
Migration Threshold Tuning In The
Deterministic Dendritic Cell Algorithm

Julie Greensmith[0000−0002−7245−8841]

School of Computer Science, University of Nottingham, UK, NG8 1BB
julie.greensmith@nottingham.ac.uk

https://www.nottingham.ac.uk/computerscience/people/julie.greensmith

Abstract. In this paper we explore the sensitivity of the migration
threshold parameter in the Deterministic Dendritic Cell Algorithm (dDCA),
one of the four main types of Artificial Immune System. This is with a
view to the future construction of a DCA augmented with Deep Learning.
Learning mechanisms are absent in the original DCA although tuneable
parameters are identified which have the potential to be learned over
time. Proposed in this paper is the necessary first step towards plac-
ing the dDCA within the context of Deep Learning by understanding
the maximum migration threshold parameter. Tuning the maximum mi-
gration threshold determines the results of the signal processing within
the algorithm, and here we explore a range of values. We use the previ-
ously explored Ping Scan Dataset to evaluate the influence of this key
parameter. Results indicate a close relationship between the maximum
migration threshold and the signal values of given datasets. We propose
in future to ascertain an optimisation function which would learn the
maximum migration threshold during run time. This work represents a
necessary step towards producing a DCA which automatically interfaces
with any given anomaly detection dataset.

Keywords: Artificial Immune Systems · Dendritic Cell Algorithm · Pa-
rameter Tuning

1 Introduction

The Dendritic Cell Algorithm (DCA) is an Artificial Immune System (AIS)
based on the function and behaviour of the dendritic cells of the human immune
system. It is driven by a concept termed the danger theory, which postulates
that the human immune system has the ability to discriminate between ‘safe’
and ‘dangerous’ contexts[18], informally known as ‘danger signals’. The danger
theory is in opposition to the classical self-nonself theory of discrimination of
antigen proteins via their structure and origin. In the danger theory, and indeed
in the DCA, antigen is classified through correlation of context with danger sig-
nals and not via examination of the structure of the antigen proteins. The DCA
is inspired by this model, as are other similar danger based algorithms[20][16].
Details of the function of the DCA are given in Section 2.



2 J. Greensmith

This paper is motivated by a comparison study performed by Lau & Lee in
2018[17], where a direct comparison between the DCA and an artificial neural
network (ANN) is performed. This is an innovative application of the DCA, ap-
plied as a monitor for human behaviour in carrying out tasks in a VR/AR CUBE
setup. The study’s results indicate that the DCA can produce a similar good
performance on this task. They also indicate that the DCA has a distinct advan-
tage over ANNs when lengthy training periods are required. ANNs have enjoyed
a resurgence in popularity in the guise of ‘Deep Learning’. This extends on the
traditional ANN through adding an optimisation function (frequently gradient
descent) to the signal inputs, multiple nodes in multiple layers and a discrimi-
nation technique such as softmax to aggregate classification. The implication is
that Deep Learning based on ANNs can now tackle ‘Big Data’ in a computa-
tionally feasible manner. Ease of implementation facilitated through TensorFlow
and Keras have further increased the popularity beyond the machine learning
community. Widespread application of this technique, and the automation of the
selection of inputs has heightened the learning capacity of these techniques, now
popular in image processing in particular. Given the direct comparison in Lau
& Lee[17], we postulate that if the DCA can be directly compared to an ANN,
there must be properties of the DCA which make transforming the algorithm
into a Deep Learning framework possible at least in principle.

The DCA dispenses with a lengthy training period in favour of expert learning
to map input streams. However, multiple authors have attempted to automat-
ically map inputs to the algorithm, as reviewed in Chelly & Elouedi[3].. This
already suggests a step towards incorporating a dynamic learning component
to this algorithm akin to the first stage in deep learning. However, there are
numerous “back-end parameters” in the DCA which have not been subjected to
the same automation processes. In this paper we identify a particular parameter
which is ideally suited to parameter tuning. Furthermore, Elisa et al.[5] apply
k-means clustering to the output of the algorithm to refine the discrimination
features of the algorithm. A significant improvement is shown in this re-imagined
DCA architecture when applied to a standardised intrusion detection dataset,
highlighting the importance of the state-change based discrimination performed
by the algorithm, indicating the importance of the “back-end parameters”.We
focus on examining the assignment of the migration threshold across the agents
in the DCAs population, to highlight the importance of this parameter’s in-
fluence on classification accuracy. This is the most basic experiment possible
to investigate learning within this algorithm, while maintaining the DCA’s key
advantage of dispensing with the requirement for a lengthy training period.

The main contribution of this paper is to assess the impact of tuning the
maximum migration threshold parameter on the algorithm’s classification ac-
curacy. Section 2.1 describes the major features of the algorithm and formal
analysis of the algorithm is reviewed in Section 2.2. A rationale for exploring the
sensitivity of the maximum migration threshold parameter is given in Section 3.
A preliminary experiment including learning the migration threshold parameter
is shown in Section 4 comparing a range of values. We conclude the paper by



Migration Threshold Tuning In The dDCA 3

Fig. 1: Schematic representation of the processing by a single population member,
demonstrating the migration process, from [6]

suggesting how this modification can be extended to further enhance the DCA
towards a Deep Learning DCA framework. For a comprehensive review of the
DCA see [3], and the original DCA is described in detail in [6].

2 The Dendritic Cell Algorithm

2.1 Algorithm Overview

As an algorithm, the DCA was first presented in 2005[7] as an anomaly detector
in the style of a population based algorithm. Individual DCs in a population
are transformed from an immature state to either ‘mature’ or ‘semi-mature’,
depending upon the type of ‘signal’ they have encountered throughout their
defined lifespan. Expert knowledge couples data streams to the DC population
through a rough categorisation of the streams into ‘safe’ or ‘danger’. The stream
data is processed by individual DCs though a simple weighted sum equation.The
output of this weighted sum increments internal values, either the ‘mature’ or
‘semi-mature’ indicator The data collection window for each DC is determined
by a lifespan limit, termed in the literature as ‘migration threshold’[9]. Upon
migration a DC is classed as either ‘mature’ or ‘semi-mature’ via the application
of a linear threshold or simply labelling the cell based on which of the mature or
semi-mature variables is the larger value, demonstrated in Figure 1.Classification
cannot be performed with the DCA without an orthogonal data stream termed
‘antigen’ - this is a representation of the item to be classified.

Each member of the set of antigen in a dataset is termed an ‘antigen type’,
of which will have multiple instances. This decoupling of the data allows for
data correlation within the DCA. The first real-world test for the DCA involved



4 J. Greensmith

experiments similar to this though monitoring an individual host information
and not a network and system calls[8]. Each system call per process is captured
in this dataset, and the process ID associated with each system call forms the
antigen types in this dataset. This same dataset is used to experiment with the
maximum migration threshold in this paper.

In the population each DC agent samples signals from the signal stream
and antigen from the antigen stream within a dynamic lifespan. The sampling
duration of a DC is controlled by its migration threshold, assigned upon creation
of the immature DC. An internal variable of an immature DC, termed in the
literature as ‘csm’[10], is incremented in proportion to to the strength of signal
experienced by the DC. Upon the ‘csm’ variable having a greater value than the
assigned migration threshold, the DC is removed from the sampling pool and
presented for analysis. The secondary analysis phase of the algorithm counts for
each antigen type the percentage of DCs which are mature versus semi-mature.
This ratio returns a value between 0-1 for each antigen type, with values closer
to 1 indicating an anomaly, and this is referred to as the ‘mean context antigen
value’ or MCAV. Once all data is sampled a final value for each antigen type is
calculated, a linear threshold is applied. A range of values for this threshold can
be used to create ROC curves out of the DCA output.

2.2 Theoretical Research and Formal Specification

The prototype version of the DCA was first presented by Greensmith et al.
in 2005[7], with the full version published in 2006[9]. While implementable de-
tails were attempted, the algorithm’s function and behaviour were obfuscated by
the complex agent based framework used to implement the DCA and the over
twenty potentially tuneable parameters. Two approaches were taken to ‘demys-
tify’ this algorithm and to increase its applicability. The first approach was to
reduce the number of tuneable parameters to two in the Deterministic DCA[11]
dDCA, leaving population size and range of migration threshold across the pop-
ulation. Dynamic antigen buffers, sigmoidal functions for weighted sum inputs,
and MCAV was replaced with a real valued metric, Kα.

The dDCA as a simplified algorithm has proven popular for implementation
and assisted in some of the earliest theoretical research for the DCA [14]. Aside
from the simplification of the algorithm, a key motivator for the development of
the dDCA was to provide a ‘stripped down’ version of the algorithm in order to
build in new components, to add in stochastic elements individually. This has
not happened to any great extent, though the dDCA has become a studied and
applied algorithm e.g.[15] in its own rite as detailed in the review in [3]. Further
theoretical analysis of the DCA is performed in Oates et al. [19], Stibor et al.[21]
and Gu et al.[13], which analysed the DCA as a set of linear classifiers, without
analysing the impact of the antigen stream.

The second attempt to clarify the algorithm is motivated by the inconsis-
tencies in DCA implementations. Ambiguity surrounding signal mapping, the
use on inappropriate datasets and direct comparison with unsuitable supervised



Migration Threshold Tuning In The dDCA 5

learning techniques motivated Greensmith & Gale in 2017[12]. A formal spec-
ification of the dDCA with Haskell is presented. Haskell is a purely functional
language, where the specification becomes the implementation, therefore if the
specification is verified as correct, then the implementation is also correct. This
research shows that the input to the DCA is stream data, and not necessar-
ily ‘feature vectors’ and that the ‘antigen stream’ must be de-coupled from the
signal streams in order for the algorithm to be effective. This is the version of
the dDCA used in experiments in Section 4 using a verified dDCA. If the learn-
ing process for “back-end” tuning is possible, the Haskell specification will be
extended to ensure correct future implementation of this component.

3 Cell Migration Control in the DCA

It came as a surprise to reviewers past that there is no explicit learning pro-
cess, optimisation or local search operator in the DCA. The assumption in the
literature is that an AIS must behave like any other evolutionary algorithm. It
is thought that it must converge upon a solution like the clonal selection or at
least engage in a training process akin to supervised learning techniques in AIS
including negative selection[2]. However, the DCA does not have such facility,
the deterministic DCA even more so as it dispenses with reliance on any random
elements included in the original variant.

The obvious approach is to replace with the requirement to use expert knowl-
edge to decide how signals from the signal stream are mapped to the categories
of safe and danger as indeed has been widely performed in the DCA literature,
as reviewed in[3], including the use of fuzzy systems, rough set theory and PCA.
Secondarily is the optimisations of the weights in the signal processing equation
which encompasses a training phase for the DCA, as performed by Elisa et al.[4]
though the use of a genetic algorithm. This is in contrast to the work presented
in [17] which determined that the lack of lengthy training period of the algorithm
was indeed how the DCA has an advantage over ANNs.

There are other aspects of the DCA which can be augmented with some form
of learning capability outside of the paradigm of requiring a training period. Two
tuneable parameters with optimisation potential are population size and the
assignment of the maximum migration threshold of the DC population. The
maximum migration threshold is tested for its sensitivity in this paper through
performing a preliminary investigation in the link between the parameter and the
algorithm’s performance. Optimisation of this parameter during the algorithm’s
runtime may be able to enhance its performance, though this must be done in
an incremental manner.

The migration threshold is important in the DCA as it determines the exact
set of signal and antigen instances processed within an individual DC through-
out the run-time duration of the algorithm. It controls the length of time a
DC remains in the sampling pool before being presented for analysis. A migra-
tion threshold is assigned to each DC upon the initialisation of the algorithm.
In the dDCA, each DC is given a specific value of migration threshold which



6 J. Greensmith

Table 1: Example of migration threshold assignment for a population of 5 DCs
with a maximum migration threshold Maxmt of 10

Cell ID DCmt

1 2
2 4
3 6
4 8
5 10

is calculated in proportion to an overall maximum migration threshold, set as
a user-definable parameter as DCmt = f(Maxmt/NumCells). For example if
there are 5 DCs in the sampling pool and a maximum migration threshold of
10 is assigned the DCs migration thresholds are assigned as a simple modulus
function as shown in Table 1.

The migration threshold is applied to a parameter termed ‘csm’ 1 is incre-
mented through summation of the danger and safe signals collected at each signal
sampling iteration. Once the value of ‘csm’ exceeds that of the DCmt, the cell
is removed from the sampling pool and presents data for the analysis phase. At
this point, the DC is destroyed, and a new DC is created with an identical DCmt
and repopulated the sampling pool. This process is specified formally in [12].

We commence the investigation into parameter tuning in the dDCA by firstly
ascertaining the sensitivity of the algorithm to variation in the migration thresh-
old of the individual cells, controlled by tuning the master maximum migration
threshold parameter. The dDCA is useful for this task as it allows for a high
degree of reproducibility and traceability of data within the algorithm. An initial
specific set of parameter values are chosen with a view to exploring optimisation
techniques in future research.

4 Experiments on Migration Thresholds

4.1 Ping Scan Dataset

Ten datasets are created, originally for [9] and used for the sensitivity analysis
in [8], based on performing a series of ICMP Ping Scans on a medium scale
university network. This data is designed specifically to assess the parameters of
the DCA, and not necessarily to capture all of the nuances of network intrusion
detection. Given the experiments relate to a DCA parameter, this justifies the use
of this dataset in this case. The generated data captured the processes involved

1 This is based on the biological model of the up-regulation of the CCR7 receptor in
natural DCs in response to binding to intracellular molecules of both cell damage
and of healthy tissues. This up-regulation attracts the DC away from the potential
site of infection and results in its trafficking to the lymph node where is ceases to
sample signals and antigen.



Migration Threshold Tuning In The dDCA 7

Table 2: Summary of Danger Signal Data Across 10 Ping Scan Datasets
Dataset Mean Stdev Median Sum

S1 7.85 15.96 0.40 243.20
S2 4.81 10.45 0.00 317.60
S3 21.28 27.16 2.00 1425.60
S4 27.53 42.57 0.40 1073.60
S5 29.09 41.19 0.00 1134.40
S6 28.55 42.88 0.00 1056.40
S7 30.03 42.72 2.60 1141.20
S8 24.93 37.36 1.20 1072.00
S9 26.36 42.28 0.00 1107.20
S10 26.83 41.95 0.40 1046.40

Mean 22.73 34.45 0.70 961.76

Table 3: Summary of Safe Signal Data Across 10 Ping Scan Datasets
Dataset Mean Stdev Median Sum

S1 54.19 41.72 60.00 1680.00
S2 65.10 42.20 86.67 4296.67
S3 50.30 48.48 80.00 3370.00
S4 36.75 45.80 0.00 1433.33
S5 58.46 43.98 70.00 2280.00
S6 51.35 45.53 50.00 1900.00
S7 43.68 47.73 10.00 1660.00
S8 38.14 48.27 0.00 1640.00
S9 57.62 48.43 90.00 2420.00
S10 34.87 41.98 30.00 1360.00

Mean 49.05 45.41 47.67 2204.00

during the scan to form the antigen and measured the network attribute of
packets per second sent from the machine instigating the scan. The danger signal
is the number of packets per second sent, normalised into a range of 0-100. The
safe signal is the inverse rate of change of number of packets per second sent
also normalised in the range of 0-100. Summary statistics of the signal data for
the ten datasets (S1-S10) are shown in Tables 2, 3 and Table 4, including the
duration of the monitored session in Table 4.

As part of this data capture exercise, antigen data is also captured. While over
25 processes were active during the scan duration, four ‘processes of interest’ were
identified as making over 100 system calls for the duration of each scan. These
are the bash process which is the terminal from which the scan is instigated;
the nmap process used to instigate the scan; the pts pseudo-terminal slave
process which is a helper process for the nmap process; and sshd process which
was used to log into the linux terminal from which the data was collected. We
expect in the results for the experiments to indicate the nmap and pts processes



8 J. Greensmith

Table 4: Signal Maximums across all datasets, including normalisation of Signal
Total Per Dataset Duration

Dataset Danger (D) Safe (S) Sum Duration Normalised
(D + S) SigTotal/

Duration

S1 243.20 1680.00 1923.20 30.81 62.42
S2 317.60 4296.67 4614.27 66.08 69.82
S3 1425.60 3370.00 4795.60 66.96 71.62
S4 1073.60 1433.33 2506.93 38.08 65.84
S5 1134.40 2280.00 3414.40 38.14 89.52
S6 1056.40 1900.00 2956.40 36.62 80.74
S7 1141.20 1660.00 2801.20 37.53 74.64
S8 1072.00 1640.00 2712.00 42.34 64.06
S9 1107.20 2420.00 3527.20 41.14 85.74
S10 1046.40 1360.00 2406.40 38.50 62.50

Mean 961.76 2204.00 3165.76 43.62 72.57

as anomalous and the sshd and bash processes to be classified as normal, as
indicated in the results in [8]. In previous experiments where the anomaly score
is given as the mean context antigen value - MCAV, a coarse threshold of 0.5 is
added to discriminate between the normal and anomalous processes as in [8].

4.2 Experiments

A control experiment is performed with the dDCA using the standard parameters
for population size of 100 and the Maxmt set at 100. All other settings are as
detailed in [11] and [12]. The results for each dataset are shown in Table 5.

Five parameters are chosen on a logarithmic scale to examine the link between
the dataset and Maxmt set at 1, 10, 100, 1000 and 10000. Given the ranges of the
data, this covers the smallest window possible ensuring that the cells will migrate
each iteration. The maximum value of 10000 exceeds the total signal amount for
each dataset, ensuring that each cell will only migrate once. For the sake of
completeness, we also test the average signal sum across all 10 datasets which
is 3165. We also test a normalised version of this value which takes into account
the duration of each dataset, resulting in a Maxmt value of 73. Results of these
experiments are shown in Table 6, as mean values per process of interest and the
related standard deviation. A more detailed presentation of individual results per
process is given in Figure 2. We expect correct classification to produce values
of below 0.5 for bash and sshd, and above 0.5 for nmap and pts.

4.3 Discussion

The results clearly show that the maximum migration threshold parameter is im-
portant for the dDCA, producing marked changes in classification performance.



Migration Threshold Tuning In The dDCA 9

Table 5: Control experiment using previously published parameters: population
size = 100; Maxmt =100

Dataset Bash Nmap Pts Sshd

S1 0.00 1.00 0.62 0.08
S2 0.03 0.92 0.56 0.00
S3 0.03 0.93 0.85 0.00
S4 0.37 0.87 0.90 0.09
S5 0.05 0.79 0.86 0.04
S6 0.76 0.68 0.87 0.05
S7 0.53 0.97 0.93 0.14
S8 1.00 1.00 1.00 0.29
S9 0.05 0.87 0.86 0.04
S10 0.93 1.00 0.88 0.00

Mean 0.38 0.90 0.83 0.07

Table 6: Results of parameter variation of Maximum Migration Threshold, in-
cluding mean across all 10 datasets, and accompanying standard deviation. The
value of 3165 represents the mean signal per session, and 73 is the mean signal
per session normalised by the number of signal instances.

Bash Bash Nmap Nmap Pts Pts Sshd Sshd
Max Migration mean stdev mean stdev mean stdev mean stdev

1 0.44 0.44 0.90 0.10 0.84 0.14 0.08 0.09
10 0.44 0.44 0.90 0.10 0.84 0.14 0.08 0.09
100 0.25 0.37 0.87 0.11 0.75 0.23 0.03 0.06
1000 0.17 0.20 0.64 0.25 0.50 0.23 0.03 0.03
10000 0.03 0.03 0.07 0.04 0.06 0.03 0.00 0.010

3165 0.08 0.08 0.27 0.12 0.21 0.10 0.02 0.03
73 0.44 0.43 0.90 0.10 0.84 0.14 0.08 0.09

The result that identical MCAV s are obtained for all values under 100 was
initially surprising, and assumed to be a fault in the experimental test harness.
Thorough investigation of this phenomena was performed as a result, and we are
confident that this is a genuine observation and not due to a bug in the dDCA
code or in the test harness. Upon analysis, we see that for each signal instance a
combined value of 100 is present. This means that for instance, for cells with a
migration threshold of less than 100, all cells in the population migrate, making
parameter variability in this range immaterial. This is a useful observation for
future guidance on setting this parameter. As the parameter increased above
1000, there is a deterioration in the discrimination of the anomalous processes,
though changes in the discrimination of the normal processes were not signifi-
cant. This is most pronounced with the value of 10000 in which no migration
occurs until all signal instances are processed, as shown in Figure 2. These re-
sults indicate that this parameter and the migration thresholds of individual DCs



10 J. Greensmith

(a) bash (b) nmap

(c) pts (d) sshd

Fig. 2: Boxplots of the four processes of interest, showing the MCAV for each of
the parameter settings per process

within the population does warrant further investigation and the application of
an optimisation method.

4.4 Conclusions

The contribution of this paper is that it shows the sensitivity of the migration
threshold parameter in the dDCA and on a wider range of data than in previous
experiments with the dDCA. Deterioration of classification is shown with exces-
sively large migration thresholds, and lower limits related to the current system
signal values. Therefore this represents a small but important step towards im-
plementing a learning mechanism in the DCA independent of an initial training
phase. The results suggest that the maximum migration threshold is likely to
benefit from an optimisation technique either based on the expected input for
the algorithm or, more importantly, during run time. This can be achieved via



Migration Threshold Tuning In The dDCA 11

lightweight local search operator and we hope to explore this in subsequent stud-
ies. We have not studied the distribution of the migration thresholds across the
population as a uniform distribution is used here. Pertinently, a uniform dis-
tribution is used in this paper, and we do not know how the results would be
affected if for example a gaussian distribution be used in its place.

In this paper we have ignored the potential influence of the number of cells in
the population. Therefore a multi-objective optimisation approach to tune both
key parameters of the dDCA may be beneficial in ascertaining their optimum
values for any given dataset. We are aware that there may also be nuances of
this particular dataset which are influencing the results, and therefore we would
seek to replicate this study on a different dataset, for example using the KDD99
dataset as a starting point. The central goal is to move the DCA towards a
Deep Learning style framework, and understanding the influence of the migration
threshold is just one component which contributes to this aim. An integrated
approach examining both front and back-end parameters in a dependent fashion
would be the intended trajectory of future work on this algorithm. There is also
the potential to run multiple DCA instances in parallel in a similar multilayered
fashion to an ANN. A combination of these techniques will be needed to achieve
the aim of creating a Deep Learning DCA.

References

1. de Castro, L., Timmis, J.: Artificial Immune Systems: A New Computational Ap-
proach. Springer-Verlag, London. UK. (September 2002)

2. Chelly, Z., Elouedi, Z.: A survey of the dendritic cell algorithm.
Knowledge and Information Systems 48(3), 505–535 (September 2016).
https://doi.org/10.1007/s10115-015-0891-y

3. Elisa, N., Yang, L., Naik, N.: Dendritic cell algorithm with optimised
parameters using genetic algorithm. In: 2018 IEEE Congress on Evo-
lutionary Computation, CEC 2018, Rio de Janeiro, Brazil, July 8-
13, 2018. pp. 1–8 (2018). https://doi.org/10.1109/CEC.2018.8477932,
https://doi.org/10.1109/CEC.2018.8477932

4. Elisa, N., Yang, L., Qu, Y., Chao, F.: A revised dendritic cell algorithm us-
ing k-means clustering. In: 20th IEEE International Conference on High Perfor-
mance Computing and Communications; 16th IEEE International Conference on
Smart City; 4th IEEE International Conference on Data Science and Systems,
HPCC/SmartCity/DSS 2018, Exeter, United Kingdom, June 28-30, 2018. pp.
1547–1554 (2018)

5. Greensmith, J.: The Dendritic Cell Algorithm. Ph.D. thesis, School of Computer
Science, University Of Nottingham (2007)

6. Greensmith, J., Aickelin, U., Cayzer, S.: Introducing Dendritic Cells as a novel
immune-inspired algorithm for anomaly detection. In: Proc. of the 4th International
Conference on Artificial Immune Systems (ICARIS), LNCS 3627. pp. 153–167.
Springer-Verlag (2005)

7. Greensmith, J., Aickelin, U., Tedesco, G.: Information fusion for anomaly detection
with the DCA. Information Fusion 11(1), 21–34 (2010)



12 J. Greensmith

8. Greensmith, J., Aickelin, U., Twycross, J.: Articulation and clarification of the
Dendritic Cell Algorithm. In: Proc. of the 5th International Conference on Artificial
Immune Systems (ICARIS), LNCS 4163. pp. 404–417 (2006)

9. Greensmith, J., Twycross, J., Aickelin, U.: Dendritic cells for anomaly detection.
In: Proc. of the Congress on Evolutionary Computation (CEC). pp. 664–671 (2006)

10. Greensmith, J., Aickelin, U.: The deterministic dendritic cell algorithm. In: Artifi-
cial Immune Systems, pp. 291–302. Springer (2008)

11. Greensmith, J., Gale, M.B., IEEE: The functional dendritic cell algorithm: A for-
mal specification with Haskell. In: 2017 IEEE Congress on Evolutionary Compu-
tation, CEC 2017, Donostia, San Sebastián, Spain, June 5-8, 2017. pp. 1787–1794.
IEEE (2017)

12. Gu, F., Feyereisl, J., Oates, R., Reps, J., Greensmith, J., Aickelin, U.: Quiet in
class: classification, noise and the dendritic cell algorithm. In: Artificial Immune
Systems, pp. 173–186. Springer (2011)

13. Gu, F., Greensmith, J., Aickelin, U.: Theoretical formulation and analysis of the
deterministic dendritic cell algorithm. Biosystems 111(2), 127–135 (2013)

14. Igbe, O., Darwish, I., Saadawi, T.: Deterministic dendritic cell algorithm applica-
tion to smart grid cyber-attack detection. In: 2017 IEEE 4th International Con-
ference on Cyber Security and Cloud Computing (CSCloud). No. New York, NY,
USA, IEEE (2017)

15. Kim, J., Bentley, P., Wallenta, C., Ahmed, M., Hailes, S.: Danger is ubiquitous: De-
tecting malicious activities in sensor networks using the dendritic cell algorithm. In:
Proc. of the 5th International Conference on Artificial Immune Systems (ICARIS),
LNCS 4163. pp. 390–403 (2006)

16. Lau, H.Y.K., Lee, N.M.Y.: Danger theory or trained neural network - A compar-
ative study for behavioural detection. In: Joint 10th International Conference on
Soft Computing and Intelligent Systems (SCIS) and 19th International Sympo-
sium on Advanced Intelligent Systems (ISIS), Toyama, Japan, December 5-8. vol.
10.1109/SCIS-ISIS.2018.00143, pp. 867–874 (2018)

17. Matzinger, P.: Tolerance, danger and the extended family. Annual Reviews in Im-
munology 12, 991–1045 (1994)

18. Oates, R., Kendall, G., and, J.G.: Frequency analysis for dendritic cell population
tuning: Decimating the dendritic cell. Evolutionary Intelligence: Special Issue on
Artificial Immune Systems (2008)

19. Sarafijanovic, S., Boudec, J.L.: An artificial immune system for misbehavior de-
tection in mobile ad-hoc networks with virtual thymus, clustering, danger signal
and memory detectors. In: Proc. of the 3rd International Conference on Artificial
Immune Systems (ICARIS), LNCS 3239. pp. 342–356 (2004)

20. Stibor, T., Oates, R., Kendall, G., Garibaldi, J.M.: Geometrical insights into the
dendritic cell algorithm. In: Proceedings of the 11th Annual conference on Genetic
and evolutionary computation. pp. 1275–1282. ACM (2009)


