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Abstract: 11 

Polysaccharide-based aerogels have high application value as one kind of unique functional 12 

materials. Not only has it high porosity and low-density, but also the non-toxicity and 13 

biodegradability. In recent decades, a variety of natural raw materials and their combinations 14 

along with various preparation technologies have been investigated to develop 15 

polysaccharide-based aerogels with different functions for diverse applications. This review 16 

aims to clarify a general approach in the development of polysaccharide-based aerogels 17 

regarding pore structure design, polysaccharide selection and drying methods. The relevant 18 

researches and reports of polysaccharide-based aerogels have been also classified according 19 

to the applications in environmental engineering, buildings, medical practice, packaging and 20 

electrochemistry. Furthermore, some statistical graphs have been produced to summarize 21 

those publications during the past ten years, with an aim to indicate the distribution and 22 

research trend. Finally, the approaches to improve the quality of the aerogels are discussed 23 

and some perspectives are put forward to provide a reference for the future development of 24 

polysaccharide-based aerogels. 25 
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1. Introduction 27 

Aerogels were firstly fabricated by Kistler. He obtained it from gels, in which the 28 

liquid was replaced by gas. Some other practitioners hold the views that only the 29 

materials with meso- and macropores with diameters up to a few hundred nanometres 30 

and porosity of more than 95% can be called as aerogels (Ziegler, et al., 2017). João P. 31 

Vareda (Vareda, Lamy-Mendes, & Durães, 2018) reconsidered about the definition of 32 

aerogels and present the view that aerogels need to be redefined as the recent 33 

development of aerogels with multiple drying methods. With the widening of the 34 

definition, more and more studies on aerogels have been carried out.  35 

By summarizing researches with two drying methods, this review is inclined to the 36 

view that aerogels have high porosity, high surface area and low density, and pore size 37 

distribution is mainly from nano to micro scale. One kind of new and sustainable 38 

polysaccharide-based aerogels stood out and attracted a lot of interests from researches. 39 

In the past decade, a large research effort worldwide has been devoted to 40 

developing polysaccharide-based aerogels. This has been stimulated by the fact that 41 

the raw materials of conventional aerogels come from inorganic or petrochemical-42 

based materials such as those used in silica aerogels, graphene aerogels (Jiang, 43 

Chowdhury, Balasubramanian, 2019), titanium aerogels (Zhang, Liu, Qi, Cui, Yang, 44 

2018), or their oxides aerogels. In response to the environmentally friendly 45 

requirement, development of polysaccharide-based aerogels has attracted extensive 46 

interest from researchers (Rudaz, et al., 2014). The polysaccharide-based aerogels are 47 

formulated from natural ingredients, they have an excellent eco-friendly biodegradable 48 

feature and hence maximizing the polysaccharide ingredients in aerogels has become a 49 

tendency. 50 
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Polysaccharide-based aerogel as the precursor has abundant natural sources, such 51 

as cellulose, starch, chitosan, alginate, carrageenan and pectin. As one of the most 52 

abundant natural polymers, cellulose widely exists in nature wood (Bauli, Rocha, De 53 

Oliveira, & Rosa, 2019), bamboo (Sheng, Zhang, Qian, & Fontanillo Lopez, 2019), 54 

cotton (Cheng, et al., 2017), banana fiber (Harini, Ramya, & Sukumar, 2018) and 55 

coconut husk (Rosa, et al., 2010). It may become a key ingredient in novel functional 56 

materials because of their unique properties, including biocompatibility, sustainability, 57 

low toxicity and renewability. As for the application as packaging foam, 58 

polysaccharide-based aerogels have overwhelming superiority to accelerate the 59 

promotion of plastic ban. The functional biocompatibility and low toxicity properties 60 

of polysaccharide-based aerogels also can be applied in health and medicine fields to 61 

improve the stability problem of drugs and some limitation of drugs delivery to benefit 62 

mankind.  63 

This review aims to describe and discuss the structure design, raw materials 64 

selection, preparation and application of biodegradable polysaccharide-based aerogels. 65 

In Section 2, two drying methods of aerogels are compared especially on the aspect of 66 

pore structure to provide a reference for aerogels structure design. Then with excellent 67 

advantages, polysaccharide-based aerogels have attracted wide interests in many 68 

fields, such as environment engineering, buildings, medicines, electrochemical 69 

components and food packages. This is discussed in Section 3. In Section 4, a 70 

statistical survey showing popular research tendency of polysaccharide-based aerogels 71 

from 2011 to the beginning of 2019 can be seen from the number of publications and 72 

the area distribution of all publications from the pie chart. Finally, the challenges, 73 

perspectives and concluding marks are presented in Section 5.  74 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/coconut
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Hopefully, this review could help to explore the formulation, preparation and 75 

application for polysaccharide-based aerogels. It also presents challenges for the future 76 

development of polysaccharide-based aerogels.  77 

 78 

2. Preparation methods and carbohydrates for polysaccharide-based aerogels 79 

2.1. Pore structure design 80 

In all porous solid materials, a variety of channels and cavities exist, which are regarded 81 

as pores. Aerogel materials stand out from porous materials due to their unique pore structure, 82 

high specific surface area and low density which could be used in many applications (Hüsing 83 

& Schubert, 1998). Depending on the application requirements, the meaningful functional 84 

properties which is affected by pore structures could be introduced in different aerogels. The 85 

shape of aerogel pores could be divided into open pores and close pores according to the gas 86 

fluid flow property presented in the theory of Rouquerol, et al (Rouquerol, et al., 1994). In 87 

our previous studies, relatively close and open pores could be observed in SEM images as 88 

shown in Fig. 1. Open pores have the opportunity to communicate with others and the 89 

external surface of the materials. The close pore is defined as the relatively independent one 90 

separating from any nearby pores.  For example, aerogels are often used in different fields, 91 

such as drug encapsulation, generative medicine and water pollutants adsorption. In these 92 

application fields, the requirement of the material structure is quite different. When the drug 93 

is being carried, the drug needs to be encapsulated by the carrier, porous aerogels with 94 

relatively closed pores (De Marco, Baldino, Cardea & Reverchon, 2015), and then released 95 

under specific conditions. In the field of regenerative medicine, aerogels as the scaffold 96 

structure, require uniform open pores (Martins, et al., 2015). As an adsorbent material, 97 

aerogels require a certain amount of open pore structure to inhale pollutants as well as close 98 

pore structure to store the pollutants. Therefore, the significance of aerogels structure design 99 

is to be better adapted to the different application requirement.   100 
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   101 

Fig. 1 SEM observations of relatively close (left) (Wang, et al., 2018) and open pores 102 

(right) (Cuadros, Erices, & Aguilera, 2015) 103 

 104 

According to previous researches (Oschatz, et al., 2017; Zhu, Li, Pang, & Pan, 2018), 105 

different preparation technologies including raw materials, gel process and drying methods 106 

lead to different aerogel pore structure. With different special molecule chain structure, 107 

polysaccharide could directly affect aerogels physical properties which will be given a 108 

detailed introduction in Section 2.2. Meanwhile, physical properties could be also changed by 109 

adjusting aerogels pore structure. Raw materials could affect the pore structure due to its 110 

unique properties. As presented in our previous work (Wang, et al., 2018), with a high 111 

concentration of starch, the pore wall becomes thicker which benefit the formation of close 112 

pores in aerogels. With the thicker wall, it can bear certain pressure to protect the pores in 113 

aerogels forming as the close pores. Oppositely, from the optical microscopy images 114 

comparison of a biopolymeric porous matrix with three different solutions (alginate solution, 115 

gelatin solution and mixture solution), more interconnected pores will be formed with the 116 

addition of gelatin (Cuadros, Erices, & Aguilera, 2015). Gelatin, sucrose and paraffin wax 117 

have been confirmed to be used as porogens to increase the porosity of materials. (Cuadros, 118 

Erices, & Aguilera, 2015; Liu, Manesis, Chan, & Yu, 2015; Pircher, et al., 2015).  119 

On the other hand, drying methods of aerogels can obviously control the pore structure 120 
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of aerogels. Supercritical drying produces pores dominantly at the nanoscale. Sophie Groult, 121 

et al. (Groult & Budtova, 2018b) have studied various facts on aerogel pore structures impact 122 

of external conditions. With the supercritical drying, a large number of cylindrical rods are 123 

crossed together as the skeleton to form a three dimension network. The pore size distribution 124 

and network intensive degree can be adjusted during supercritical drying. Recent years, 125 

freeze drying is commonly used due to its safety and low cost. Choosing a different way to 126 

pre-freeze samples will lead to different size of ice crystal presenting pores in aerogels which 127 

will be introduced in Section 2.3.2.  128 

2.2. Polysaccharide and pore structures of aerogel 129 

Polysaccharides are widely used in aerogels for their bio-sustainability and 130 

biocompatibility. The polysaccharides selected in this section are commonly used in 131 

recent years. Described below are the molecular structure features with or without 132 

modification and pore structures of aerogels (as summarised in Table 1 and Table 2) 133 

of polysaccharides and the characteristics of polysaccharide-based aerogels: 134 

 135 

Table 1 Summary of polysaccharide modification influence on performance 136 

Name Modification methods Performance improvement References 

Starch Hybrid Improvement of aerogel hardness, 

anti-fungal property surface area, 

thermal insulation property 

(Abhari, et al., 2017), 

(Miao, et al., 2008) and 

(Wang, et al., 2018) 

Chitosan Grafting, monomethyl-

modification 

Improvement of solubility 

coagulation 

(Hsan, et al., 2018) and (El 

Knidri, et al., 2018) 

Konjac 

glucomannan 

Grafting, oxidation Hydrophobic interactions ability, 

good swelling ability and 

appropriate water retention capacity 

(Wu, et al., 2013) and (Luo, 

et al., 2018) 

Alginate Grafting and targeted 

modification 

Thermos-responsiveness, pH-

responsiveness and hydrophobicity 

(Shao, et al., 2018) and 

(Cheng, Lu, Zhang, Shi & 

Cao, 2012) 

K-

Carrageenan 

Carboxymethylation Targeted release in the intestine. (Leong, et al., 2011) 

Pectin Oxidation, 

carboxymethylation, 

Intrinsic viscosity decrease, 

thermo-sensitive 

(Gupta, et al., 2013) and 

(Işıklan, et al., 2018) 

 137 

Table 2 Summary of polysaccharide influence on aerogel pore structure 138 

Name 

 

Influence on aerogel pore structure Reference 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/water-retention
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Cellulose (NFC) Formation of small pore size of aerogels 

(Jin, Nishiyama, Wada & Kuga, 

2004) 

(CNC) Formation of rigid structure of aerogels (Heath & Thielemans, 2010) 

Starch 

Influence on specific surface area and density of 

aerogels; (Zhu, 2019) 

Chitosan 

Formation of more random orientation aerogel pore 

structure (Takeshita& Yoda, 2015) 

Konjac 

glucomannan 

Formation of open and close pores with gelatin and 

starch (Wang, et al., 2018) 

Alginate Impaction on porosity and pore size of aerogels (Dekamin, et al., 2018) 

 139 

Cellulose: As one of the most abundant organic resources on the earth, cellulose has been 140 

transformed into aerogels with excellent performance and value of industrial field 141 

applications during the last decades. It is commonly obtained from plants (Somerville, 2006) 142 

and microorganisms (Moon, Martini, Nairn, Simonsen, & Youngblood, 2011; Somerville, 143 

2006). Cellulose is a biopolymer composed of D- glucose and β-1, 4-glucosidic bond. Three 144 

kinds of cellulose aerogels, including nanofibrillated cellulose aerogels, bacterial cellulose 145 

aerogels and cellulose nanocrystal aerogels (Wan, et al., 2019), are distinguished through 146 

different ingredient and synthetic methods. These three general types of cellulose are divided 147 

depending on the different resource, process and morphology (Abdul Khalil, et al., 2015).  148 

(1) Nanofibrillated cellulose: After a fibrillated process, cellulose fiber reached to microfibril 149 

units that can be considered as nanofibrillated cellulose (NFC) with 5-70 nm diameter, 150 

several micrometer lengths (Cherian, Paulose, & Vysakh, 2018; Blanco, et al., 2018). 151 

After forming aerogels, NFC presents the pores of about 10-100nm with supercritical 152 

drying. Some researchers use this particular structure to construct the properties of 153 

aerogel. Shaoliang Xiao et al. (Xiao, Gao, Lu, Li, & Sun, 2015) reported fabrication of 154 

NFC from natural pine needles. Using nano-level NFCs interconnecting with each other 155 

(diameter range from 30 to 70 nm), NFC aerogel fabricated with three dimensional 156 

polymeric networks has been introduced to increase the surface area. The specific 157 

structure of nanofibrillated cellulose forms its unique properties. The high content of 158 

nanofibrillated cellulose will hinder the ice crystals growth during freezing, contributing 159 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/microorganism
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to the small pore size of aerogels, which could be used in particle separation in gas and 160 

liquid phases (Jin, Nishiyama, Wada & Kuga, 2004). 161 

(2) Cellulose nanocrystal: Cellulose nanocrystal (CNC) aerogels are also known as 162 

nanowhiskers. After hydrolysis reaction and mechanical treatment, lignocellulose fibers 163 

were disposed into a few nanometers in length with strong acids (De Oliveira, et al., 2019; 164 

Seabra, Bernardes, Fávaro, Paula, & Durán, 2018; Bhat, Khan, Usmani, Umapathi, & Al-165 

Kindy, 2018). It has been proved by Heath & Thielemans (Heath & Thielemans, 2010) 166 

that hydrogen bonds collapse could be avoided due to the rigid structure resulting from 167 

the high modulus of the highly crystalline cellulose nanowhiskers. To pursue the high 168 

mechanical properties of aerogels, it is an option to consider the cellulose nanocrystal. As 169 

reported by Quan Yong Cheng et al. (Cheng, Guan, Wang, Li, & Zeng, 2018), a super 170 

hydrophobicity CNC coated cotton fabric was fabricated to separate oil and water with 171 

good mechanical handleability. 172 

(3) Bacterial cellulose: Unlike NFC and CNC, bacterial cellulose (BC) is produced by 173 

acetobacter xylinum (Bodin, Bäckdahl, Petersen, & Gatenholm, 2017; Foresti, Vázquez, 174 

& Boury, 2017). (Lee & Bismarck, 2016). Since bacterial cellulose is from microbial 175 

metabolism, it has good biocompatibility and nontoxicity (Foresti, et al., 2017). BC 176 

aerogels with good biocompatibility, high mechanical strength in wet environment, high 177 

stimulative epithelialization ability, good liquid and gas permeability, and inhibition of 178 

skin infections could be used in medical, such as skin care (Picheth, et al., 2017; 179 

Amnuaikit, Chusuit, Raknam, & Boonme, 2011; Keskin, Sendemir Urkmez, & Hames, 180 

2017), topological wound healing (Petersen & Gatenholm, 2011) and drug delivery 181 

(Sheikhi, et al., 2018). Hadi Hosseini (Hosseini, Kokabi, & Mousavi, 2018a) took full 182 

advantage of entangled BC nanofibers to fabricate a new class of BC/reduced graphene 183 

oxide nanocomposite aerogels to be used as sensor in some components and parts.  184 
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Starch: Starch is the main storage carbohydrate in higher plants. Starch contains two D-185 

glucan biopolymers, i.e., amylose, a relatively linear 1,4-α-D-glucan with a small number of 186 

long branches; and amylopectin, mainly a 1,4-α-D-glucan containing high-density branches 187 

(ca. 5% of glycosidic bonds are α-1,6) (Maningat, Seib, Bassi, Woo, & Lasater, 2009). With a 188 

mass of starch branched structure, it is easy to stretch into three dimensional network when 189 

the chains of starch meet water (Ubeyitogullari & Ciftci, 2016). According to the diverse 190 

constitution of amylose and amylopectin, the performance of starch presents totally different. 191 

Pure amylose could not form as aerogels because the heterogeneous structure could not stand 192 

the pressure during the freezing process (Druel, Bardl, Vorwerg & Budtova, 2007). However, 193 

appropriate addition of amylose can increase the specific surface area of the aerogel but 194 

reduce the density. And the type of starch and ratio of amylose and amylopectin are important 195 

for the microstructure of aerogels, resulting in different properties. For example, the amylose 196 

content of starch could determine the mechanical properties of aerogels (Zhu, 2019). Despite 197 

of the outstanding advantages of starch aerogel, there remain some drawbacks, such as low 198 

hardness. However, the mechanical property is able to be improved through start materials 199 

modified in the preparation process of aerogels (Abhari, Madadlou, & Dini, 2017; Miao, et 200 

al., 2008; Wang, et al., 2018). Negar Abhari et al. (Abhari, et al., 2017) fabricated trisodium 201 

citrate cross-linked starch aerogels to improve the hardness and decrease the adhesiveness. 202 

Chitosan: Extracted from various organisms commonly found in arthropod shells, chitin 203 

has β-linked N-acetyl-D-glucosamine carbohydrate polymer presenting insoluble 204 

performance (Ziatabar, et al., 2018). To have a certain extent solubility of chitin, chitosan can 205 

be obtained through deacetylate treatment (El Knidri, Belaabed, Addaou, Laajeb, & Lahsini, 206 

2018). The properties of chitosan can be enhanced by chemical modification, such as grafting 207 

reaction (Hsan, Dutta, Kumar, Bera, & Das, 2018), monomethyl-modification (El Knidri, et 208 

al., 2018), O-alkylated reaction, etc. In the research of Takeshita & Yoda (Takeshita& Yoda, 209 
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2015), the comparison between cellulose aerogels and chitosan aerogels with same density 210 

shows that chitosan aerogels have more random orientation pore structure contributes to the 211 

good thermal insulation properties. Meanwhile, formed in chitosan aerogels, three dimension 212 

hierarchical porous scaffold benefits to the improvement of electrochemical cyclability and 213 

rate capability (Hassan, Suzuki & El-Moneim, 2014; Ji, et al., 2013).  214 

Konjac glucomannan: Konjac glucomannan (KGM) is a β-1, 4 glycosidic bonds linked 215 

polysaccharide composed of D- mannose and D- glucose with a molar ratio of 1.5:1-1.6:1 and 216 

5–10 % acetyl substitution. It has abundant free carboxyl and hydroxyl groups in the skeleton 217 

unit, contributing to excellent ability to attract the multivalent cations and form desirable 218 

cross-linking structure. It has a high viscous property (30,000 mPa s, 1%, w/ v), and 219 

molecular weight (6.8×10
5
–9×10

6
 Da) (Crosby, 2002; Li, et al., 2019), making it easier to be 220 

considered as a framework material in aerogels (Zhu, Hu, Jiang, Liu, & Li, 2019). In our 221 

previous studies (Wang, et al., 2018), KGM molecular chain as a skeleton can be composited 222 

with gelatin and starch, which could promote the formation of open and close pores, 223 

respectively. Currently, some physical and chemical methods are commonly used to modify 224 

the native konjac glucomannan getting wonderful functions. Chen Xin et al. (Xin, et al., 2017) 225 

studied the effect of different deacetylation interaction degrees on intramolecular and 226 

intermolecular forces in KGM system and thereby lead to various hydrophobic ability. 227 

Simultaneously active hydroxyl groups in KGM structure do favor of some other chemical 228 

reaction, including grafting (Wu, Deng, & Lin, 2013; Xia, et al., 2010) and cross-linking 229 

(Ratcliffe, Williams, English, & Meadows, 2013), oxidation (Luo, et al., 2018). 230 

Alginate: Having free carboxyl and hydroxyl groups in alginate linear structure as well 231 

as the   G-blocks, alginate has an excellent capacity to attract the multivalent cations and then 232 

form a novel “egg-box” structure. The block content of β -d-mannuronic acid or α -l-233 

guluronic acid impacts on the structure of hydrogel and the aerogels pore structures including 234 
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porosity percentages and pore size (Dekamin, et al., 2018). Sodium alginate possesses the 235 

characteristic of pH sensitivity with the different solubility. At pH < 4, the sodium alginate is 236 

insoluble while it has a viscous and stable characteristic when pH increased to 6-9. Chemical 237 

modification is a universal method to introduce the functional groups into molecular. Lin 238 

Shao et al. (Shao, et al., 2018) have obtained a thermos-responsiveness and pH-239 

responsiveness alginate composite aerogel by grafting with N-isopropylacrylamide 240 

(hydrophobic block) and N-hydroxymethylacrylamide (hydrophilic block). 241 

Carrageenan: 3-linked-β-d-galactopyranoses and 4-linked-α-d-galactopyranoses 242 

constitute the carrageenan alternatively and repetitively. According to different sulfation 243 

degree and position, carrageenan can be distinguished from different variants and is mainly 244 

divided into κ-carrageenan, ι -carrageenan and λ-carrageenan (Anderson, Dolan, & Rees, 245 

1973). The difference between these three types of carrageenan is the binding ions as forming 246 

helical structures. κ-, ι- and λ-carrageenan are easier to strengthened with the presence of K
+
, 247 

Ca
2+

 and no need for sodium salts, respectively (Derkach, et al., 2018). Located out the 248 

double helix, the sulfonate groups of κ-carrageenan were interacted with the cations (K
+
, Ca

2+
, 249 

Co
2+

 and Fe
3+

) by ionic force. This specific binding could contribute to dope the conductive 250 

polymer, which promotes the aggregation to junction areas and the cross-linking of 251 

conductive polymer with the carrageenan-cation, resulting in the improvement of mechanical 252 

properties of aerogels (Zamora-Sequeira, Ardao, Starbird & García-González, 2018). 253 

Chemical modification of carrageenan is considered as an effective route to improving 254 

properties. Carboxymethylation process has been used in kappa carrageenan to produce 255 

carrageenan derivatives which have promising potential to apply in drug delivery (Leong, et 256 

al., 2011). 257 

Pectin: Pectin is composed of different degrees of esterified residues of galacturonic acid 258 

(Groult & Budtova, 2018a). Depending on various degrees of pectin esterification, it can be 259 
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classified into two categories: high-methoxy pectin and low-methoxy pectin. As verified by 260 

Victor J. Morris et al. (Morris, Belshaw, Waldron, & Maxwell, 2013), pectin based materials 261 

present various biological and chemical properties with diverse chemical structure. In some 262 

specific aerogels, pectin were used as gelata and stabilizer due to its high solution viscosity 263 

and gel speed. Moreover, it is promising to use pectin aerogels in oral drug delivery because 264 

of their gastro-resistant properties (Groult & Budtova, 2018b). When the pH is near or higher 265 

than PKa (3-3.5), pectin can combine with divalent cations, also known as “egg-box” 266 

structure, to form an intermolecular junction zone mainly through the connection of ionic 267 

bonds. An affinity with alginate has been compared and ranked as follows: Pb (II) > Cu (II) > 268 

Cd (II) > Ba (II) > Sr (II) > Ca (II) > Co (II), Ni (II), Zn (II) > Mn (II) (Mørch, Donati, & 269 

Strand, 2006). Commonly, other direct chemical modifications have been introduced into 270 

pectin, including oxidation (Gupta, Tummalapalli, Deopura, & Alam, 2013), functional 271 

copolymerization (Işıklan & Tokmak, 2018) and carboxymethylation (Muthukumaran, et al., 272 

2018), etc. 273 

2.3. Drying methods for aerogels preparation 274 

 Concluded from past researches, there are two mainstream drying methods to prepare 275 

aerogels with different mechanism. Supercritical drying is the most efficient method to 276 

produce small size pores. Utilizing the characteristics of supercritical fluids, supercritical 277 

drying needs high pressure. It is dangerous and expensive, and the process is not easy to be 278 

big scale commercialized production. The freeze drying is simple, economical, 279 

environmentally-friendly, and easy to operate, large scale production. However, its drying 280 

cycle is long. Since atmospheric drying is rarely used (Vareda, Lamy-Mendes, & Durães, 281 

2018), it will not be discussed in this review.  282 

2.3.1. Supercritical drying.  283 

The fabrication process of Supercritical drying can be classed into two approaches, high 284 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/polymerization
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temperature supercritical drying (HTSCD) and low temperature supercritical drying (LTSCD). 285 

In HTSCD, the water in hydrogel needs to be replaced with an organic solvent (alcohol, 286 

acetone) and then placed in an autoclave for heating and pressurization. The solvent in the 287 

gels reaches the supercritical state, and then vents out at constant temperature. In LTSCD, 288 

soluble CO2 is used as a drying medium to replace the organic solvent (alcohol, acetone) in 289 

gels, and can be transferred into supercritical CO2 at critical temperature close to room 290 

temperature, followed by the formation of aerogels. However, Supercritical drying can 291 

eliminate capillary pressure and maintain the original shape of materials because the pressure 292 

and temperature can be controlled to get critical point at which gas and liquid co-exist with 293 

same density and the interface disappeared to achieve phase transfer (Kistler, 1931). This 294 

high efficient hydrogel drying method has the advantage that surface tensions in pores can be 295 

avoided to maintain the pore structure of aerogels. The transformation from gels to aerogels 296 

in supercritical drying, hydrogel aqueous phase will be substituted by ethanol with the 297 

purpose of reducing surface tension and thereby eliminate capillary pressure to prevent from 298 

pore collapse (Liu, Fang, Oderinde, Zhang, & Fu, 2017). Finding suitable and safe 299 

supercritical fluid was considered as a challenge in the previous research work until CO2 300 

being used as drying medium for its relative high security, temperature (31 °C) and mild 301 

pressure (74 bar) (Ciftci, et al., 2017) during preparation process in industry. After ethanol 302 

substituting (the preparation of alcogels), the supercritical extraction of ethanol assisted by 303 

supercritical fluids (such as CO2, CH4) was carried out and then aerogels could be collected.  304 

Amount of ethanol: Certificated by porosity, density and scanning electron microscope, 305 

the surface area increased with the increase of ethanol content (Estella, Echeverría, Laguna & 306 

Garrido, 2008). And the excessive flow rate of ethanol extraction caused an increase in the 307 

diffusion rate of ethanol between the pores. This will lead to more cracking and affect the 308 

structure inside the gel, which is not conducive to the formation of high specific surface area 309 
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in aerogels.  310 

Drying time: It has been reported that the structure of the materials was influenced by 311 

different mass transfer resistances with time (Brunner, 2013). García-González et al. (García-312 

González, Camino-Rey, Alnaief, Zetzl, & Smirnova, 2012) showed there is a difference in the 313 

density of the starch aerogels with different drying time (drying time after 30 min, the density 314 

is 0.40 g/cm
3
; after 1 h, the density is 0.27 g/cm

3
 and after 2 h and longer, the density is 0.21 315 

g/cm
3
). And relative long drying time led to high surface area.  However, the optimal drying 316 

time need to be controlled due to the comprehensive economic benefits. 317 

Drying pressure: The supercritical drying pressure increases contributed to decreasing of 318 

specific surface area of aerogels and increasing of the density. It has been reported that high 319 

pressure produced aerogels with small pores and the rate of depressurization affects the pore 320 

growth, leading to the formation of larger pores (Tai, et al., 2017).  321 

Table 3 showed a microstructure comparison between different ingredient aerogels with 322 

same supercritical drying methods. It can be found that the pore size distribution is on the 323 

range of nano level. Low density and high porosity are observed from previous researches. 324 

They are the typical characteristic of aerogels from supercritical drying method. 325 

 326 

Table 3 Physical properties of different type polysaccharide-based aerogels 327 

Samples Density 

(g/cm
3
) 

Surface 

area(m
2
/g) 

Pore 

size(nm) 

Porosity 

(%) 

Reference 

Pectin aerogel 0.04-

0.05 

270-350 - - (Nešić, et al., 2018) 

barley and yeast β-

glucan aerogels 

0.03-

0.12 

89.4-173.1 23.7-16.1 - (Salgado, et al., 2017) 

Alginate aerogel 0.15-

0.17 

126.9-

173.3 

15.48-

17.34 

- (Tkalec, Kranvogl, Perva 

Uzunalić, Knez, & 

Novak, 2016) 

Ag 

nanoparticle/cellulose 

nanofiber aerogel 

0.021 31.5  98.6 (Matsuyama, et al., 

2019) 

Nano-cellulose 

aerogels 

- 260.87-

353.83 

7.81-9.38 - (Wang, et al., 2016) 

starch aerogels - 93 24-25 87.7 (Goimil, et al., 2017) 

https://www.sciencedirect.com/science/article/pii/S0896844612000757#!
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 328 

2.3.2. Freeze drying.  329 

Because of low cost and high safety, it is a tendency that the freeze drying is extensively 330 

applied for aerogel preparation. First, gel sol is frozen, and then the ice of gel is sublimated 331 

during which the liquid in gels is replaced by gas to generate pores under high vacuum. (Ni, 332 

et al., 2016; Wang, et al., 2019). Aerogel structure is determined by ice crystal growth process 333 

of the gel solution. Shunli Liu et al. (Liu, Yao, Oderinde, Zhang, & Fu, 2017) fabricated 334 

gum/graphene oxide aerogels and found that there is a force pushing and flocking the solute 335 

(XG/GO hybrid) together between two ice blocks during ice crystalizing, and then after 336 

sublimation the aerogel walls formed (schematic diagram as shown in Fig. 2). Therefore, the 337 

structure of pores is directly determined by ice crystal frame. Using low temperature 338 

polarizing microscopy, Xuewen Ni et al. (Ni, et al., 2016) observed the ice crystal growing 339 

process with different temperature conditions and different ingredient concentration.  The 340 

SEM images and figures of pore size distribution show that temperature and ingredient 341 

concentration can significantly affect the growth of ice crystal and further the pore structure. 342 

Under different freeze drying conditions, aerogel pore size can be adjusted (as summarized in 343 

Table 4).   344 

 345 

 346 

Chitosan aerogels - 257-479 12.6-15.0 96.8 (López-Iglesias, et al., 

2019) 

Tungsten/alginate 

aerogels 

- 381 31 96 (Paraskevopoulou, et al., 

2018) 

chitosan/lanthanum 

hydroxide aerogel 

- 172.74 19.79 - (Lin, Li, Song, Jiao, & 

Zhou, 2018) 
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Fig. 2 Schematic of aerogel formation (YX. Wang, et al., 2017) 347 

 348 

2.3.2.1. Ice crystal growth theory. From the freezing profile provided by Dimitris 349 

Zaragotas et al. (Zaragotas, Liolios, & Anastassopoulos, 2016), who studied the ice 350 

nucleation and crystal, it can be seen that there are two phases of crystallization: nucleation 351 

and crystal growth. The first short step of crystallization is nucleation. During this period, 352 

when solvent cools down to reach supercooling status, the crystal center as well as crystal 353 

nucleus formed with some certain stimulus. As previous studies (Searles, Carpenter, & 354 

Randolph, 2001) have suggested, it is vital to control the ice nucleus because the initial 355 

nucleation temperature and crystallization rate depend on it so that the size of ice crystal was 356 

determined. The second step is the growth of ice crystal. There is a competitive relationship 357 

between growth of ice nucleus and ice crystal (as shown in Fig. 3). Under the condition that 358 

ice nucleus are easy to form, it will grow rapidly, condense into a block and finally decrease 359 

the growth chance of ice crystal contributing to form relatively small and uniform crystal. 360 

However, if the temperature lower down slowly, the ice nucleus near cold side have the 361 

tendency to derive to other regions resulting in the formation of large size ice crystal. 362 

 363 

 364 

Fig. 3 Temperature influence on nucleation rate and ice crystal growth rate. (Lorenzo, et al., 365 

2008) 366 
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 367 

2.3.2.2. Ice crystal growth controlling.  368 

Temperature: Generally, temperature and slurry concentration are considered as the 369 

major factors in affecting the ice crystal growth (Chen, et al., 2018). By low temperature 370 

polarizing microscopy, the morphology of ice crystal was observed under different 371 

temperatures (-15, -25 and -40
o
C), and the results showed that a high correlation between 372 

temperature and the ice crystal structure. From -15 to -40◦C, the mean diameter of ice crystal 373 

decreased significantly, while pore size had the same tendency (Ni, et al., 2016). An extreme 374 

lower temperature freezing can be achieved by liquid nitrogen freezing. Alginate/gelatin 375 

aerogel was fabricated via liquid nitrogen bath at -196 ◦C with the pore size about 4-8 μm (Li, 376 

Chen, & Chen, 2019).  377 

Pressure: During freezing process, high pressure can short the time of cooling and form 378 

small and regular ice. According to the theory, some researches (Zhu, Ramaswamy, & Le Bail, 379 

2005) has studied the high-pressure shift freezing (HPSF). The stable structure of H2O 380 

molecules will be destroyed at high pressure, and the broken bonds have a tendency to be 381 

more compact with each other (Zhang, et al., 2015). Under the high pressure, the freezing 382 

point will be decreased, inducing the super-cooling and rapid ice nucleation rates producing 383 

small ice crystals. M.T. Kalichevsky-Dong et al. (Kalichevsky-Dong, Ablett, Lillford, & 384 

Knorr, 2000) found the HPSF technique can produce smaller and uniform ice only under -385 

15°C. It has been applied in some food products to promote the formation of more regularity 386 

ice crystal (Martino, Otero, Sanz, & Zaritzky, 1998; Sequeira-Munoz, Chevalier, Simpson, Le 387 

Bail, & Ramaswamy, 2005). 388 

Concentration: According to the simulation of ice crystals in sugar solutions (Van der 389 

Sman, 2016), it can be concluded that ice crystal sizes depend on solute concentration. 390 

During the crystals growing process, the concentration will be continuously increased, while 391 
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the solute is pushed to the higher concentration area, which inhibits further growth of ice 392 

crystals. The three dimensional of ice crystals growing in trehalose solution with different 393 

concentrations can be obtained by Mach-Zehnder interferometer. With the rise of trehalose 394 

concentration (8 wt%), the growing rate of ice crystal increases to a top point (2 wt%), and 395 

then decreases (Shimada & Furukawa, 2018). Additionally, the existence of suspension solids 396 

also has a great influence on the shape of ice crystals. During the freezing process of locust 397 

bean and xanthan gums solution, LT-SEM micrographs have been used to verify that ice 398 

crystals growth have been limited by suspension solids (Fernández, Martino, Zaritzky, 399 

Guignon, & Sanz, 2007). 400 

 401 

Table 4 Polysaccharide-based aerogels pore size under different Freeze-drying conditions 402 

 403 

3. Potential applications of polysaccharide-based aerogels with performance assessment 404 

3.1. Environmental engineering 405 

With advances of industrialization and globalization, pollution problems follow the 406 

emission of organic liquid, leakage of oil. It will destroy the ecological environment. Aerogel, 407 

the ultralight porous material, is useful for removing the pollutants (Maleki & Hüsing, 2018). 408 

3.1.1. Water pollutants adsorption (phosphate and metal ions). Water pollution is a 409 

serious problem which threats the health of human and animals in the world. The 410 

Aerogel type Pore size Freezing 

temperature 

Freezing 

pressure 

Concentration Reference 

Nanofibrillated 

cellulose 

aerogel 

2-50 nm liquid nitrogen 

bath 

(-196°C) 

< 5 Pa 0.1 wt％ (Gupta, Singh, 

Agrawal, & 

Maji, 2018) 

cellulose 

aerogel 

20-600 μm -80℃ 20 Pa 2.0 wt％ (Geng, 2018) 

nanofibrillated 

cellulose 

aerogel 

50.6-74.3 

μm 

-196°C (liquid 

nitrogen) 

< 20 Pa 3.0 wt％ (Li, et al., 2018) 

nanofibrillated 

cellulose 

aerogel 

47.3-68.1 

μm 

-55°C (dry ice) < 20 Pa 3.0 wt％  

11.8-19.2 

μm 

-18°C (certified 

freezer) 

(Li, et al., 2018) 
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combination properties of low density, abundant porous structure and large surface area can 411 

endow aerogels with transcendental absorption performance. There is a large volume of 412 

published studies regarding aerogels as a water pollutants adsorption material as shown in 413 

Table 5. Recent studies on phosphate uptake ability have revealed that the remarkable 414 

adsorption capacity could reach 189.06 mg∙/g as well as the fast absorption rate with Zr-415 

GO/Alg (zirconium-crosslinked grapheme oxide/alginate) aerogels beads (Shan, Tang, Zhao, 416 

Wang, & Cui, 2019). There are also nanoporous chitosan/lanthanum composite aerogel beads 417 

prepared for phosphate adsorption due to their high surface area and large pore volume of 418 

172.74 m
2
/g and 1.05 cm

3
/g, respectively (Lin, et al., 2018). The nanocellulose-based 419 

aerogels are able to remove the Cu (II) and Pb (II) with the maximum capacity of 420 

175.44 mg/g and 357.44 mg/g, respectively (Zhang, Li, Shi, Chen, & Fan, 2018). For metal 421 

ions absorption, polysaccharide composite aerogels have been considered as one of the most 422 

effective ways to remove water metal ions pollution. 423 

 424 

Table 5 Water pollutants adsorption performance of different types of polysaccharide-based aerogels 425 

Polysaccharide type 

of aerogels 

Form of 

aerogels 

Pollutant 

adsorption 

mechanism 

Preparation 

method 

Pollutant Reference 

Alginate-graphene 

metal oxide) 

Beads Electrostatic 

interaction and 

ligand exchange 

effect 

Freeze 

drying 

technique 

Phosphate (Shan, et al., 2019) 

Nanoporous 

chitosan/lanthanum 

Beads Lanthanum has a 

good binding 

ability to 

phosphorus 

Supercritical 

carbon 

dioxide 

drying 

Phosphorus (Lin, et al., 2018) 

Cross-linked 

chitosan aerogel 

Cylindrical Chelation of 

amino and 

hydroxyl groups 

with heavy metal 

ions 

Cross-linked 

process and 

freeze 

drying 

technique 

Cu ion (Li, et al., 2016) 

Nanocellulose-

polyethyleneimine 

Aerogels 

Cylindrical Amine groups 

combine with 

metal ions 

Freeze 

drying 

technique 

Cu (II) and 

Pb (II) 

(Zhang, et al., 2018) 

 426 

3.1.2. Oil separation from water.  427 

https://www.sciencedirect.com/topics/chemistry/amine
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The natural water resource has been polluted severely by the accidental oil leakage, 428 

petroleum spills and industrial  emission (Liu, et al., 2018). Water protection and purification 429 

as a detective task accelerated the development of porous materials, such as the activated 430 

carbon, CNTs (Yan, et al., 2019), polypropylene sponge (Wang, et al., 2018), polyurethane 431 

foam (Kong, et al., 2018; Nikkhah, Zilouei, Asadinezhad, & Keshavarz, 2015) and wood 432 

fibers (Likon, Remškar, Ducman, & Švegl, 2013). Porous aerogels have been proved to 433 

effectively separate the water and oil mixture. As studied by Changzhou Chen et al. (Chen, et 434 

al., 2018), the brittle graphene aerogels modified by cheap and renewable carbohydrate 435 

resources lignin were created as compressive, ultralight and fire-resistant oil absorption 436 

materials. In the research of Hongyuan Zhang et al (Zhang, et al., 2019), nanocellulose and 437 

sodium dodecylsulfate (SDS) aerogels which have high pump oil absorption capacity about 438 

145.20 g·g
−1

 (aerogel density is 1.50 mg/cm
3
 ) were fabricated through a high speed 439 

mechanical whipping combined with liquid nitrogen freezing and freeze drying method. 440 

Many studies focused on biomass aerogels, including chitosan/cellulose (Zhang, Li, Shi, 441 

Chen, & Fan, 2018), banana peel and waste paper (Li, et al., 2018) to promote water 442 

protection. 443 

3.1.3. Remove organic pollutants. With the development of industrial manufacture and 444 

chemical production, toxic chemical leakage aggravates water contamination and resulting 445 

the world water shortage. In 2005, the Songhua River in China was seriously polluted by 446 

benzene chemical industry (Wang, Feng, Zhao, & Li, 2012). However, this pollution was not 447 

a simple local short term pollution problem, because many tributaries of the Songhua River 448 

diverted the polluted water. This lead to the pollution impact on nearly 70% of Heilongjiang 449 

Province, with a total population of more than 20 million. To improve this water quality, 450 

some urgent solutions need to be utilized to deal with it. Some plant waste has been 451 

processed to a novel carbohydrate-based aerogels with excellent sorption ability. Lin Zhu et 452 

javascript:;
javascript:;
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al. (Zhu, et al., 2017) prepared the carbon aerogels using waste inedible pomelo peels as the 453 

polysaccharide precursor for the application of organic pollutants removal. Y. Wang et al 454 

focused on carbon aerogels using raw materials derived from waste durian shell (DSCA) for 455 

removing the organic solvents (Y. Wang, et al., 2017).  456 

3.2. Buildings  457 

3.2.1. Thermal and sound insulation. Since the advent of aerogels, NASA's Kennedy 458 

Space Center and NASA's Glenn Research Center have focused on aerogels’ thermal 459 

insulating function to be applied into space industry, such as space radiator and space suit 460 

(Fesmire, 2006). As the improvement of technologies and reduction of cost, the civilization 461 

of aerogels in buildings has been widely achieved contributing to the improvement of energy 462 

saving. In order to avoid drawbacks of traditional aerogels including environment pollution 463 

during the preparation process as well as degradation period after being abandoned, 464 

carbohydrate ingredients are being introduced into aerogel insulation materials. Konjac 465 

glucomannan (KGM)/starch based aerogels strengthened with the waste of agriculture (wheat 466 

straw) presented good thermal insulation and mechanical properties (Wang, et al., 2018). An 467 

optimized thermal conductivity of 0.046 W/(m·K) and compression modulus of 67.5 kPa was 468 

measured for assessing potential application prospect in thermal insulation. The main goal 469 

and advantage of this konjac glucomannan (KGM)/starch based aerogels is the biodegradable 470 

performance after being abandoned which will not increase the burden on the environment. In 471 

another work, Pragya Gupta et al. (Gupta, et al., 2018) invented a nanofibrillated cellulose 472 

aerogels based on pinewood cell wall for thermal insulation application. The lowest thermal 473 

conductivity of nanofibrillated cellulose aerogels was 0.025 W/(m·K). 474 

Noise pollution were commonly caused by the industrial machines, home appliances, 475 

vehicles and buildings (Arenas & Crocker, 2010; Zannin, Diniz, & Barbosa, 2002). It was 476 

considered as the most widespread and hardest controlled environment pollution (Bronzaft & 477 
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Hagler, 2010; Chen, Chang, & Jiao, 2014). It will not only affect the human hearing system 478 

but also cause some health problems such as high blood pressure (Schmidt, et al., 2015) and 479 

increased physiologic stress (Seidman & Standring, 2010; Tzivian, et al., 2015). Apart from 480 

the influence on human health, noise can accelerate the aging of buildings and machinery, 481 

affecting the accuracy of the equipment. Therefore, acoustic insulation materials are urgently 482 

needed. Porous aerogels with special open pore structure are commonly used in the acoustic 483 

design of buildings and aircraft so that the sound wave could be absorbed. Jingduo Feng et al. 484 

(Feng, et al., 2016) carried out a silica/cellulose hybrid aerogels for acoustic insulation. The 485 

sound absorption coefficients reached 0.39-0.50 with 10 mm thickness.  486 

3.2.2. Fire resistant. It is urgent to enhance the fire resistance of the building insulation 487 

materials. Liang Wang et al (Wang, Sánchez-Soto & Abt, 2010) had fabricated gum 488 

Arabic/clay aerogels from gum Arabic (GA) and sodium montmorillonite (Na
+
-MMT) clay 489 

offered sustainability, thermal stability and flame retardancy. The fire combustion behavior 490 

was tested with cone calorimeter, which presented that alginate/clay aerogels with the 491 

addition of p-toluenesulfonic acid can reduce the total heat release of aerogels and toxic 492 

combustion. HongBing Chen et al (Chen, Li, Chen, He & Zhao, 2019) reported a self-cross-493 

linked melamine-formaldehyde-pectin aerogels with good thermal stability, excellent water 494 

resistance and low flammability. Pectin acts as the structure materials during the cross-linking 495 

reaction of melamine-formaldehyde. The results showed that composite aerogels have the 496 

time to ignition of 24-27 s, peak of heat release rate of 80.1-116.6 kW/m. 497 

3.3. Healthy and medical applications 498 

As follows, some common polysaccharide aerogels are taken as examples. 499 

3.3.1. Chitosan aerogels.  500 

Chitosan has a lot of beneficial properties in the medical field. It can accelerate blood 501 

clotting, improve antibacterial ability and reduce pain in patients with nerve endings (López-502 



23 
 

Iglesias, et al., 2016; Lodhi, et al., 2014; Okamoto, et al., 2003). The healing process is a 503 

complex process, requiring the collaborative efforts of many different tissues and cell 504 

lineages. And wound repair is the process by which scar tissue replaces normal skin. 505 

However, the physical self-repairing ability of many critically injured and patients with 506 

chronic wounds is relatively poor and challenged by many hampered, such as the diabetic 507 

foot ulcers and leg pressure ulcers which will maintain a long–term inflammatory phase. 508 

Polysaccharide-based aerogels can play an important role to absorb high amounts of aqueous 509 

medicine. With the chitosan aerogels loading with vancomycin, Clara López-Iglesias et al. 510 

(López-Iglesias, et al., 2019) devoted to treat and prevent infections at the wound site. 511 

Combined with cotton fibre, highly absorbable composite chitosan aerogels were developed 512 

to stop bleeding (Duong, et al., 2018). The main function of this composite aerogels is to 513 

counteract the systolic blood pressure in the wound cavity preventing the blood loss.  514 

3.3.2. Pectin aerogels. Polysaccharide is preferred raw materials in aerogels for drug delivery 515 

due to their biocompatibility, diverse functionality and low toxicity. Pectin attracts the 516 

attention of researchers because of its gelation, stability and low toxicity. In the research of 517 

Tkalec et al. (Tkalec, Knez, & Novak, 2015), a high-methoxyl pectin aerogels were prepared 518 

to be carriers to enhance the dissolution of some drugs. For example, when used to release 519 

Nifedipine, 100% drug release was achieved within 12 hours. And a core-shell structure 520 

polysaccharide-based aerogels based on alginate (as the shell) and amidated pectin (as the 521 

core) were fabricated to prolong the drug activity (Horvat, Pantić, Knez, & Novak, 2018). 522 

3.3.3. Cellulose aerogels. Cellulose has already been used in wound healing due to their 523 

excellent high stability, porosity and non-allergenic. With ultrapure lignocellulosic nanofibers, 524 

cellulose aerogels were prepared and applied as dressing material for wounds. 525 

Beclomethasone dipropionate nanoparticles were introduced in cellulose aerogels, which 526 

could be used to deliver drugs (Valo, et al., 2013). Using waste wheat straw, polypyrrole and 527 
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silver nanoparticles to prepare a special functional composite cellulose aerogels to achieve 528 

the ability to kill E. coli, S. aureus and L. monocytogenes at direct contact (Wan & Li, 2016).  529 

3.3.4. Alginate aerogels. Alginate is an anionic polysaccharide with linear molecule structure.  530 

Combined with divalent cations, a special“egg-box” structure formed with unique properties. 531 

Cristiano Agostino Bugnone et al. (Bugnone, et al., 2018) researched silica/alginate aerogel 532 

beads with different coating affecting the release rate of poorly-water soluble ketoprofen. To 533 

utilize the pH-sensitive release of alginate aerogel, it could be used as drug delivery to 534 

simulate different pH values, such as gastric environment (pH 1.2) and intestinal environment 535 

(pH 6.8). Lin Shao et al. (Shao, et al., 2018) have grafted alginate with N-536 

isopropylacrylamide and N-hydroxymethylacrylamide to design a dual responsive 537 

polysaccharide aerogels for delivery of hydrophobic drug model, Indomethacin. With dual 538 

thermo- and pH-responsive intelligent, alginate composite aerogels will be erosion at low 539 

temperature and structure shrinkage characteristic at high temperature as well as faster drug 540 

release in neutral solution. 541 

3.4. Electrochemistry applications 542 

3.4.1. Sensor. Regardless of the high popularity of advanced graphene technology, 543 

environmental friendly, unexceptionable flexibility polysaccharide materials are still of acute 544 

interests to be combined in the electrochemistry applications. As the rapid development of 545 

electronic skin converting the environmental stimuli to the electronic signal, the high 546 

sensitive sensor materials are required. Recent years, bacterial cellulose has been chosen as 547 

the combination with high electrical and magnetic materials, such as carbon nanotube (CNT) 548 

(Hosseini, Kokabi, & Mousavi, 2018a) and graphene oxide (Hosseini, Kokabi, & Mousavi, 549 

2018b). Hadi Hosseini et al. (Hosseini, Kokabi, & Mousavi, 2018a) reported an assessment 550 

about the synthesis of a novel sensing material based on bacterial cellulose (BC)/reduced 551 

graphene oxide (rGO) aerogels via super critical drying method as strain sensor to detect 552 

https://www.sciencedirect.com/topics/chemistry/graphene-oxide
https://www.sciencedirect.com/topics/chemistry/graphene-oxide
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human motion.  553 

3.4.2. Capacitor electrodes. Super capacitors are promising candidates of energy storage, 554 

could be of interest for various industrial application. With the rapid charging or discharging 555 

rate and long service life, it presents great potential performance rather than traditional 556 

capacitors. As the requirement of good electrical conductivity for capacitors, porous carbon 557 

composite aerogels have attracted the attention of many researchers. Heteroatom doping 558 

especially using most fascinating nitrogen (N) heteroatom derived from seaweed is 559 

considered as one effective way to further improve the electrical capacity of carbon aerogels 560 

(Bing, et al., 2017). Jing Han et al. (Han, et al., 2017) have demonstrated 3D porous glucose-561 

based carbon aerogels created more connection opportunity for good electrochemical 562 

behavior. Furthermore, to overcome the poor mechanical strength, hypotoxicity and 563 

fabricating pollution, many polysaccharide materials with low cost, economic friendly, and 564 

excellent mechanical properties have been added in carbon aerogel such as cattail (Yu, Han, 565 

Li, Li, & Wang, 2018), nanocellulose (Yang, et al., 2018), etc.  566 

3.5. Packaging 567 

To prevent food from getting metamorphic or moldy, the function of food package is 568 

isolating air and humidity to reach the request from customers and manufacturers. The plastic 569 

and expanded polystyrene are widely used in food packaging with the risk of toxic hazard to 570 

the customer, pollution to our environment (Ali & Wahab, 2017) and harm to animal’s health 571 

(Rochman, et al., 2013), such as marine plastic debris (Mendenhall, 2018) and toxic additives 572 

(Raj & Matche, 2011) remain in plastic package. As used for food package, many expanded 573 

polystyrene boxes present effective thermal insulation properties in food storage whereas this 574 

can be achieved by aerogels with significant insulation performance. To replace expanded 575 

polystyrene, biodegradable polysaccharide-based aerogels are common used as food 576 

packaging materials. In 2013, Kirsi S.Mikkonen et al. (Mikkonen, Parikka, Ghafar & 577 
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Tenkanen, 2013) has presented that the application of polysaccharide-based aerogels in food 578 

section would be food packaging rather than food edible productions. Some polysaccharides 579 

are incorporated into aerogel food packaging, since they present the excellent degradable 580 

properties. Safoura Ahmadzadeh et al (Ahmadzadeh, et al., 2015) fabricated cellulose 581 

nanocomposite aerogels with surface-modified montmorillonite as substitute for foamed 582 

polyurethane materials for dry food packaging. Aleksandra Nešić et al. (Nešić, et al., 2018) 583 

developed pectin-TiO2 nanocomposite aerogels with thermal insulation and antimicrobial 584 

properties, which could be used as packaging for temperature-sensitive food. In the recent 585 

studies of Jean Paulo De Oliveira et al. (De Oliveira, et al., 2019), hybrid 586 

PVA/cellulose/nanocellulose aerogels have the ability to control the release of bioactive 587 

extracts, which is conductive to the application in the production of active food packaging 588 

materials.  589 

 590 

4. Current research status of polysaccharide-based aerogels 591 

According to an advanced search in ScienceDirect.com, the statistics data of published 592 

papers on polysaccharide-based aerogels with respect to the publication year present the 593 

research status in recent years. As can be seen, the data were sorted by polysaccharide type, 594 

different fields and countries. In this work, the countries of literature were determined 595 

according to the first author's first affiliation institution. If there are co-first authors, the first 596 

one in the author list will be considered as the first author. Fig. 4 (a) shows the popular 597 

tendency of various categories of polysaccharide-based aerogels from 2011 to the beginning 598 

of 2019. Although aerogel has been invented in 1931, polysaccharide-based aerogels have 599 

attracted the attention of researches in recent years for the demand of sustainable 600 

development. It can be seen that there is an obvious increase in 2014, and then followed with 601 

sustainable growth until now. For the first half of 2019, 36 publications can be found. In 602 

https://www.sciencedirect.com/science/article/pii/S0927775714009662#!
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addition, another important data can be found that cellulose aerogels occupied the majority of 603 

the total number of published papers during the period from 2013 as shown in Fig. 4 (a). 604 

Cellulose is one of the most abundant natural polysaccharide which could be derived from 605 

cotton, straw and plant. It has been demonstrated to be nontoxic and good-biocompatible in 606 

both animal and human, which attracts the attention of researchers. In addition, the excellent 607 

chemical and mechanical properties contribute to the wide spectrum use of cellulose. 608 

Cellulose has been converted into green aerogels and assumed the structure roles in 609 

polysaccharide-based aerogels with extremely low density and high surface area. According 610 

to different application fields, the literature numbers ratio of polysaccharide-based aerogels 611 

are presented in Fig. 4 (b). Fig. 5 was a statistical comparison of publications on 612 

polysaccharide-based aerogels with respect to countries. Polysaccharide-based aerogels was 613 

paid a greater attention to by the Chinese researchers and it took a large proportion (49.5%) 614 

of the total areas. The major proportion of countries of research institutes distribution is taken 615 

by USA, France, Germany and Slovenia, with 6.9%, 5.3%, 4.7% and 3.7%, respectively. 616 

Country contribution could put forward the needs and inputs analysis of polysaccharide-617 

based aerogels in the world. These information could provide the researchers with a reference 618 

on the tendency.  619 

 620 
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 621 

Fig. 4 Polysaccharide-based aerogel studies according to publication year, polysaccharide 622 

type (a) and different fields (b) 623 

 624 
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 625 

Fig. 5 Polysaccharide-based aerogel studies according to countries of research institutes (total 626 

number of publications: 321) 627 

 628 

5. Conclusion, challenges and perspectives 629 

Polysaccharide-based aerogels belong to the new generation of porous materials and 630 

have been regarded as the most sustainable aerogel material because of its advantages of 631 

sustainability, low toxicity, biocompatibility and renewability. The procedure include 632 

extraction of raw materials (polysaccharide), modification of raw materials, preparation of 633 

hydrogel and dehydration (supercritical drying and freeze drying method). Polysaccharide-634 

based aerogels have significant application prospects in fields including environmental 635 

engineering, buildings, medicine, electrochemical components and packagings. The numbers 636 

of published papers with respect to publication years, regions and applications have been 637 

counted and analyzed. The publication number on polysaccharide-based aerogels keeps a 638 

stable growth from 2011 to 2014 and then from 2014 to the beginning of 2019, a significant 639 



30 
 

increase appeared. Regional distribution of those published papers is presented by a pie chart, 640 

which shows China is the main research region of polysaccharide-based aerogels.  641 

By summarizing the research on polysaccharide-based aerogels in recent years, it can be 642 

seen that low-density, high specific surface area polysaccharide-based aerogels are widely 643 

used in various fields due to their excellent functions. Optimizing the performance of 644 

polysaccharide-based aerogels that meet the needs of the current society will be a hot spot for 645 

future research. With the increase of environmental pollution, polysaccharide-based aerogels 646 

can also exert their specific advantages, to replace traditional materials for benefiting 647 

mankind. However, there is still improvement space for further researches on polysaccharide-648 

based aerogels. Based on the literature above, several recommendations can be put forward 649 

which may provide clear guidance for the future development of polysaccharide-based 650 

aerogels: 651 

(1) Use of natural agricultural waste as raw materials and improving performance. Most 652 

polysaccharide are combined with some conventional inorganic and organic materials to 653 

prepare polysaccharide-based aerogels with the advantages of both natural and synthetic 654 

materials. However, we should promote the use of agricultural waste (e.g., straw and leaf) to 655 

prepare polysaccharide-based aerogels. The agricultural waste has large output, wide sources, 656 

cheap price and specific natural physical structure. Some of this structure could be obtained 657 

at micro-scale or even nano-scale, contributing to the performance improvement of 658 

polysaccharide-based aerogels. In recent years, the promotion has been reflected in some 659 

publications, such as the use of discarded banana peels, straws with the natural network, 660 

porous cavity to prepare polysaccharide-based aerogels, although the qualities and 661 

performances should be enhanced. 662 

(2) Increase the hydrophobicity. In practical applications, the use of polysaccharide-based 663 

aerogels is far from enough. There is some challenges in developing polysaccharide-based 664 

javascript:;
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aerogel materials, such as the hydrophobicity. Generally, polysaccharides are hydrophilic 665 

materials. The problem from weather, water and microorganism will follow, contributing to 666 

destroy and degrade polysaccharide-based aerogels. So researchers need to pay attention to 667 

increase the hydrophobicity. In recent years, some chemical methods have been found to 668 

increase the hydrophobicity, but most of these methods will do harm to our environment. We 669 

need to get a balance between hydrophilic and hydrophobic which could refer to the bionics, 670 

such as lotus leaves with specific structure non-polar methyl groups. When the balance 671 

between hydrophilic and hydrophobic could be adjusted as wanted, the use of scope and shelf 672 

life of aerogels will be expanded. 673 

(3) Production scale expansion. The preparation is easy to be achieved in the lab, but it is 674 

a challenge in industrialization. There is still a problem in preparing large scale supercritical 675 

drying equipment and there is a risk to operate for production in large scale. Therefore, in 676 

order to achieve the mass production in industry and application in broad fields, it is urgent to 677 

find ways to fabricate and optimize equipment as well as adjust the operating parameters to 678 

achieve large capacity and continuous production 679 

(4) Product form/shape design. Polysaccharide-based aerogels have been used in many 680 

fields as new functional materials.  In order to meet the requirement of the market, 681 

polysaccharide-based aerogel products with different size and shape need to be designed and 682 

manufactured. The shape of aerogels could be roughly divided into the following categories, 683 

block, sheet panel, balls and beads. In the buildings, block aerogels are needed, and it is 684 

difficult to prepare directly. When producing large-sized aerogels, it is prone to cracking due 685 

to stress concentration. How to prevent cracking will be a challenge in the future. In some 686 

certain specific applications, a folded aerogel with high surface area is required, such as an 687 

air filter. It is necessary to produce aerogels with a certain degree of softness for folding. 688 

Finally, for spherical and bead aerogels, continuous production is a challenge that depends on 689 
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the design of the production mold and the production line. 690 
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