localized
in and around the region of maximal curvature. We show here for the first
time, that both the smooth transition from total reflection to total transmis-
sion and the occurrence of resonant states can be described in a ray tracing
approximation by extending the treatment to complex rays. In this sense,
wave transmission across bends is a tunnelling phenomenon similar to the
tunnelling effects known in optics and quantum mechanics. Based on sim-
plified graph models, we can make qualitative predictions for resonance
positions in parameter and frequency spaces. We are thus able to approx-
imate the scattering matrix for waves incident on the bend accounting for
tunnelling mediated by resonant states and uniformly treating the transi-
tion between the limits of totally reflected and totally transmitted waves.

Keywords: Elastic waves in shells, wave asymptotics, ray-tracing, resonant
tunnelling, reflection and transmission coefficients.

1. Introduction

Modelling the vibroacoustic response of mechanical systems is a chal-
lenging task, especially for large complex mechanical built-up structures in
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the mid-to-high frequency regime. At low-frequencies, with wavelengths
comparable to the size of the structure, standard modelling tools such as5

finite and boundary element methods are used routinely; these methods
are, however, not scalable to ever higher frequencies due to the prohibitive
increase in model size. High-frequency methods such as ray-tracing may
be employed in this limit and are used extensively in three-dimensional
wave problems such as in acoustics, electromagnetism and optics. Only re-10

cently, attempts to implement ray-tracing ideas for structure-borne sound
have been considered. In particular, ray-tracing on complex built-up struc-
tures has been implemented using the so-called Dynamical Energy Analy-
sis (DEA) [1] describing wave transport in the high-frequency limit. This
method has been formulated on meshes [2] and is based on local ray-tracing15

approximations with ray trajectories moving along straight lines in each
mesh segment. DEA can thus estimate the flow of vibrational energy in
shell structures of arbitrary complexity such as full body-in-blue vehicles
[3]. The implementation of curvature corrections in a DEA treatment based
on meshed shell structures has been discussed in [4]. Here, the local ray dy-20

namics are approximated using piecewise straight line segments including
back reflections which can lead to distortions for moderately curved shells
(with radius of curvature comparable to the wavelength). Improvements
on this rather ad-hoc approach have been reported in [5, 6]. We will revisit
and extend these results in this paper.25

Starting from the general equations for thin shells of arbitrary curva-
ture, a well-known approach to describe ray dynamics for bending and
in-plane waves is due to Pierce [7], obtained by deriving a local disper-
sion relation for different wave modes in the short wavelength regime. In
the special case of shells being homogeneous and thin, somewhat simpler30

dispersion relations have been derived by Norris and Rebinsky [8] which
will form the basis of our work. Asymptotic techniques describing the
wave dynamics in thin walled shells have also been discussed in a book by
Mikhasev and Tovstik [9] with particular attention given to the modified
Wentzel-Kramers-Brillouin (WKB) method. Different asymptotic regimes35

for the dynamics of curved shells have been considered by Kaplunov et al.
[10] as well as Babich and Kiselev [11].

Following [8], we deduce a ray dynamics by interpreting the dispersion
curves as the contour lines of a Hamilton function from which Hamilton’s
equations of motion for the rays are obtained. These equations depend –40

along with material parameters and the thickness – on the local radii of
curvature. The ray solutions are in general not straight lines and may en-
counter turning points or caustics: that is, the curvature profile of the shell
may act as a barrier. In a process that is analogous to tunnelling of a quan-
tum particle through a potential energy barrier [12], partial reflection from45

or transmission through such curvature barriers may arise and is similarly
treated here using complex solutions of the ray equations: calculation of
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Figure 1: A quarter cylindrical ridge connected to flat plates on either side equivalent to the
structure considered in [6].

such curvature tunnelling is the focus of the paper.
For the sake of simplicity and following [5, 6], we will study the ray and

wave dynamics for a particular example – two plates joined by curved sec-50

tion with a specified curvature profile along the circumferential direction
as shown in Fig. 1. This assumed geometry simplifies the analysis by mak-
ing the problem have one effective degree of freedom. We also concentrate
on incident waves that are of bending type: in the parameter regimes we
consider, these do not couple significantly to in-plane modes and, having55

the shorter wavelength, are more appropriately treated by ray techniques.
In a pure ray-tracing picture, incident rays approaching the curved region
of the plate are either totally reflected or totally transmitted, depending on
the angle of incidence. However, the solutions of the full wave equations
show a smooth, wavelength-dependent transition between total reflection60

or transmission, interspersed with resonance states. This was also observed
in [6], but not treated ray-dynamically.

In the context of quantum mechanics, such tunnelling effects are well
established [12] and can be understood using a range of approximation
techniques, based on extending ray dynamics to complex coordinates. The65

aim of this paper is to extend such complex ray theory to the scattering
of bending waves in a curved shell. For problems with several degrees
of freedom, the use of complex solutions of ray dynamics to treat tun-
nelling phenomena remains a challenging problem that may require exten-
sion of chaotic dynamics to the complex domain (see [13, 14], for example)70

or show behaviour associated with coupling between complex orbits and
and chaotic [15] or resonant structures [16] typical of nonintegrable Hamil-
tonian systems (and see [17, 18] for other aspects of multidimensional tun-
nelling). In this paper we treat problems that are globally integrable and
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therefore the topology of complex solutions can be explicitly described, al-75

lowing simpler analytical approximation [19] of the tunnelling features ob-
served. However it should be noted that for more general shell geometries
all the complexity of generic multidimensional tunnelling problems [17, 18]
can arise.

The paper is structured as follows. In Sec. 2 we briefly introduce the80

dispersion curves used to characterise ray dynamics on a cylindrical shell,
describe the curvature profiles to be used in numerical illustrations and de-
scribe the basic assumptions of the WKB approximation, along with defin-
ing scaled, dimensional variables which make small and large parameters
evident. In Sec. 3, we devise a model for resonant tunnelling based on85

a graph approach, and the theory for incorporating the relevant complex
orbits into approximation of reflection and transmission amplitudes is dis-
cussed. Explicit numerical illustrations of the theory are offered in Sec. 4,
comparing the WKB approach with full wave calculations, while conclu-
sions are given in Sec. 5.90

2. Thin Shell Theory, Short Wavelength Asymptotics and Ray Dynamics

Numerous thin-shell theories have been derived to determine the dy-
namic and vibro-acoustic behavior of thin-shell structures. These include
Donnell’s theory [20] and generalisations thereof [7, 21]; for more details
also about other approaches, see the book by Leissa [22] and a review ar-95

ticle by Qatu [23]. The calculations in this paper are based on Donnell’s
shell theory, which is discussed in more detail by Pierce [7], and Norris
and Rebinsky [8]. In particular, we follow Søndergaard et al. [5, 6], who
have applied this approach to the case of an isotropic, cylindrical shell. The
work of [5, 6] has used thin-shell models to incorporate curvature effects in100

ray-tracing models, which we extend in this paper to include wave features
such as evanescent corrections and resonant tunnelling.

2.1. Wave model for thin shells
We consider the case of a cylindrical shell extending to ±∞ in the y

direction and a varying radius of curvature R(x) in the circumferential x105

direction such as, for example, shown in Fig. 1. The thickness of the shell
is h, its (volume-) density ρ with Poisson ratio ν and Young’s modulus E. It
is assumed that the shell is thin, so that in particular h� R (see Sec. 2.3 for
more detail about assumed small and large parameters). We let x = (x, y)
denote curvilinear coordinates on the shell, where y is a coordinate along110

the cylindrical axis of the structure and x is an arc length perpendicular to
it. The displacement of a point originally on the reference surface within the
shell is denoted by u(x, y, t) = [u(x, y, t) v(x, y, t) w(x, y, t)]. The simplified
shell theory presented in [6] reduces the elastic equations to the following

4



set of partial differential equations,115
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denote the bending and extensional stiffnesses and

c2
P =

C
ρh

=
E

ρ(1− υ2)

is the pressure wave velocity, while κ(x) denotes the local curvature in the
x direction.

We take advantage of the translational symmetry in the y direction to
seek wave solutions in the form

u(x, y, t) = û(x)eikyy−iωt, (2)

where the wavenumber component ky and the frequency ω are constants
and û = (û, v̂, ŵ)T. Substituting the ansatz (2) into the PDE system (1) and
denoting kP = ω/cP leads to the following system of ODE’s in the variable
x:

d2û
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y
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(
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2.2. Eikonal approximation for thin shells
Next, we look for approximate solutions to these ODE’s in WKB form,

û(x) = a(x)eiS(x), (4)

where the components of a = [au, av, aw]T are the amplitudes in the in-
plane directions x and y and in the direction normal to the shell, respec-
tively. The gradient of the phase function S(x) defines a local wavenumber
in the x direction

kx(x) =
dS
dx

. (5)

All of these amplitude and phase functions depend parametrically on ky
and ω, although these dependencies have been suppressed in our nota-120

tion. Note that in order to treat evanescence effects in the wave transport
problem, we must allow the phase function S(x) to be complex-valued as
discussed in following sections.

For simplicity of notation, we have not explicitly identified a large pa-
rameter in our notation so far, but the Eikonal expansion to follow assumes125

that the length scale over which the curvature changes is much greater than
the typical local wavelength. We correspondingly impose that a(x) varies
over these longer length scales. Note that for simple smooth curvature pro-
files over which the bending angle is O(1), this longer length scale can be ef-
fectively identified with the minimum radius of curvature, but the Eikonal130

expansion fails when the curvature changes rapidly, even if the radius of
curvature itself remains large.

Substituting the ansatz (4) into the equations of motion (3) and neglect-
ing terms containing derivatives in a, (thus assuming that the amplitudes a
vary slowly along x compared to S(x)), we deduce that kx must satisfy an
Eikonal equation of the form

D(x, kx; ky, ω) = 0,

where the function D(x, kx; ky, ω) is defined by
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2
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P − κ2(x)− B

C
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2
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)
,

(6)
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and k2 = k2
x + k2

y. It should be emphasized that the asymptotic treatment
here is a short wavelength approximation, that is, the local wavenumber is
substantially larger than the reciprocal of the length scales over which the135

curvature radii change. For a treatment of the low-frequency, long wave-
length asymptotics, see [10].

The secular equation (6) provides a dispersion relation for modes prop-
agating in curved plates and can be interpreted as a Hamilton function for
an underlying ray dynamics. The method of characteristics leads to equa-
tions of motion of the form

ẋ =
∂D
∂kx

, (7a)

k̇x = −∂D
∂x

, (7b)

describing a ray dynamics for energy transport on curved and homoge-
neous smooth thin shells.

The Hamiltonian (6) provided the basis for the work in [5, 6] and ac-140

counts for ray dynamics of both bending and in-plane waves at sufficiently
high frequencies. For moderate curvature, each of these modes locally de-
fines a separate level set of D(x, kx; ky, ω) = 0 (see Fig. 3, discussed in
Sec. 2.4). The ratio of radius of curvature to plate thickness provides a
second large parameter, independent of frequency. This second large pa-145

rameter can be exploited to use ray equations for bending modes even for
moderate frequencies for which the wavelength of in-plane modes is not
particularly small in comparison with the length scales of the curved re-
gion. In this second regime we find nontrivial deflection of rays associated
with the bending mode, which is the focus of the rest of this paper. In order150

to describe the regime we need a more systematic treatment of the large and
small parameters in the problem, which we provide in the next subsection
by defining scaled variables.

2.3. Scaled variables
In order to more formally identify small and large parameters behind155

the Eikonal expansion, we define scaled variables. We start by choosing a
length scale L characteristic of the problem: a convenient choice would be
the minimum radius of curvature achieved over the curved section of the
shell. Then the scaled plate thickness

H =
h
L

(8)

is a natural small parameter for the problem. Note that since h � R is160

a necessary condition for the thin shell equations (1) to hold in the first
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place, we implicitly assume that H � 1 throughout this work. We define
corresponding scaled coordinates and curvature profile

X =
x
L

, Y =
y
L

and K(X) = Lκ(x)

along with the scaled wavenumber variables

Kx = Lkx, Ky = Lky and K = Lk.

We also define a scaled frequency165

Ω =
Lω

c
,

where c =
√

E/ρ, and the following scaled wavenumbers

KP = LkP =
√

1− ν2Ω, KS =
√

2(1 + ν)Ω, KB = (12(1− ν2))1/4

√
Ω
H

,

respectively, characterising pressure, shear and bending modes in the flat
limit.

Then the Hamiltonian (6) can, after scaling by a constant factor, be writ-
ten in terms of these scaled parameters and variables in the following form

D′(X, Kx; Ky, Ω) =(K2 − KS)
2(K2 − K2

P)(K
4
B − K4)

+
12
H2K

2(X)
[
K2

P(K
2 − K2

S)− (1− ν2)K2
y(K

2
y − K2

S)
]

.

(9)

Having identified H = h/L as a natural small parameter, in terms of which
K = O(1), we concentrate in the rest of this paper on a frequency regime170

such that
Ω = O(1).

Then the in-plane, scaled wavenumbers are similarly such that

KP = O(1) and KS = O(1),

while the scaled bending wavenumber

KB = O
(

1√
H

)
is a large parameter.

We also focus in the following on bending waves whose angle of inci-175

dence is such that Ky ∼ K ∼ KB = O(1/
√

H): then there is no significant
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coupling to in-plane modes through the curved section of the plate. In this
case the scaled Hamiltonian can be approximated at leading order by

D′(X, Kx; Ky, Ω) = D′′(X, Kx; Ky, Ω)

(
1 + O

(
1
H

))
,

where

D′′(X, Kx; Ky, Ω) = K4(K4
B − K4)− K

2(X)

Ω2 K4
BK4

y (10)

and assuming that the scaled curvature is K(X) = O(1) in the region of180

maximum curvature of the plate. Then the terms remaining in D′′(X, Kx; Ky, Ω)
are both of O(K8

B) = O(1/H4) for bending waves in the curved region, so
there is significant deflection of rays there.

2.4. Models of shell geometry and dispersion curves
We now set out explicit examples of dispersion relations obtained from

(9). For illustrations of the ray picture we consider a family of curvature
functions previously used in [6], albeit with different parameter values,
chosen here so that the problem behaves generically around the critical case
between total transmission and total reflection of rays. By choosing as the
length scale L the minimum radius of curvature over the curved region,
these are in scaled coordinates of the form

K(X) =
f (X)

f (0)
, (11)

where

f (X) =
1
2

(
erf
(

X + X∗

δX

)
− erf

(
X− X∗

δX

))
, (12)

with the parameters X∗ and δX respectively controlling the location at which185

the shell transitions from flat to curved, and the sharpness of that transition.
Fig. 2 shows three different curvature profiles used in this paper, as a

function of real X in part (a) and as X moves along the imaginary axis in
part (b): this latter aspect is relevant to the discussion of complex rays in
later sections. Going from the blue to the red to the black curve, the pro-190

file (as a function of real X) transitions from a generic quadratic maximum,
Gaussian-like in shape, to one with sharper transition and a rather flat max-
imum. In all cases, we have K(X) → 0 in the asymptotic flat regions
X → ±∞ and the maximum curvature Kmax = 1 is achieved at X = 0.
The area under each of the curves in Fig. 2 is the total angle over which195

the plate bends through the curved region. In all the examples, the two flat
regions of the plate are perpendicular to each other: that is, all curvature
profiles in Fig. 2 have been fixed to have an area under the curve equal to
π/2.
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(a) (b)

Figure 2: Curvature profiles for three different sets of parameter values used in examples
later. (a) curvature K(X) as a function of real X; in each case the profile is scaled to have a
maximum value Kmax = K(0) = 1 here. Part (b) shows a section of the curvature profiles
along the imaginary X-axis: this will be useful to understand the dynamics of complex
orbits in later sections. (Blue thick solid curves correspond to X∗ = 0.42 and δX = 0.8136,
red thin solid curves to X∗ = 0.7776 and δX = 0.42 and black dashed curves to X∗ = 0.7853
and δX = 0.2928).

The curvature along the imaginary X axis, plotted in part (b) of Fig. 2,200

will play a significant role in understanding the dynamics of complex orbits
controlling reflection and transmission by tunnelling. For each of the three
profiles shown, there is a local minimum in the imaginary direction. In
the case of the flatter profiles shown in red and especially black, however,
this local minimum is rather shallow and the profile is seen to oscillate,205

with growing amplitude, within the window plotted. (In fact even for the
profile shown in blue the profile oscillates further along the imaginary axis,
outside of the window plotted.) This feature becomes important in the
treatment of complex rays in later sections.

We next describe explicit dispersion relations obtained in scaled vari-210

ables, using the same material properties as in [6], that is, ν = 0.28, E = 195
GPa and ρ = 7700 kg/m3, for which c =

√
E/ρ = 5032ms−1. Then, for

example, Kmax = 1 and H = 6× 10−4 is achieved for a shell with thick-
ness 0.5mm and maximum radius of curvature 0.833m, while a frequency
of f = ω/(2π) = 1009Hz results in a scaled frequency Ω = 1.05.215

Figure 3 shows corresponding level sets D′ = 0 defined in the (Kx, Ky)
plane for two fixed values of scaled curvatureK and for two values of Ω: an
example with Ω > 1 is shown in (a) and an example with Ω < 1 is shown in
(b). In each case the dashed lines are for the flat limit K = 0, for which the
level set consists of three concentric circles. The outermost level curve cor-220

responds to the bending mode, the middle level curve corresponds to shear
waves and the innermost to pressure waves. In this limit, the wave veloc-
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(a) (b)

Figure 3: Dispersion curves, represented by level curves D′ = 0 in the (Kx, Ky)-plane and
for fixed X are illustrated: an example with Ω > 1 is shown in (a) and an example with
Ω < 1 is shown in (b). In each case, the blue dashed curves represent isotropic dispersion
relations for the limit of a flat plate; the outer circle corresponds to bending modes, the
middle circle (see inset) to shear modes and the smallest circle (see inset) represents pressure
modes. The solid blue lines represent dispersion relations achieved for the maximum value
Kmax = 1 of the curvature profiles in Sec. 2.4. In (a), we identify three regions according
to how incoming rays are reflected or transmitted by the curved region: rays with Ky ∈ I
are reflected and with those with Ky ∈ II and III are transmitted. Incident waves in region
II may experience resonant tunnelling, whereas those in region III do not. We also identify
by red dots the values of Ky connecting to fixed points of the system as explained in more
detail in Sec. 2.5.

ity of each mode is independent of the direction of propagation and we
note that, for the parameter values chosen here, the bending wavenumber
is significantly greater than the two in-plane wavenumbers (see inset). As225

curvature increases, the circular symmetry of the flat limit is increasingly
broken and, if the curvature is large enough, the bending component of
the level set becomes non-convex. This transition corresponds to the green
curve in Fig. 4. The case illustrated in Fig. 3a, for which Ω = 1.05 and
Kmax = 1, shown by solid curves, is beyond this transition. If Kmax/Ω > 1230

then the dispersion curves undergo a second transition (blue curve in Fig.
4) as the maximum of K(x) is approached. Here the bending curves col-
lide with those for the in-plane modes and the level set develops a more
complex structure for (Kx, Ky) near (0, 0), as seen in Fig. 3(b), for example.

In the following we restrict our attention to rays approaching the curved235

region in the bending mode, corresponding to the outermost level curves in
Fig. 3. As such rays approach the curved region, the wave vector (Kx, Ky)
must stay on the deforming level set D′ = 0, while Ky remains fixed. To
understand the possible outcomes, we identify three regions for the case
Kmax/Ω < 1, labelled I, II and III, in Fig. 3a. A ray starting in region I240
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Figure 4: Level curves of the simplified Hamiltonian in (10) are plotted in scaled coordinates
for a range of values of scaled frequency Ω. These simplified dispersion curves do not
capture the more complicated structure around (0, 0), as expanded in insets of Fig. 3, but
provide a good description of them everywhere else in the (Kx, Ky)-plane.

does not have a compatible wave vector at the point of maximum curva-
ture, which is an analogue of a ”forbidden region” in quantum-mechanical
scattering. Here the value of Ky is large enough that the corresponding ray
is deflected by the curved region and reflected back to the flat plate section
from which it came. Rays starting in regions II and III do have compatible245

wave vectors at the point of maximum curvature: for these rays the value
of Ky is small enough that they can reach the region of maximum curvature
and are transmitted to the other side. The difference between regions II
and III is that in region II new compatible solutions (Kx, Ky) appear as the
level set is deformed: these new solutions are not directly accessible to rays250

arriving from the flat region but instead define trapped modes localised
in the region of maximal curvature. The existence of such trapped modes
have also been investigated by Gridin et al. [24]. In region III there are no
such trapped modes. In the case Kmax/Ω > 1, illustrated in Fig. 3(b), re-
gion III has shrunk to a small gap in which all components of the dispersion255

curve interact for (Kx, Ky) near (0, 0).
Our focus here is on the transition between regions I and II, where corre-

sponding incident plane waves transition from being completely reflected
to being completely transmitted. Although there is near complete transmis-
sion in region II, for some incident angles the trapped modes may locally260

mediate peaks in transmission in analogy to resonant tunnelling in quan-
tum mechanics [25]. There are no such trapped modes in region III and
therefore no resonant tunnelling. Although here there is still some small
fraction of incident energy reflected for rays with |Ky| � KB, this is typi-
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cally so small that it is in practical terms unimportant. Therefore, although265

the simplified Hamiltonian (10) does not capture the structure of the dis-
persion curves near the origin of the (Kx, Ky) plane, as shown in the insets
of Fig. 3, it does give a good description of the dispersion curves around the
transition between regions I and II and can be used as a basis to understand
the resonant tunnelling calculations to follow. Contours of this simplified270

Hamiltonian are illustrated using scaled coordinates in Fig. 4. Note that the
ring frequency provides a typical scale for the frequency range in which
curvature effects are important: it is O(1) in the scaled variables used here.
For example, for the material parameters chosen in the illustration above,
the general expression for it,[26]275

Ωring =
1√

1− ν2
,

takes the value Ωring = 1.042 .

2.5. Phase portrait for bending rays
In this subsection we present the phase portrait obtained in the (X, Kx)

plane from the scaled Hamiltonian in (9).
Figure 5 shows topologically distinct trajectories for the same parameter280

values as used in Fig 3. Each of these trajectories in the phase plane is a
level curve defined by D′(X, Kx; Ky, Ω) = 0. We fix Ω throughout and vary
Ky as an initial condition to obtain different contours. Depending on Ky,
rays approaching the curved part of the plate are reflected, transmitted or
approach a fixed point along a separatrix. These correspond respectively to285

rays arriving from the flat limit in regions I, II∪III or the boundary between
regions I and II in Fig. 3.

Rays approaching the curved region with sufficiently small values of
Ky, in regions II or III in Fig. 3, are transmitted to the flat asymptotic region
on the other side of the bend: rays of this type are labelled A in Figure 5.290

As the magnitude of Ky approaches a threshold value K]
y, corresponding to

the boundary between I and II in Fig. 3, the incident ray approaches a sepa-
ratrix orbit labelled B in the phase plane of Figure 5. The corresponding ray
paths form the stable and unstable manifolds of a fixed point in the phase
plane. These form analogues of dividing surfaces used in chemical reaction295

theory to divide reactants from products [27]. The fixed point represents a
trajectory moving along the line X = 0, see Fig. 5b. When |Ky| > K]

y, rays
are deflected by the curved part of the plate: these are labelled C in Fig. 5.
When K∗y < |Ky| < K]

y, where K∗y corresponds to the boundary between re-
gions II and III in Fig. 3, there are also topologically distinct orbits labelled300

D in Fig. 5; these orbits are closed in the (X, Kx) phase plane. The corre-
sponding ray paths are trapped in the region of the bend and oscillate along
it as shown in Fig. 5(c). They are related to trapped bending modes to be
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(a)

(b) (c)

Figure 5: (a) Ray dynamics in a phase plane corresponding to a bending mode moving
across a curved plate with the curvature profile shown in Fig. 2 (blue line); the magenta
curve (A) is an example of a transmitted ray crossing the curved region; the red curve (B)
corresponds to the ray approaching the fixed point thus forming a separatrix in the phase
plane; the blue curve (C) represents a reflected ray; the closed yellow curve (D) shows a
trapped ray oscillating along the curved part of the plate. The black crosses signify the
fixed points at coordinates (X, Kx; Ky) = (X, K]

x; K]
y). (b), (c) Typical ray paths are shown

(schematically) on the curved plate using the same colour codes as in (a).

discussed in Section 3, see also [24]. These trapped rays cannot be reached
from initial conditions in the flat regions of the plate. Incoming bending305

waves can couple into these trapped modes evanescently and these orbits
play an important role in the “resonant tunnelling” mechanisms as set out
in Section 3.

The key dividing structures in Fig. 5 are thus the hyperbolic fixed points
(denoted by black crosses in Fig. 5a) at the threshold values Ky = ±K]

y and
their corresponding stable and unstable manifolds shown as red curves.
The coordinates of the fixed points (X = 0, Kx = ±K]

x) can be determined
by imposing the conditions

D′(X = 0, K]
x; K]

y, Ω) = 0 and
∂D′

∂Kx
(X = 0, Kx; K]

y, Ω)

∣∣∣∣
Kx=K]

x

= 0 (13)

on the scaled Hamiltonian in (9). Although the exact solutions of the fixed
point condition (13) can not be given in closed form in general, we can find310

approximate solutions using the Hamiltonian (10). Noting that ∂D′′/∂Kx =
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0⇔ ∂D′′/∂K = 0 (at fixed Ky), the second of these conditions then implies

(K]
x)

2 + (K]
y)

2 =
1√
2

K2
B

(
1 + O

(
1
H

))
while the first yields(

K]
y

)2
=

Ω
2Kmax

K2
B

(
1 + O

(
1
H

))
.

Note, however, that the phase portrait in Fig. 5 has been constructed us-
ing the full Hamiltonian D′(X, Kx; Ky, Ω) in (9) and not the approximate315

Hamiltonian D′′(X, Kx; Ky, Ω) in (10).
It is geometrically simpler to characterise incoming rays by an asymp-

totic angle of arrival

θ0 = arcsin
Ky

KB

rather than wavenumber component Ky. We denote in particular by θ]0 the
asymptotic angle of arrival of the separatrix orbit approaching the hyper-
bolic fixed point. From the preceding discussion this can be approximated
by

θ]0 = arcsin

√
Ω

2Kmax

(
1 + O

(
1
H

))
.

An analysis based solely on the presented phase portrait would thus sug-
gest that waves are predominantly reflected when θ0 > θ]0 and transmitted
when θ0 < θ]0. Modification of this simple ray picture based on tunnelling
effects are presented in the next section.320

3. Transmission and reflection of bending waves: resonant tunnelling

We describe next how complex ray solutions can be used to describe
transmission and reflection near the critical angle θ]0.

3.1. Overview
To give an overview over the features to be described in detail later,325

we show the reflection and transmission coefficients, that is, the reflected
and transmitted power as a fraction of the incident power of a plane wave
arriving at the bend, as a function of the incident angle θ0 in Fig. 6. The
calculations are done for the curvature profile shown as blue curves in Fig.
2. We compare numerical solutions of the full wave problem (3) (blue and330

red curves) with approximations that are to be developed in the remainder
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(a) (b)

Figure 6: The fractions of transmitted (blue and yellow) and reflected (red and green) wave
intensities are shown as a function of incident angle for a plane wave approaching the
curved region from the flat limit using (a) a linear scale and (b) a log scale. Solid lines
represent a full wave calculation using Eq. (3) and following [6]; dashed lines represent
the approximations described in the text. The critical angle here is θ]0 = 46.4◦ and the
calculations have been done for the parameter values given in Sec. 2.4 and for the curvature
profile shown in blue in Fig. 2.

of this paper (green and yellow dashed curves). For the full-wave solution,
we apply a finite difference scheme as described in [6].

The main features are consistent with the ray-dynamical picture out-
lined in the previous section. For incoming angles θ0 < θ]0 (with θ]0 = 46.4◦335

here), the transmission coefficient is close to unity and the reflection coeffi-
cient is small. In line with Fig. 5, the corresponding rays (of type A) all pass
over the curved region of the shell. Above this threshold, when θ0 > θ]0, the
transmitted wave amplitude falls to zero: this is again consistent with Fig.
5, where the corresponding rays (of type C) are all deflected by the curved340

region.
The results in Fig. 6 deviate in two important ways from the simple ray

picture sketched in the previous section, however. First, there is a transition
region near the critical angle θ]0 in which the transmission and reflection co-
efficients change smoothly rather than discontinuously as a function of θ0.345

Second, at angles below this transition region, there are sharp resonances
which are related to resonant tunnelling facilitated by the trapped orbits of
type D in Fig. 5. Both of these features are explained quantitatively in the
next sections by extending the ray analysis to use complex rays.

3.2. A graph model using complex rays350

In the following, we provide a complex-ray analysis of the transmis-
sion and reflection coefficients such as plotted in Fig. 6. In the quasi one-
dimensional case here, this can be done most efficiently in a graph model
based on the main features of the phase-space shown in Fig. 5 and, includ-
ing transitions due to complex orbits leading to tunnelling corrections, in355

Fig. 7. The orbits shown in Fig. 7a are the dominant dynamical features
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(a) (b)

Figure 7: Phase space dynamics relevant for resonant tunnelling.

describing the behaviour below the critical point, for which θ0 < θ]0. Fig. 7b
describes the behaviour for θ0 > θ]0.

The calculations in this section borrow from two approaches in the ar-
eas of wave chaos and semiclassical approximation of quantum mechanics.360

The first is the use of graph models (or ”quantum graphs”), in which wave
solutions transported along networks of bonds are connected at vertices
by local scattering matrices. Imposing global consistency of such locally
connected solutions leads to explicit solutions for important features of the
system as a whole, such as scattering matrices and resonance conditions.365

Ref [28] provides a good overview of the most important results and con-
cepts in this context. Second is the use of uniform asymptotic approxima-
tion to characterise the connection of local WKB solutions across hyper-
bolic fixed points, where primitive WKB approximation breaks down. A
detailed exposition of these so-called connection formulae that is valid for370

the effectively one-dimensional context needed here can be found in the
classic review article [29]. We also note that this topic has had renewed at-
tention in recent years in the context of chemical reaction rates [27], where
transport across phase space bottlenecks is treated by similar methods, ex-
tended to more general Hamiltonians and higher dimensions: although375

these reaction-rate problems are physically very distinct, their phase-space
geometry and WKB approximation are very similar to the problem at hand
[30]. We will not give a detailed re-derivation of the required results in
this paper but simply quote the most important equations from these refer-
ences.380

Each orbit in phase space can be used to define an approximate solution
of WKB type matching plane waves as x → ±∞ with corrections due to
the curved region near x = 0. We write the full wave solution as linear
combinations of these WKB solutions in each region with corresponding
amplitudes (a±, b±, c±, d±) as denoted in Fig. 7. For example, a− denotes385
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the amplitude of a wave incoming from the left and a+ the amplitude of a
corresponding outgoing wave to the right following transmission, whereas
d+ denotes a corresponding reflection amplitude.

Our aim is to calculate a scattering matrix connecting these amplitudes,
defined so that390 [

a+

d+

]
=

[
ttot rtot
rtot ttot

] [
a−

d−

]
≡ σtot

[
a−

d−

]
. (14)

The transmission and reflection coefficients such as those shown in Fig. 6
are then obtained using

T = |ttot|2 and R = |rtot|2.

The scattering process can be schematically displayed in a graph model as
shown in Fig. 8. We find the total scattering matrix σtot by subdividing
the problem into local scattering problems and associated node scattering395

matrices σnode.
We first treat scattering at the nodes of the graph in Fig. 8 corresponding

to the region in phase space surrounding either of the two hyperbolic fixed
points. Wave amplitudes connecting local WKB solutions approaching and
leaving the upper fixed point in Fig. 7 can be related in the form400 [

a+

b+

]
=

[
tnode rnode
rnode tnode

] [
a−

b−

]
≡ σnode

[
a−

b−

]
. (15)

We obtain by symmetry for the lower fixed point[
c+

d+

]
= σnode

[
c−

d−

]
. (16)

Explicit formulas can be given for the matrix elements of the node scatter-
ing matrix σnode based on a uniform WKB treatment of wave propagation
near a hyperbolic fixed point, as discussed below.

Wave transport along the bonds between nodes in the graph is achieved405

by applying a simple phase shift determined by the optical phase length
of the corresponding ray segment. By matching the local WKB solutions
between the upper and lower nodes we may write[

b−

c−

]
=

[
0 −i eiS

−i eiS 0

] [
b+

c+

]
≡ σX

[
b+

c+

]
, (17)

where S denotes a phase integral (or action) of an orbit passing from the
upper to the lower node or vice versa. The details of the transformation σX410

depends on the phase conventions used to write each of the local WKB so-
lutions. The factor (−i) is due to connecting WKB solutions across turning
points between nodes [29].
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σtot σnode

Figure 8: Schematic representation of the graph model.

We can use (17) to eliminate the amplitudes (b±, c±) from the total scat-
tering problem and write (14) in the form415

σtot = tnode I + rnodeσX
1

1− tnodeσX
rnode,

where I denotes the identity matrix. The treatment suggested here is in fact
a special case of constructing a scattering matrix for a wave dynamics on
general graphs [28]. The total scattering matrix can also be expressed as a
sum over all possible paths between branches approaching and leaving the
nodes. Written explicitly in terms of matrix elements, this matrix equation
leads to the following relations,

rtot =
−i r2

nodeeiS

1 + t2
nodee2iS (18a)

and

ttot = tnode

[
1−

r2
nodee2iS

1 + t2
nodee2iS

]
= tnode

[
1 + (t2

node − r2
node)e

2iS

1 + t2
nodee2iS

]
(18b)

for total reflection and transmission, respectively.
Resonant tunnelling occurs when the denominator becomes small, that

is,
1 + t2

nodee2iS ≈ 0.

Below the critical angle θ]0, we find that transmission across a node is almost
total, so that tnode ≈ 1 and such resonances arise near parameters for which420

S =

(
n +

1
2

)
π,

where n is integer. This Bohr-Sommerfeld type quantisation condition is
satisfied by parameter values near those supporting a trapped, resonant
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mode confined to the region of maximum curvature and associated with or-
bits of type D in Fig. 5. Incoming waves couple into such trapped modes at
resonance and show enhanced reflection (and correspondingly depressed425

transmission), as seen in the numerical calculation of Fig. 6. We show in
the next section that the results described here allow a detailed quantita-
tive comparison of such resonant tunnelling effects.

3.3. Local scattering matrices
In the following, we will derive the local scattering matrices σnode and430

σX, starting with σnode. The problem of transmission and reflection of local
WKB solutions around a hyperbolic fixed point has been extensively stud-
ied in the context of quantum mechanics. In its simplest form, it is under-
stood by solving the problem of transmission across a quadratic potential
barrier [29], but can also be treated by using more general transformations435

of phase-space coordinates around generic hyperbolic fixed points as we
encountered here: see [27] for a discussion of phase space geometry and
[30] for a corresponding discussion from the point of view of WKB approx-
imation, for example.

The main ingredient is to find a complex periodic orbit γi connecting440

disconnected branches of the level curves illustrated in Fig. 7. This is ob-
tained by solving Hamilton’s equations (7) while letting the “time” variable
run along a contour in the complex plane. One can show that there are pe-
riodic solutions connecting each pair of branches near a hyperbolic fixed
point [30]. These are illustrated in Figs. 9a-9b for Ky < K]

y and in Figs. 10a-445

10b for Ky > K]
y. One finds in this case that the period in complex time is in

fact imaginary, and so is the corresponding orbit action, which we denote∮
γi

KxdX = 2iΘ, (19)

(where Θ is in fact a function of the parameters Ky and Ω). By choosing
the imaginary-time contour to move downwards in the complex plane, the
imaginary action Θ is negative when Ky > K]

y and positive when Ky <450

K]
y [30]. This leads to near complete transmission for Ky < K]

y and near
complete reflection for Ky > K]

y as discussed in more detail below.
Note that any such complex periodic orbit is one of a continuous fam-

ily of equivalent orbits, so that collectively they define a two-dimensional
manifold. A real starting point can be displaced continuously along the455

(real) level curve of the Hamiltonian function, corresponding to the blue
curves in Fig. 7. Subsequent evolution in imaginary time will generate
different periodic curves on a complexified level set D′(X, Kx; Ky, Ω) = 0
(which defines a manifold of two real dimensions in complexified phase
space), but each of these periodic curves will have the same period and460

imaginary action Θ as a consequence of Cauchy’s theorem.
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(a) (b)

Figure 9: Real and complex (tunnelling) orbits are shown for the case Ky < K]
y. In (a) we

provide a 3D representation in which a degree of freedom corresponding to the imaginary
part of X is included; in (b) the corresponding projection onto the real phase plane is shown.
Red curves show examples of tunnelling orbits of imaginary period: for these orbits, real
initial conditions can be found, indicated by green dots, from which integration in imagi-
nary time leads to periodic evolution largely confined to Re(Kx) and Im(X). There is also a
separate real periodic orbit corresponding to the closed blue curve.

(a) (b)

Figure 10: Real and complex (tunnelling) orbits for the case Ky > K]
y. The format is simi-

lar to Fig. 9a-9b except that the 3D plot is obtained by including the imaginary part of Kx
rather than of X. As with Fig. 9a-9b, the red curves show examples of tunnelling orbits of
imaginary period, but note that here dynamics is predominantly in components Re(X) and
Im(Kx) rather than Re(Kx) and Im(X). In contrast to Fig. 9a-9b, where symmetry of reflec-
tion in X suggests a particular real initial condition for each tunnelling orbit, here there are
many, equally plausible real initial conditions. For example, imaginary-time evolution from
the turning point (X2, K2) on the right first returns to the real phase plane at coordinates
(−X1, K1), which is not a turning point. Conversely evolution from (X1, K1), which is not
a turning point, first returns to the real phase plane at turning point (−X2, K2).
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With an appropriate choice of phase convention for local WKB solu-
tions, the local reflection and transmission coefficients can then be expressed
in the forms [29, 30]

rnode =
−ie−iδ
√

1 + e−2Θ
, (20a)

and

tnode =
e−Θ−iδ
√

1 + e−2Θ
, (20b)

where

δ(Θ) =
Θ
π

log
∣∣∣∣ Θ
πe

∣∣∣∣+ arg Γ
(

1
2
− iΘ

π

)
. (21)

Note that σnode is unitary and that, in particular,

|rnode|2 + |tnode|2 = 1.

Note also that the derivation of this result assumes that the fixed point in
question is of generic hyperbolic type [27, 30] which necessitates that the
maxima of the curvature profiles in Fig. 2 are quadratic. This is unambigu-465

ously true for the curvature profile represented by blue curves in Fig. 2. The
maxima for the other profiles in Fig. 2, while being also strictly quadratic,
are very shallow, so that effectively higher-order terms in a normal form
representation [27] are in practice not negligible. The problem is therefore
expected to be well described by these generic results only for extremely470

small values of the small parameter H defined in (8). The approximations
used here are therefore challenged by these examples but we will find nev-
ertheless that there is qualitative consistency with the full-wave results, as
described in the next section.

There is also a real periodic orbit γr, which defines a real action by475 ∮
γr

KxdX = 2S. (22)

Below the threshold (|Ky| < K]
y), the closed orbit corresponds to the blue

curves in Fig. 9a-9b. The action S is then simply the area enclosed by the
closed orbit in the real phase plane. It is this action S that is used to de-
fine the matrix σX in (17). A corresponding action can be obtained for
|Ky| > K]

y by a somewhat more complicated integration path involving seg-480

ments of complex evolution but having overall a net real displacement in
the complex time plane. For example, starting at the top right turning point
(X2, K2) in Fig. 10b and evolving in negative imaginary time first returns
the trajectory to the real phase plane at (−X1, K1). From there, evolution
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in real time brings the orbit to the bottom left turning point at (−X2,−K2).485

From here, evolution in positive imaginary time returns the trajectory to
the real phase plane at (X1,−K2) and subsequent evolution in real time
brings the orbit back to its starting position at (X2, K2). If the segments
of the imaginary-time evolution are in opposite directions in the complex
plane, the net action for this orbit is real, and defines S through (22). Again490

as a result of Cauchy’s theorem, this real action does not change if the in-
tegration path in the complex time plane is deformed, or alternative initial
conditions are chosen.

4. Results

We first test the results of the the graph model described in the previous495

section for the curvature profile with a generic quadratic maximum repre-
sented by blue curves in Fig. 2a. A comparison of numerically calculated
transmission and reflection fractions against the predictions of the graph
model has already been shown in Fig. 6. We find in this case that there is
detailed, qualitative and quantitative agreement between the graph models500

and full-wave numerical results. This agreement includes both the smooth
transition across θ0 = θ]0 and the positions and shape of resonant scattering
peaks for θ0 < θ]0. Above the transition, there is accurate reproduction of
the zeros of the transmitted fraction, evident in the log plot of part (b).

We have also compared the results of the graph model to the flatter cur-505

vature profiles represented by red and black curves in Fig. 2, which have
been designed to challenge the assumptions of the model and to test how it
might fail. First, although these profiles have strictly-speaking quadratic
maxima, these are in practice very shallow so that approximations Eqs.
(20a-20b) would require extremely small values of the thickness parame-510

ter H in order to be valid. Second, the X coordinate of the tunnelling orbit
shown in Fig. 9, which is for incidence below the transition angle, evolves
along the imaginary axis. Therefore its dynamics uses the profiles shown
in Fig. 2b. For the flatter profiles these show a shallow local minimum and
then begin to oscillate as a function of Im(X) (the generic profile in blue515

also oscillates for large enough Im(X) but at scales that do not have impact
on the calculations here). We will observe that this leads to bifurcations in
the tunnelling orbit that qualitatively affect the reflection and transmission
coefficients.

For the middle curvature profile (red curve), there is reasonable agree-520

ment across the transition region, as shown in Fig. 11, although this agree-
ment is not as close as in Fig. 6. For the flattest profile (black curve in
Fig. 2), the reflection and transmission coefficients show reasonable agree-
ment above the transition (see Fig. 12b), but there are significant quantita-
tive differences across the transition region. Here the second derivative of525

the curvature profile is so small at its peak that (20a-20b) do not adequately
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(a) (b)

Figure 11: Transmission and reflection coefficients shown here using the same conventions
as in Fig. 6 but for the intermediate curvature profile represented by the red curve in Fig. 2.
The agreement here is still very good, but compared to Fig. 6 small deviations are noticeable
especially near θ0 = θ]0 due to the behaviour of the curvature profile around X = 0.

(a) (b)

Figure 12: Transmission and reflection coefficients shown here use the same conventions
as in Fig. 6 but for the flattest curvature profile represented by a black curve in Fig. 2.
Although quantitative agreement is poor across the transition region, there is qualitative
similarity and features away from the transition are well reproduced.
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describe the behaviour of σnode near the transition. Far enough above the
transition, however, where Θ� 1 and δ ≈ 0, the primitive approximations
rnode ≈ −i and tnode ≈ e−Θ are valid and agreement is better.

Below the transition (where θ0 < θ]0), there are even starker deviations,530

which arise due to the oscillation of K(X) along the imaginary axis (see
Fig. 2b). The tunnelling orbit undergoes a bifurcation at an incident angle
θ[0 below θ]0 (and in fact θ[0 is quite near θ]0 for the flattest curvature pro-
file). This bifurcation is illustrated in Fig. 13 for the intermediate curvature
profile. In Fig. 13b we show a phase portrait obtained by plotting level535

curves D′ = 0 of the Hamiltonian (as θ0 or Ky are varied) in a plane with
axes (Kx, Im(X)) (where symmetries mean that D′ remains real): when
θ0 = θ[0 the corresponding level curves form a separatrix dividing a short
tunnelling orbit of the form seen in Fig. 9 from a more complicated orbit
with an extra lobe shown by the red curves in In Fig. 13a. Here the com-540

plex orbit with the smallest imaginary action is obtained by taking a short-
cut across the real orbit shown in green in Fig. 13a. It is the action of this
truncated complex orbit that dominates tunnelling rates when θ0 < θ[0.

The detailed behaviour of such complex phase portraits depends criti-
cally on the behaviour of the curvature profile along the imaginary X axis.545

This behaviour can be significantly different even for profiles that look
quite similar along the real axis. We therefore do not propose to give a sys-
tematic accounting of such additional structure in this paper: treatment of
conversion rates around the angle θ[0 at which the shortcut appears would
require an analysis at least as complicated as that behind (20a-20b) and550

might then need to be revisited for each new family of curvature profiles
treated, if their behavior along the imaginary X axis is different. Instead
we simply provide a simplified calculation to demonstrate in broad terms
that such bifurcations are able to explain what is observed for the curvature
profiles in Fig. 2.555

Far enough below the transition, where Θ is negative and large in mag-
nitude and δ ≈ 0, the primitive approximations rnode ≈ −ieΘ and tnode ≈ 1
are valid. In plotting the results of the graph model in Figs. 11 and 12, we
have replaced eΘ by Re(eΘ) for θ0 < θ[0. Because Re(Θ) 6= 0 here, this
is an oscillatory function of θ0 and has zeroes, for example. These oscilla-560

tions and zeroes agree well with those observed in calculations from the
full wave model, seen in Figs. 11b and 12b. Such bifircations of the com-
plex tunnelling orbit therefore provide an means of understanding more
complex behaviour in scattering from plate bends.

5. Conclusion565

We have provided an analysis of the transition between complete re-
flection and complete transmission of bending waves incident on a curved
section of a thin shell. The analysis is based on complex ray theory and
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(a) (b)

Figure 13: Real and complex orbits for the second curvature profile (red line in Fig. 2)
are shown for the case Ky < K]

y. Some of the complex orbits with real initial condi-
tions (X = 0) change geometry due to bifurcations. In (a) the bifurcation occurs close to
(Re(X), Im(X), Kx) = (0,±0.36, 38); here, the red curves show examples of tunnelling or-
bits with imaginary action (long orbits) and the green curves show examples of tunnelling
orbits with real action. In (b), the phase-space (Kx, Im(X)) of complex orbits with imagi-
nary action for the second curvature profile are shown.

extends the treatment based on real ray dynamics provided in [5, 6]. These
results allow us to model a smooth transition where complete transmission570

turns to complete reflection as an incidence angle increases, and also to
model resonance effects where reflection is enhanced by coupling to local
modes trapped in the curved region of the plate.

For a generic curvature profile with a simple quadratic maximum, the
analysis works extremely well not only in explaining the smooth transi-575

tion between complete reflection and complete transmission, but also re-
produces in detail phenomena such as reflection mediated by trapped res-
onances (resonant tunnelling).

We have also compared the predictions of the model to scattering prop-
erties of curvature profiles with flat maxima. Here the assumptions made580

to derive the model begin to fail and we observe quantitative deviations
from its predictions. Nevertheless the model succeeds in describing quali-
tatively the reflection and transmission rates calculated numerically from a
full wave treatment, including resonance positions and fluctuations in re-
flection and transmission rates arising due to bifurcations of the underlying585

complex orbit to more complicated forms.
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