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Abstract: In this article, an optimization method is proposed for the dimensional synthesis of robotic 

manipulators with limited mobility, i.e. with less than 6 degrees-of-freedom (“DoF”), with a prescribed set 

of tasks in a constrained environment. Since these manipulators cannot achieve full 6-DoF mobility, they 

are able to follow only certain paths with prescribed position and orientation in space. While the most 

common approach to this problem employs pure path-planning algorithms, operations in narrow and 

complex environments might require changes to the robot design too. For this reason, this paper presents 

an improved approach which aims to minimize position and orientation error with a dimensional synthesis. 

First, a novel methodology that combines a path planning algorithm and dimensional synthesis has been 

proposed in order to optimize both robot geometry and pose for a given set of points. Then, the method is 

validated with a 4-DoF robot for high-precision laser operations in aeroengines as a case study. The 

example shows that the proposed procedure provides a stable algorithm with a high convergence rate and 

a short time to solution for robots with limited mobility in highly constrained scenarios. 
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1. Introduction 

Despite having a reduced number of degrees of freedom (“DoF”), robotic manipulators with 

limited mobility are usually characterized by simple structure, lower cost, easy control and higher 

performance when compared to standard 6-DoF or redundant manipulators. A seminal example 

is given by the DELTA robot [1], a 3-DoF translational robot developed in the late 1980s that is 

widely used for industrial pick & place operations that require both high precision and high speed 

[2]. Furthermore, their lower mobility can be often compensated by a reconfigurable or modular 

design that can be adapted to the prescribed task, such as in [3-4]. Despite their advantages, 

manipulators with less than 6-DoF require a more careful design. In fact, standard 6-DoF and 

redundant manipulators only need to solve to a path-planning problem to perform most 

operations, whereas lower-mobility manipulators also require a task-oriented mechanism and 

dimensional synthesis. 

In the last decades, many research groups worked on the geometrical optimization of robots with 

limited mobility, focusing on three main challenges: performance evaluation, optimization 

techniques and dimensional synthesis for a given workspace. However, defining a representative 

index for robot benchmarking is extremely difficult. Generic kinematic indices, such as the Global 

Conditioning Index [5], manipulability [6-7] and force transmission index [8-9] have been widely 

used as objective functions in robot optimization with many examples in literature [10-12]. 

Standard multi-objective optimization techniques such as weighted sum, constraint methods, 

goal attainment and genetic algorithms are usually employed [13], even if specific techniques 

tailored to robot designs have been studied, such as exhaustive map search [14] and game 

algorithms [15]. Overall, however, the optimization of generic objective functions can lead to 

results that are too general to significantly improve performance in a specific process or 

operation. On the other extreme, a task-oriented index can be developed to solve a one-off 
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engineering problem but does not benefit a wider research field and cannot be used for 

performance comparison.  

Dimensional synthesis, also known as kinematic synthesis, is an inverse problem in robot 

kinematics that aims to calculate the geometrical parameters of a manipulator to achieve a 

prescribed workspace [16]. While analytical methods can be used for simple robots with a limited 

number of bodies and DoF, a common approach to the dimensional synthesis is the definition of 

an optimization procedure with the robot geometry as only parameter and one or more of the 

aforementioned indices as objective function(s) [2, 16]. An extensive literature can be found on 

the dimensional synthesis of lower-mobility manipulators, with a focus on DELTA architectures 

[17-19] and novel designs [20-23]. Most of these works optimize robot geometry to either reach 

a prescribed workspace or to maximise performance in a given workspace with one or more 

kinetostatic indices as objective function.  

Path planning involves an optimization procedure similar to the one used for dimensional 

synthesis, with joint values rather than robot geometry as parameters. In this case, the 

performance indices range from kinematics (e.g. time [24, 25], position/velocity [26], obstacle 

avoidance [27]) to dynamics (e.g. force and torque [28], energy [29, 30]). This optimization 

procedure is almost always performed after dimensional synthesis. Thus, a prescribed workspace 

volume is usually evaluated from operational requirement, then the robot geometry is optimized 

to reach the whole workspace volume, and finally the robot motion is computed for optimal 

performance around obstacles and along given path points. However, a robot geometry that is 

designed to achieve the best performance in a given volume might not be the optimal one to 

operate on a limited set of paths within the same workspace. In critical high-precision operations 

with strict constraints, this difference can be extremely significant. 

For this reason, this work introduces a novel procedure for task-oriented dimensional synthesis 

of robotic manipulators with limited mobility. The proposed method computes robot geometry 

and joint values for a given set of paths while minimizing positioning and orientation error along 

them, solving both dimensional synthesis and path planning (with obstacle avoidance) at the 

same time. Then, this approach is validated on a relevant case study: the optimal dimensional 

synthesis of a lower-mobility manipulator for laser operations in aeroengines. This operational 

scenario  requires extremely high precision (< 100 µm) along a complex path defined by the edge 

of an aerofoil, as well as strict geometrical constraints given by end-effector size, an access port 

with a diameter smaller than 9 mm and nearby aerofoil as obstacles. A single robot design cannot 

fulfil all the requirement; therefore, a modular design is proposed, made of a robot base with the 

actuators and the control hardware, and of a replaceable/disposable cable-driven end-effector 

mechanism with 2 degrees of freedom that is customized for a single operation on a given aerofoil 

and with a given laser tool. Thus, both motion and design parameters can change between 

different operations and applications. The modelling process needed to define the proposed 

optimization problem is described for the case study, and results are discussed in terms of 

accuracy, processing time and algorithm limitations. 

 

2. An optimization method for task-oriented dimensional synthesis 

A procedure for the task-oriented dimensional synthesis of robotic manipulators with limited 

mobility is here proposed as based on an optimization problem that finds the best parameters to 

minimize the pose error over the prescribed task paths. In this section, the two main challenges 

in solving this problem are outlined: (i) the definition of an overall pose error that includes both 



3 

 

position and orientation error, and (ii) the design of an algorithm that optimizes both geometrical 

parameters and motion variables, which can be summarized by the workflow in Fig. 1. 

 

2.1 Problem definition 

The standard form of an optimization problem is given by the minimization of an objective 

function 𝑭(𝒓) = [𝑓1(𝒓) 𝑓2(𝒓)⋯𝑓𝑛(𝒓)]𝑇 (with 𝑭:ℝ𝑚 → ℝ𝑛), subject to disequality constraints 

𝒈(𝒓) = [𝑔1(𝒓) 𝑔2(𝒓)⋯𝑔𝑝(𝒓)]
𝑇

 and equality constraints 𝒉(𝒓) = [ℎ1(𝒓) ℎ2(𝒓)⋯ℎ𝑡(𝒓)]𝑇 . The 

outcome of this minimization is given by the optimal values for parameter vector 𝒓 =
[𝑟1 𝑟2 ⋯ 𝑟𝑚]𝑇. The numbers n, m, p and t describe respectively the number of objective functions, 

parameters, inequality constraints and equality constraints [13]. The optimization problem can 

be written as 

min𝑭(𝒓) = min[𝑓1(𝒓) 𝑓2(𝒓)⋯𝑓𝑛(𝒓)]𝑇  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝒈(𝒓) ≤ 0, 𝒉(𝒓) = 0    (1) 

 

Fig. 1: Diagram of the optimization workflow, with CAD models from the case study. 

A multi-objective optimization problem is characterized by n > 1, and it often leads to 

contradictory results, since a single best solution that minimizes simultaneously all the objective 

functions does not exist. Thus, the optimal solutions (also known as Pareto front) can be 

computed as those solutions that cannot be improved in any of the objectives without degrading 

at least another one [13]. A solution r1 dominates another solution r2 when 

𝑓𝑖(𝒓𝟏) ≤ 𝑓𝑖(𝒓𝟐) 𝑓𝑜𝑟 𝑖 ∈ {1,… , 𝑛}  ∩ ∃ 𝑘: 𝑓𝑘(𝒓𝟏) < 𝑓𝑘(𝒓𝟐)     (2) 

A solution is optimal when no other solution dominates it. The proposed task-oriented 

dimensional synthesis is, in its most general form, a multi-objective optimization problem that 

minimizes the pose error function 𝒆𝒕𝒐𝒕(𝒓) = [𝑒𝑝𝑜𝑠(𝒓) 𝑒𝑜𝑟(𝒓)]
𝑇

, where 𝑒𝑝𝑜𝑠(𝒓) is the position error 

function and  𝑒𝑜𝑟(𝒓) is the orientation error function. The robot parameter vector r contains both 
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the geometrical parameters, defined as robot geometry vector x, and the motion variables (such 

as joint angles) for the prescribed task waypoints, given by actuation vector q. The disequality 

constraints are given by: 

• Actuation limits on q, due to minimum and maximum joint angles and collision avoidance 

between different bodies of the robot. 

• Physical limits on x, due to manufacturing and assembly variables such as maximum hole 

depth for milling and drilling operations.  

• Environmental limits on r, such as obstacle geometry for collision avoidance.  

Equality constraints are applied to robot geometry x to represent arbitrary design choices or fixed 

dimensions, such as the size of commercial components. 

 

2.2 Objective function 

The most critical step in an optimization problem is the identification of an objective function able 

to model and evaluate the behaviour of the system while performing the prescribed tasks. Since 

this work focuses on high-precision operations, an index that represents overall pose error is 

used as objective function. However, the generality of the proposed procedure makes it suitable 

to be used with any performance index that is relevant to the task under analysis. The overall 

pose error of a robotic manipulator can be defined as the displacement between the actual pose 

of the manipulator, which can be defined as either a pose vector containing position and 

orientation coordinates or as the transformation matrix of the end-effector of the robot, and the 

target pose. Any path for the prescribed tasks can be discretized in a finite number of points, and 

the pose error for each of these can be evaluated. Then, a global error can be defined as the 

maximum error along the whole path as per Algorithm 1. By evaluating the worst performance of 

the manipulator in the provided tasks, the global error can be used as objective function for the 

proposed dimensional synthesis. 

Algorithm 1: Global pose error 

load path_points, joint_positions, robot_geometry 
for i = 1 : path_point_number 
 robot_pose_i=  forward_kinematics (robot_geometry, joint_position_i) 
 pose_error_i = error_function(robot_pose_i, path_point_i) 
end 
global_pose_error = max (pose_errors) 

When position-only or orientation-only errors are considered, the absolute spatial or angular 
displacement can be easily evaluated and used as objective functions. When both errors have to 

be minimized, two different procedures can be followed: 

• Perform a multi-objective optimization with position error and orientation error as 

objective functions. A multi-objective optimization simplifies the definition of an objective 

function but poses further challenges: the procedure to solve the problem becomes 

significantly more complex, and the solution itself is given by multiple parameter sets on 

the Pareto front rather than a single one. Thus, further evaluations and data analysis 

would be needed to identify one optimal solution. 

• Solve a standard optimization problem with an index that combines orientation and 

position errors as a single objective function. Despite the challenge of defining a single 

function that embeds both errors, this procedure results in a single optimal set of 
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parameters and allows for a more efficient and performing algorithm. For these reasons, 

a standard optimization is preferred in this research. 

In the scientific literature on optimization, several methods have been proposed to combine 

multiple objective functions into one. Among the most successful ones, weighted sum, goal 

attainment and constraint method, [13], can be adapted to this case study as follow: 

• Weighted sum is a scalar method that associates a weight wi to each objective function fi. 

The weight function is arbitrarily defined and can be written as: 

𝒘 = [𝑤1, 𝑤2]
𝑇 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑤𝑖 ≥ 0 ∀ 𝑖 ∈ [1,2], ∑ 𝑤𝑖

2
𝑖=1 = 1     (3) 

Then, a global objective function EWS is obtained by summing the weighted objective 

functions as: 

𝐸𝑊𝑆 = 𝒘𝑇  ∙ 𝒆𝒕𝒐𝒕(𝒓) = [𝑤1, 𝑤2] ∙ [𝑒𝑝𝑜𝑠(𝒓) 𝑒𝑜𝑟(𝒓)]
𝑇

     (4) 

This method is very popular for its simplicity and it guarantees to find solutions on the 

Pareto front if the problem is convex.  

• In the constraint method [13], the most relevant objective function is selected as global 

objective function, while the other objective functions are converted into constraint 

functions. The problem can be formulated for orientation as a constraint as: 

min𝑒𝑝𝑜𝑠(𝒓) 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑒𝑜𝑟(𝒓) ≤ 𝜖        (5) 

where 𝜖 is the threshold value of the orientation error.  

• Goal attainment consists in the definition of a target vector that contains the ideal values 

for all the objective functions. The purpose of this method is to optimize a coefficient that 

measures the deviation of each solution from the target vector. The method can be divided 

into three steps: definition of the vector with the desired position and orientation values; 

weighting of each value (as per weighted sum method); minimization of scalar deviation 

coefficients δ [13].  The optimization problem is mathematically defined as: 

min𝛿  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑒𝑖(𝒓) − 𝑤𝑖𝛿 ≤ 𝐸𝐺𝐴,𝑖 𝑓𝑜𝑟 𝑖 ∈ {1, 2}      (6) 

where 𝑬𝑮𝑨(𝒓) = [𝐸𝐺𝐴,𝑝𝑜𝑠(𝒓) 𝐸𝐺𝐴,𝑜𝑟(𝒓)]
𝑇

  is the vector with the ideal values and 𝒘 =

[𝑤1, 𝑤2]
𝑇 is the weight function. The main advantage of this method is that it is able to 

generate solutions for a non-convex surface domain, whereas the previous one can fail.  

According to task requirement, any of these methods can be selected. Three distinct cases can be 

identified: (i) when the task demands both errors to be within given limits, a goal attainment 

method is preferable, using the limits as target vector; (ii) if either orientation or position have a 

given limit and the other value should only be minimized, the constraint method is easier to 

define, with the known limit as constraint function; (iii) for the remaining cases, a weighted sum 

should be considered.  

 

2.3 Optimization algorithm 

Rather than running a single optimization with a large number of parameters that include both 

robot geometry and motion variables, this study proposes a more efficient approach in which the 

problem is broken down into two distinct optimization loops. First, a low-level loop evaluates the 
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optimal actuation values for a given robot geometry. Then, a high-level loop performs the 

dimensional synthesis. As also outlined in [31-33], the advantages of a decomposition into two 

separated optimization problems can be summarized as: 

• Separation of motion variables and geometrical parameters: the proposed two-level 

strategy allows for different requirements and tolerances for different kind of variables, 

improving the quality of the outcomes. The algorithm of each loop can be optimized for a 

different problem (low-level for path planning, high-level for dimensional synthesis) to 

improve its efficiency. 

• Reduced number of optimization parameters: a single optimization would optimize a 

large number of parameters at the same time. Running two separate loops each with a 

different subset of those parameter increases code stability and robustness. 

The pseudo-code for the low-level optimization is reported in Algorithm 2, while the high-level 

code is described in Algorithm 3.  

 

Algorithm 2: Internal loop – path planning 

load path_points, robot_geometry, actuation_constraints, obstacle_constraints 
initialize joint_positions 
optimization 
 find joint_positions to minimize global_pose_error 
 subject to actuation_constraints, obstacle_constraints 

Algorithm 3: External loop – dimensional synthesis 

load path_points, geometry_constraints, actuation_constraints, obstacle_constraints 
initialize robot_geometry 
optimization 
 find robot_geometry  to minimize global_pose_error 
 subject to joint_positions, geometry_constraints 

 

3. Case study: a robotic system for laser processes 

In this section, the optimization of a 4-DoF robotic manipulator for in-situ laser processing of the 

aerofoils of an aeroengine is reported as an example of the proposed methodology; in this 
application the robot needs to enter the engine via a narrow access port, navigate to the required 

workspace and perform an accurate path against the target aerofoil. The whole operation needs 

to be performed without disassembling the engine from the aircraft frame. This application is 

characterized by a complex environment with narrow access and limited mobility due to the need 

to navigate and operate in an aeroengine. The laser process requires the tip of the robot to follow 

a path along an aerofoil edge with high precision (position error < 100 µm). During the operation, 

the distance between the robot and the aerofoil edge must be constant and equal to the focal 

length of the laser. Furthermore, the laser should be normal to the edge, with a maximum allowed 

orientation error of approximately 10 deg. Conventional optimization methods try to maximize 

the performance of the given kinematic architecture in a given workspace, which results in a 

robot with overall better performance but worse accuracy on the prescribed path. The addition 

of more degrees of freedom would make the robot too bulky to perform the task, whereas the 

proposed method converges to a solution. 
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3.1 Background 

Laser processing for the generation of small and accurate geometries in narrow workspaces is 

characterized by a complex set of constraints, given by the process itself, the environment and 

robot specifications. The main requirements of the robot for this case study are: 

• Position (process): the maximum position error is 100 µm. 

• Alignment (process): the maximum orientation error is 10 deg between the laser beam 

direction and the normal to the aerofoil edge. 

• Laser focus (process): the distance between the aerofoil edge and the end-effector of the 

robot must be equal to the focal distance of the laser, so that the laser beam is focused 

onto the target surface during the operation (e.g. cutting, drilling, engraving). 

• Speed (process): the robot must be able to follow the prescribed path with a constant 

velocity. The velocity value depends on the operation, but it is usually in the range from 

0.1 to 10 mm/s, which can be easily achieved by commercial actuators. 

• Access (environment): the robot must be able to access the engine through a circular 

port with a diameter of 9 mm. 

• Collisions (environment): the robot must be able to navigate and operate with no 

collisions. 

• End-effector size (robot): the robot must be able to operate an end-effector of 

cylindrical shape with a length of 20 mm. 

• Robot shape (robot): the centreline of the robot body has a minimum bending radius of 

10 mm, in order to avoid damage to the cable of the laser end-effector. 

• Other: Further constraints are given by materials, components and manufacturing 

techniques for the chosen design (e.g. minimum wall thickness, actuator torque/force, 

minimum hole size, maximum hole lengths, manufacturing and assembly tolerances).  

In order to achieve the desired performance, a 4-DoF robot with a tendon-driven compliant 

serial-parallel architecture has been selected. The proposed design is an adaptation of the 

REINER robot in Fig. 2a, developed for a similar application (boreblending) on gas turbine blades 

[34-35]. REINER is composed of a 2-DoF compliant tip mechanism (Fig.2b) and a 2-DoF actuation 

pack (Fig. 2c). The actuation pack is equipped with five linear motors and a rotational motor to 

control the stages of the base of the manipulator and the four steel cables that actuate the 

compliant tip mechanism. To perform the desired operation in-situ, the actuation pack can be 

attached to aeroengines as per Figs.  2c and 2d.  

The proposed design combines the original actuation pack with a new modular tip mechanism 

design, which can be optimized for operations on a single aerofoil geometry. In this way, a 

different interchangeable tip can be designed for different geometries, to ensure the best 

performance on each task. Thus, the robot can be described as a hybrid serial-parallel mechanism 

with a RP(2SPS-C)(2SPS-C) architecture, with the rotary (R) and linear (P) stages of the actuation 

pack, as per Fig. 3a, in series with two (2SPS-C) tendon-driven compliant (C) sections, where each 

cable in tension is modelled as an (SPS) serial chain, with the varying length represented by an 

actuated prismatic (P) joint between two spherical (S) joints at the cable routing points of each 

disk, as per Fig. 3b. The tip mechanism design is explained in Section 3.2, while further details on 

the kinematic chain can be found in Section 3.3. This solution is able to perform high-precision 

operations as well as navigate through the narrow access port and constrained environment of 

an aeroengine. 
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a)                                                                                           b) 

         
c)                                                                                           d) 

Fig. 2: The REINER robot for in-situ teleoperated boreblending of gas turbine blades [34-35]: a. Robot 

prototype; b. Tip mechanism and end-effector; c. Actuation pack; d. Installation on an aeroengine. 

 

3.2 Design solution 

A design solution for the interchangeable tip design is shown in Fig. 3b. The rigid bodies (shaft, 

segment 1 and segment 2) are manufactured in titanium as hollow cylinders. The central hole is 

used for the delivery of cables for the laser-equipped end-effector. While in the REINER design 

the bending of the robot was controlled by the compliance of the nickel-titanium (NiTi) backbone 

as in Fig. 2b, sliding surfaces kinematically equivalent to rotational joints (R-joint) are used in this 

case study to guide the relative motion of the segments. This solution improves the accuracy of 

the kinematic model, since the real bending of the NiTi rods is characterized by a non-constant 

curvature [36-37]. Despite this change, the NiTi backbone has been kept in this case study for 

robot safety: in case of cable breakage, the stiffness of the NiTi rod ensures that the manipulator 

returns to its straight configuration rather than moving in an uncontrolled way in the aeroengine, 

risking to damage the aerofoil being processed by the laser. Furthermore, they also dampen 

dynamic irregularities in the motion and support the mechanical assembly when the cables are 

not tensioned. The steel cables are routed through the segments up as shown in Fig. 3 and each 

of them ends with a spot-welded bead with a diameter larger than the hole in the disk, which 

enables the actuation of the segments without additional locking systems. 
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a) 

 
b) 

Fig. 3: Proposed design solution: a) Actuation pack design; b) Tip mechanism. 

 

3.3 Robot model 

A simplified kinematic scheme for the (2SPS-C)(2SPS-C) tip design is shown in Fig. 4. A complete 

list of the models’ parameters is reported in Table 1.  The mechanism is made of three hollow 

cylinders (shaft, first segment and second segment) connected in series by twin compliant 

backbones that allow bending on one plane only. The shaft is directly driven by the actuation 

pack, which controls its rotation around the y-axis (“twist angle”) with the rotational stage (θ0) 

and its displacement on the y-axis with the linear stage (s). The orientation of the first segment 

with respect to the shaft is described by bending angle θ1, while the orientation of the second 

segment with respect to the first one by θ2. The lengths of the segments are given by geometrical 

parameters h0,  h1 
and h2, while the diameters of the cable guide centres on each of them are 

respectively d0,  d1 
and d2. The lengths of the compliant backbones are a1 and a2. The curvature of 

each backbone is controlled by a pair of cables, cables 2 and 3 for the first joint, cables 1 and 4 for 

the second joint, whose routing can be seen in Fig. 4 and is determined by a diameter and phase 

for each segment. Each cable is modelled as SPS serial kinematic chains with a variable length 

controlled by the virtual prismatic actuator. This assumption requires the cables to always be 

tensioned. For this optimization, the laser beam is modelled as a straight virtual link that starts 

at the end of the second segment with an orientation defined by α1 and α2 and a length equal to 
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the laser focal distance. Point H represents the laser focal point and should follow the aerofoil 

edge during the laser operation, while the orientation of the virtual link (also called “laser field of 

view”) should match the normal of the aerofoil edge to meet the orientation requirements.  

Table 1: List of kinematic parameters of the proposed case study 

Par Description Par Description 
a1 Arc length of 1st compliant joint d0 Diameter of cable guide on shaft 
a2 Arc length of 2nd compliant joint d1 Diameter of cable guide on 1st segment 
h0 Length of shaft d2 Diameter of cable guide on 2nd segment 
h1 Length of 1st segment δ1 Phase of cables 1-4 wrt bending plane 
h2 Length of 2nd segment δ2 Phase of cables 2-3 wrt bending plane 
α1 1st laser orientation parameter l1 Length of 1st cable (green) 
α2 2nd laser orientation parameter l2 Length of 2nd cable (red) 

f Laser focal length l3 Length of 3rd cable (blue) 
θ0 Twist angle l4 Length of 4th cable (yellow) 

s Linear displacement Ai Cable attachment point to the motor 
θ1 Bending angle of 1st compliant joint Bi Cable exit point from base disk 
θ2 Bending angle of 2nd compliant joint Ci Cable entrance point into 1st disk 
H Laser focal point Di Cable exit point from 1st disk 
O Base reference point Ei Cable attachment point to 2nd disk 

 

 

Fig. 4: Kinematic scheme of the proposed robotic system 

With reference to the scheme in Fig. 4, the kinematic problem can be solved with a continuous 

curvature approach by analysing the motion of the robot in cartesian, configuration and actuation 

space [36-37]. The pose of the robot can be defined in the cartesian space by the position and 

orientation of point H with respect to base frame 0xyz of Fig. 4. In configuration space, each pose 
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is defined by motion variables θ
0
, s, θ

1
 and θ

2
, linked to the 4 DoFs of the robot. The Forward 

Kinematics from configuration to cartesian space can be written as 

𝑯𝟎 = 𝑻𝟎
𝟏 𝑻𝟏

𝟐 𝑻𝟐
𝟑 𝑻𝟑

𝑯(0 0 0 1)𝑇       (7) 

The mathematical expression for the transformation matrices in Eq. (7) are reported in Table 2. 

These equations can be adapted to the R-joint design presented in Section 3.2 with the 

assumption a1 = 0; a2 = 0. This choice improves the efficiency of the optimization and control 

algorithms by simplifying the equations in Table 2 and avoiding some singularities in the Inverse 

Kinematics from cartesian to configuration space. 

When defining a pose in the actuation space, the first two variables can be defined again by θ
0
 and 

s, since the twist angle and the linear displacement are controlled directly by the rotational and 

linear stage motors. The remaining actuation variables are the length of the four steel cables l1, l2, 

l3 and l4, controlled by the remaining four linear motors in the actuation pack, for a total of six 

actuation variables. With reference to the cable routing geometry in Fig. 4, when the configuration 

variables are known, the length of the cables can be computed as 

𝑙𝑖 = {
𝐴𝑖𝐵𝑖
̅̅ ̅̅ ̅̅ + 𝐵𝑖𝐶𝑖

̅̅ ̅̅ ̅ + 𝐶𝑖𝐷𝑖
̅̅ ̅̅ ̅̅ + 𝐷𝑖𝐸𝑖

̅̅ ̅̅ ̅̅  𝑓𝑜𝑟 𝑖 = {1, 4} 

𝐴𝑖𝐵𝑖
̅̅ ̅̅ ̅̅ + 𝐵𝑖𝐶𝑖

̅̅ ̅̅ ̅ 𝑓𝑜𝑟 𝑖 = {2, 3}
       (8) 

The cable layout parameters for the evaluation of Eq. (8) are provided in Table 3. 

Table 2: Transformation matrices for Forward Kinematics (configuration to cartesian space). 

Matrix Equation 

𝑻𝟎
𝟏 [

cos 𝜃0 0 sin𝜃0 0
0 1 0 𝑠

−sin 𝜃0 0 cos 𝜃0 0
0 0 0 1

] 

𝑻𝟏
𝟐 [

1 0 0 0
0 1 0 ℎ0

0 0 1 0
0 0 0 1

]

[
 
 
 cos 𝜃1 −sin𝜃1 0 𝜃1

−1𝑎1(𝑐𝑜𝑠 𝜃1 − 1)

sin 𝜃1 cos 𝜃1 0 𝜃1
−1𝑎1 𝑠𝑖𝑛 𝜃1

0 0 1 0
0 0 0 1 ]

 
 
 
 

𝑻𝟐
𝟑 [

1 0 0 0
0 1 0 ℎ1

0 0 1 0
0 0 0 1

]

[
 
 
 cos 𝜃2 −sin𝜃2 0 𝜃2

−1𝑎2(𝑐𝑜𝑠 𝜃2 − 1)

sin 𝜃2 cos 𝜃2 0 𝜃2
−1𝑎2 𝑠𝑖𝑛 𝜃2

0 0 1 0
0 0 0 1 ]

 
 
 
  

𝑻𝟑
𝑯 [

1 0 0 0
0 1 0 ℎ2

0 0 1 0
0 0 0 1

] [

cos 𝛼1 0 sin𝛼1 0
0 1 0 0

−sin𝛼1 0 cos𝛼1 0
0 0 0 1

] [

cos 𝛼2 −sin𝛼2 0 0
sin𝛼2 cos 𝛼2 0 𝑓

0 0 1 0
0 0 0 1

]  

 

3.4 Optimization setup 

Eight kinematic parameters have been selected for the optimization: four of them are the main 

geometrical variables of the robot (h1, h2, α1, α2), given by the length of the segments and the field 

of view of the laser, and they are optimized by the high-level loop; the remaining four are the 

motion variables in configuration space (θ0, s, θ1, θ2), optimized by the low-level loop. These 

parameters are summarized in Table 4. All the remaining kinematic parameters have been chosen 

according to design and manufacturing. The focal distance of the laser has been chosen according 

to the available devices. Environmental constraints have been extracted from a CAD model of an 

aeroengine. 
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Table 3: Position vectors for Inverse Kinematics (configuration to actuation space) 

Par Position vector Par Position vector 

𝑨𝟏
𝟏  (−

𝑑0 cos𝛿1

2
0 −

𝑑0 sin 𝛿1

2
1)

𝑇

 𝑪𝟏
𝟐  (−

𝑑1 cos 𝛿1

2
0 −

𝑑1 sin 𝛿1

2
1)

𝑇

 

𝑨𝟐
𝟏  (

𝑑0 cos 𝛿2

2
0 −

𝑑0 sin𝛿2

2
1)

𝑇

 𝑪𝟐
𝟐  (

𝑑1 cos 𝛿2

2
0 −

𝑑1 sin𝛿2

2
1)

𝑇

 

𝑨𝟑
𝟏  (−

𝑑0 cos𝛿2

2
0

𝑑0 sin𝛿2

2
1)

𝑇

 𝑪𝟑
𝟐  (−

𝑑1 cos 𝛿2

2
0

𝑑1 sin𝛿2

2
1)

𝑇

 

𝑨𝟒
𝟏  (

𝑑0 cos 𝛿1

2
0

𝑑0 sin𝛿1

2
1)

𝑇

 𝑪𝟒
𝟐  (

𝑑1 cos 𝛿1

2
0

𝑑1 sin𝛿1

2
1)

𝑇

 

𝑩𝟏
𝟏  (−

𝑑0 cos𝛿1

2
ℎ0 −

𝑑0 sin𝛿1

2
1)

𝑇

 𝑫𝟏
𝟐  (−

𝑑1 cos 𝛿1

2
ℎ1 −

𝑑1 sin 𝛿1

2
1)

𝑇

 

𝑩𝟐
𝟏  (

𝑑0 cos 𝛿2

2
ℎ0 −

𝑑0 sin 𝛿2

2
1)

𝑇

 𝑫𝟒
𝟐  (

𝑑1 cos 𝛿1

2
ℎ1

𝑑1 sin𝛿1

2
1)

𝑇

 

𝑩𝟑
𝟏  (−

𝑑0 cos𝛿2

2
ℎ0

𝑑0 sin 𝛿2

2
1)

𝑇

 𝑬𝟏
𝟑  (−

𝑑2 cos𝛿1

2
0 −

𝑑2 sin 𝛿1

2
1)

𝑇

 

𝑩𝟒
𝟏  (

𝑑0 cos 𝛿1

2
ℎ0

𝑑0 sin𝛿1

2
1)

𝑇

 𝑬𝟒
𝟑  (

𝑑2 cos 𝛿1

2
0

𝑑2 sin𝛿1

2
1)

𝑇

 

 

By using Eqs. (1), two different optimization problems can be defined according to Algorithms 2 

and 3 in Section 2.3. The optimization problem of the internal loop for path planning, introduced 

in Algorithm 2, can be written as 

min𝑒𝑝𝑜𝑠(𝜽𝟎, 𝒔, 𝜽𝟏, 𝜽𝟐) 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝒈(𝜽𝟎, 𝒔, 𝜽𝟏, 𝜽𝟐) ≤ 𝟎      (9) 

with disequality constraints 𝒈(𝜽𝟎, 𝒔, 𝜽𝟏, 𝜽𝟐) = [𝒈𝒐𝒃, 𝒈𝒂𝒄𝒕, 𝑒𝑜𝑟 − 𝜖 ]𝑇, where 𝒈𝒐𝒃 represents 

obstacle avoidance constraints, 𝒈𝒂𝒄𝒕 contains the minimum and maximum values of each motion 

parameter, and the term 𝑒𝑜𝑟 − 𝜖 requires the orientation error 𝑒𝑜𝑟 to be lower than a given 

tolerance 𝜖. Since the tolerance on the position error is stricter than the one on the orientation 

error, a constraint method as per Eq. (5) has been chosen to define position error as objective 

function and orientation error as inequality constraint. 

The outer surface of the robot can be discretized as a point cloud, defined as a set S = {Pi} of points 

Pi. Similarly, the outer surfaces of the obstacles (e.g. aerofoil, walls of the work environment) can 

be defined as a point cloud O = {Lj}. Thus, the obstacle avoidance constraint 𝒈𝒐𝒃 requires the 

distance between two generic points Pi and Lj to be equal to, or greater than, a prescribed distance 

d. This constraint can be expressed as 

|𝑷𝒊 − 𝑳𝒋| ≥ 𝑑 ∀ 𝑷𝒊 ∈ 𝑆, 𝑳𝒋 ∈ 𝑂                    (10) 

The actuation constraint 𝒈𝒂𝒄𝒕 defines the limits of the motion variables in configuration space 
(𝜃0, 𝑠, 𝜃1, 𝜃2) due to physical constraints such as actuator limits and collision between multiple 

bodies of the robot. These limits are defined by the minimum value (𝜃0,𝑚𝑖𝑛, 𝑠𝑚𝑖𝑛, 𝜃1,𝑚𝑖𝑛, 𝜃2,𝑚𝑖𝑛) 

and the maximum value (𝜃0,𝑚𝑎𝑥, 𝑠𝑚𝑎𝑥, 𝜃1,𝑚𝑎𝑥, 𝜃2,𝑚𝑎𝑥) of the motion variables. Therefore, 𝒈𝒂𝒄𝒕 can 

be written as 

(𝜃0,𝑚𝑖𝑛, 𝑠𝑚𝑖𝑛, 𝜃1,𝑚𝑖𝑛, 𝜃2,𝑚𝑖𝑛) ≤ (𝜃0, 𝑠, 𝜃1, 𝜃2) ≤ (𝜃0,𝑚𝑎𝑥 , 𝑠𝑚𝑎𝑥, 𝜃1,𝑚𝑎𝑥, 𝜃2,𝑚𝑎𝑥)               (11) 

The optimization problem of the external loop for dimensional synthesis, as per Algorithm 3, can 

be defined as 

min𝑒𝑝𝑜𝑠(ℎ1, ℎ2, 𝛼1, 𝛼2) 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝒈(ℎ1, ℎ2, 𝛼1, 𝛼2) ≤ 𝟎, 𝒉(ℎ1, ℎ2, 𝛼1, 𝛼2) = 𝟎              (12) 

with equality constraints h determined by the motion parameters computed by the internal loop 

with Eq. (9), and disequality constraints 𝒈(ℎ1, ℎ2, 𝛼1, 𝛼2) = [𝒈𝒐𝒃, 𝒈𝒈𝒆𝒐𝒎, 𝑒𝑜𝑟 − 𝜖 ]
𝑇

, where 𝒈𝒐𝒃 
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represents obstacle avoidance constraints, 𝒈𝒈𝒆𝒐𝒎 contains the minimum and maximum values of 

each design parameter, and the term 𝑒𝑜𝑟 − 𝜖 requires the orientation error 𝑒𝑜𝑟 to be lower than 

a given tolerance 𝜖. The formulation of these constraints is equivalent to the one of the internal 

loop for path planning. 

The code has been implemented in MATLAB on a Windows 10 computer with a 2.60 GHz quad-

core CPU (Intel i7-6700HQ) by using the in-built functions of the MATLAB Optimization Toolbox. 

To verify its robustness, the algorithm was run for 10 different aerofoil geometries, each with 10 

different values of the laser focal distance, for a total of 100 cases.  

Table 4: List of parameters for the proposed optimization procedure 

Par Description Par Description 
h1 Length of 1st segment θ0 Twist angle 
h2 Length of 2nd segment s Linear displacement 
α1 1st laser orientation parameter θ1 Bending angle of 1st compliant joint 
α2 2nd laser orientation parameter θ2 Bending angle of 2nd compliant joint 

 

4. Results and discussion 

The algorithm converged to a desirable solution on 76% of the 100 cases, with a maximum 

estimated position error equal to 1.93∙10-6 mm. The longest time to convergence was equal to 

588.72 s. The overall performance of the algorithm, as reported in Table 5, was satisfying, with 

most of the cases converging to a solution. Considering a variable laser focal length, 9 out of 10 

aerofoil edges can be followed successfully for the laser operation under study.  

Table 5: Algorithm performance 

OVERALL PERFORMANCE 
Algorithm convergence Causes of failure 
Convergence ratio 92% Collisions 11% 
Success ratio 76% Bending radius 8% 
Feasible paths 9/10 Error 6% 

PERFORMANCE ON FEASIBLE PATHS 
Parameter Minimum Average Maximum 
Solution time 178.37 s 272.79 s 588.72 s 
Maximum error 3.15∙10-7 mm 1.93∙10-6 mm 4.26∙10-5 mm 

 

One of the cases is here reported as an example, with the numerical solution for both design and 

motion parameters shown in Table 6. The aerofoil edge has been discretized in 16 points, and the 

optimal motion parameters for each point are computed with a maximum estimated error of 

5.51∙10-7 mm. Four screenshots of a CAD simulation of the outcome motion and geometry can be 

observed in Fig. 5, and the convergence of the algorithm in the example is illustrated in the 

objective function value over iteration plot in Fig. 6. 

The main scenarios in which the proposed algorithm converges to a technically unfeasible 

solution occur when the algorithm overrides a constraint to find a solution in one of the following 

scenarios: one of the joint is forced to move out of its limits (11% of the total cases), causing a 

collision between the two segments of the tip mechanism; the overall shape of the robot damages 

the laser cable due to a steep bending radius (8% of the total cases), as exemplified in Fig. 7. This 

kind of errors are not typical of standard optimization problems and are likely to be caused by 
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the decomposition of the procedure in nested loops, which can decrease the reliability of the 

computed results by converging on unfeasible parameter sets.  

 

Fig. 5: The proposed robot following an aerofoil edge in a CAD simulation. 

 

Fig. 6: Convergence of the proposed optimization algorithm in the case reported in Table 6: value of the 

objective function over number of iterations of the external loop (Algorithm 3). 

 

Fig. 7: An example of algorithm failure: collision between the segments and critical bending radius for the 

laser cables. 

Another common cause of failure is given by a position error higher than the allowed tolerance 

along the path (6% of the total cases). Furthermore, in 8 cases the algorithm could not converge 

to a solution, due to the combination of either a long laser focal distance with a small aerofoil 

geometry, or a short focal distance with a large environment. However, by adopting a laser with 

a different focal distance, these algorithm failures can be circumvented to enable laser processing 

of all the aerofoil samples within the prescribed requirements. 
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Table 6: Example solution for the aerofoil in Fig. 5. 

DESIGN PARAMETERS 
h1 [mm] h2 [mm] α1 [rad] α2 [rad] f [mm] 
13.96431 17.13120 0.21305 0.553706 10.00000 

MOTION PARAMETERS 
Point θ0 [rad] s [mm] θ1 [rad] θ2 [rad] 

1 -0.08434 0.151085 0.104741 1.567584 
2 -0.08036 3.392616 0.11258 1.521151 
3 -0.07643 6.483351 0.120522 1.468779 
4 -0.07262 7.019522 0.105833 1.337489 
5 -0.06896 5.173678 0.147325 1.052155 
6 -0.06537 6.179534 0.2316 0.829653 
7 -0.06182 8.637112 0.31293 0.663734 
8 -0.05825 11.9714 0.380433 0.546941 
9 -0.05461 15.96767 0.42714 0.482248 

10 -0.05081 20.9731 0.429995 0.516349 
11 -0.04682 25.20861 0.467919 0.47224 
12 -0.04258 29.86218 0.48898 0.467329 
13 -0.03809 34.7568 0.501854 0.483021 
14 -0.03339 39.15063 0.53683 0.448246 
15 -0.02873 43.9812 0.55623 0.452057 
16 -0.02347 49.00459 0.602123 0.402437 

PERFORMANCE 
Solution Time 395.52 s 

Maximum Error 5.51∙10-7 mm 
 

Alternative optimization setups (multi-objective, weighted function, goal attainment) have been 

considered for performance comparison, but have proved unreliable for the case study. Multi-

objective methods (e.g. genetic algorithms) prioritize either orientation or position, often leading 

to outcomes with good results on only one of the objective functions with long times to solution. 

Weighted function outcomes depend on the arbitrary definition of the weight vector. When a 

greater weight is given to the position error, the orientation error is neglected and vice versa, 

leading to a very low success ratio (12%) on the proposed cases. While more refined and robust 

solution searching methods can be used to improve convergence, the proposed optimization 

method can be employed independently from the kind of solver. 

The proposed algorithm has been compared to a standard optimization procedure, which solves 

the problem by computing both design and motion parameters within a single optimization 
problem rather than by using nested loops with decoupled variables. This standard optimization 

can be expressed as 

min𝑒𝑝𝑜𝑠(𝜽𝟎, 𝒔, 𝜽𝟏, 𝜽𝟐, ℎ1, ℎ2, 𝛼1, 𝛼2).                    (13) 

The significantly higher number of variables leads the conventional optimization to stop at local 

minima, often converging to a result with a position error higher than the allowed tolerance. Thus, 

by decoupling synthesis and path planning, the algorithm introduced in this paper is 

characterized by a better convergence rate: the same problem solved with a conventional 

minimization procedure converges to a feasible solution on 52% of the total cases, with 

significantly longer times to solution (more than 1000 s). 
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5. Conclusions 

Dimensional synthesis and path planning are widely regarded as two distinct problems that are 

both required to optimize a robot’s performance: the dimensional synthesis defines the geometry 

of the robot, while the path planning finds the optimal actuation value to perform a prescribed 

task. However, when operating in highly constrained scenarios and with limited degrees of 

freedom, dimensional synthesis alone might result in suboptimal parameters for path planning, 

and vice versa. To address this issue, this paper presented a novel approach for the task-oriented 

dimensional synthesis of lower-mobility robotic manipulators, which is based on a dual multi-

objective optimization that minimizes position and orientation error on prescribed paths by 

solving a path planning problem with a low-level optimization loop and the dimensional synthesis 

of the robot with a high-level loop. The main results of this research can be summarized as: 

• A novel optimization method to solve both dimensional synthesis and path planning, 

which focuses on robots with limited mobility in highly constrained scenarios and 

provides a stable algorithm with a high convergence rate and a short time to solution 

when compared to the alternatives. 

• Validation of the proposed algorithm on a case study, where the novel method is 

successfully applied to a challenging aerospace scenario for the optimization of a 

mechanism for in-situ laser processing of aerofoil in aeroengine, characterized by strict 

process constraints, an extremely narrow and complex geometry and the need for high 

precision (0.1 mm). 

• A comparative analysis of optimization setups, through which convergence was achieved 

76% of the times, compared with a 12% success ratio of other setups.  

Overall, the novel algorithm proved to be a fast and powerful tool to solve task-oriented 

dimensional synthesis problems, performing significantly better than other approaches on lower-

mobility manipulators in highly constrained environments. 
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