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Abstract: We present a new approach to diffuse correlation spectroscopy which overcomes
the limited light throughput of single-mode photon counting techniques. Our system employs
heterodyne holographic detection to allow parallel measurement of the power spectrum of a
fluctuating electric field across thousands of modes, at the shot noise limit, using a conventional
sCMOS camera. This yields an order of magnitude reduction in detector cost compared to
conventional techniques, whilst also providing robustness to the effects of ambient light and an
improved signal-to-noise ratio during in vitro experiments. We demonstrate a GPU-accelerated
holographic demodulation system capable of processing the incoming data (79.4 M pixels per
second) in real-time, and a novel Fourier domain model of diffuse correlation spectroscopy
which permits the direct recovery of flow parameters from the measured data. Our detection and
modelling strategy are rigorously validated by modulating the Brownian component of an optical
tissue phantom, demonstrating absolute measurements of the Brownian diffusion coefficient in
excellent agreement with conventional methods. We further demonstrate the feasibility of our
system through in vivo measurement of pulsatile flow rates measured in the human forearm.
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1. Introduction

Diffuse correlation spectroscopy (DCS) is an optical imaging modality in which the ensemble
average of flow within a tissue sample can be inferred from measurement of the intensity
autocorrelation function of light that has passed through the sample. Under optical properties
typical of biological tissues, measurements are sensitive to flow at a depth approximately equal
to one half to one third of the optical source-detector separation (SDS) distance [1,2]. Thus for
a typical DCS setup with an SDS distance of 2-3 cm, attempts to measure cerebral blood flow
(CBF) are limited to superficial cortical regions. To date, deep CBF has not been measured using
DCS in human studies [1].
Conventional implementations of DCS typically employ single mode photon counting tech-

niques. Such methods are limited by low light throughput [1] in a single mode, placing a minimum
limit on the detection time [3]. Increasing penetration depth requires the use of larger SDS
distances, which will decrease the available signal-to-noise ratio (SNR) further (by increasing
the number of absorption and scattering events, since the attenuation of near-infrared (NIR) light
by these two mechanisms is in the order of 10 dB/cm [4]).
Increasing acquisition time can ameliorate this situation but leads to a reduction in temporal

resolution. Taking the average of many single-mode detection fibres bundled together is an
expensive option that requires many photon counting detectors and can increase complexity
of system integration. Improved collection optics, the use of few-mode detection fibres, and
increasing the amount of light delivered to the tissue can also help to improve SNR [1,5,6].
However, patient safety limits must be adhered to, which necessitates an optical source of
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sufficiently large diameter and low power rating. All of the above characteristics limit the
applicability of conventional homodyne DCS in portable continuous monitoring applications to
which optical methods are otherwise well suited.

1.1. Motivation

Previous authors have noted that improvements to increase SNR and temporal resolution will help
the development of DCS functional experiments, as well as expand the range of uses for DCS in
clinical monitoring [1]. The utility of high frame rate (∼20 Hz) DCS measurements, compared to
the frame rates of 0.3 to 1 Hz that have historically been used, has also been discussed [7]. These
benefits include improved monitoring of cerebrovascular autoregulation dynamics, more robust
identification of motion artefacts, and increased measurement throughput that could enable high
spatial resolution with fewer detectors. Improvements in SNR are also motivated by the ability to
perform flow measurements with improved spatial resolution and depth penetration through the
use of acousto-optic tomography (AOT) [3,8–10], which is an emerging hybrid imaging modality
that makes use of the ultrasound modulation of light [11]. The modulation efficiency of photons
by ultrasound is low at biologically safe power levels, and therefore significantly improved SNR
is required in order to detect this modulated component [9].
An interferometric diffusing wave spectroscopy (iDWS) system has recently been described

which makes use of multimode fibre detection and a high speed line-scan CMOS camera capable
of operating at 333 kHz [12]. Although this technique is robust to the effects of ambient light,
its sample rate is considerably slower than a conventional diffusing wave spectroscopy (DWS)
system (which is typically in the order of ∼10 MHz) and it cannot resolve sample decorrelations
shorter than 6 µs. Additionally, this approach does not have the temporal resolution necessary
to sufficiently resolve ultrasound tagged photons, which are typically modulated by ultrasound
pressure fields fluctuating in the range of 1 - 5 MHz [3].
The use of a multi-pixel interferometric diffuse correlation spectroscopy (iDCS) system has

also been presented, which uses a design wavelength of 1064 nm in order to improve SNR
and depth sensitivity. Compared to a more commonly used wavelength of 785 nm, this system
encounters less optical scattering events and also benefits from an increase in photon availability
[13]. Maximum permissible exposure limits are also higher at 1064 nm, meaning that roughly
four times more optical power can be used. However, this technique is marred by bulky equipment
(cryostats associated with superconducting nanowire photon detectors) or afterpulsing (InGaAs
single photon avalanche diodes), which prohibit the clinical application or accuracy of this
technique at present, respectively [14].

1.2. Holographic techniques

In this work, we explore an alternative approach to DCSmeasurements that employs a holographic
method known as heterodyne parallel speckle detection (HPSD). HPSD has been well described
in the literature since its inception in 2003 [15–18]. The experimental configuration of an
HPSD system consists of a Mach-Zender interferometer, where the reference and sample arms
are recombined and interfere on a digital camera. Temporal filtering occurs over the camera
integration period, and the resulting images record the first-order power spectral density of the
scattered electric field, S1, at a particular frequency and with a certain bandwidth. By detuning
the frequency of the reference arm of the interferometer by a pair of Bragg cells, S1 may be
sampled at frequency shifts (∆f ) from that of the input optical field, allowing the frequency
spectrum of the scattered light to be acquired. The heterodyne gain and shot noise limited
performance [17] of this technique permit illumination below the maximum permissible exposure
limits of tissue, and it is therefore particularly suited to in vivo flow detection [8]. HPSD has
previously been used to measure convective flow rates in vitro, by fitting measured power spectra
to a Fourier domain DWS model of convective motion [19]. This group quantified diffusive
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Brownian motion by fitting measured data to the discrete Fourier transform of a DWS model of
Brownian motion. The same study also measured localised superficial microvascular convective
flow rates in the cerebral cortices of 2 mice and the retinas of 3 adult rats by imaging through a 5
mm × 5 mm aperture. However, this study used a camera exposure time of 30 ms and a camera
frame rate of 12 Hz, which provided insufficient temporal resolution to resolve pulsatile flow in
vivo, especially after frame averaging. Additionally, it is well documented in the DCS literature
that a Brownian diffusion model, rather than a convective motion model, provides a better fit to
measured DCS data over a broad range of tissue types [2,20].
Using HPSD to measure flow, at rates sufficient to resolve pulsatile information, brings

significant challenges. To employ holographic DCS in a practical in vivo setting requires that
we use short exposure times in order to minimise the effects of sample movement and external
sources of vibration which disrupt the interferometric configuration. Additionally, short exposure
times are required to facilitate a high parameter output rate that can resolve fast pulsatile changes.
However, reducing the exposure time comes at the cost of a wider instrument response function
(IRF), which will result in a broadening of the measured power spectra, which in turn will increase
the complexity of data sampling and interpretation. A related complication arises as whilst the
true field autocorrelation, G1, and power spectral density, S1, of the scattered light form a Fourier
transform pair, the data measured using conventional and holographic DCS systems will deviate
due to differences in the nature of the measurement systems. These differences arise due to the
nature of the sampling in the two domains, the effects of IRF broadening and static scatterers,
and the differing effects of measurement noise in the two configurations. Whilst our technique
offers many advantages compared to conventional measurement techniques, data acquisition
speed and processing load requirements are high, especially if we wish to achieve real-time data
acquisition at high parameter output rates. There is also a trade-off to consider between speed of
data acquisition, making use of averaging to improve SNR, and sampling the measured power
spectra at a sufficient number of frequency shifts so as to permit robust fitting to a forward model.

1.3. Overview and contribution

We present a high speed Fourier domain HPSD implementation of DCS suitable for making
real-time in vivo measurements at a frame rate that permits the recovery of pulsatile flow. Our
approach employs HPSD to allow averaging over thousands of modes to realise improvements in
SNR (which is demonstrated in vitro in this paper), and operates with continuous wave (CW)
illumination without disturbance from ambient light.
In Section 2. we develop a novel Fourier domain DCS model which allows for parameter

fitting in the native domain of the data, permitting extraction of flow parameters whilst respecting
the nature of the noise in the measurement system. Furthermore, consideration of the IRF of the
holographic DCS instrument allows us to appropriately optimise our detection strategy to allow
for high parameter output rates. In Section 3. we describe the architecture of our holographic
DCS instrument which uses a highly parallel GPU-accelerated holographic demodulation pathway
to manage the processing requirements for the technique; we demonstrate measurements of the
power spectral density of the electric field across ∼1,300 speckles at 6 discrete frequency shifts
with an overall parameter output rate of 23.8 Hz. In Section 4. we show that our novel Fourier
domain DCS model provides accurate absolute interpretation of measured data in their native
domain, both at room temperature and over a physiologically relevant temperature range. We
also show that our instrument offers robustness to the effects of ambient light, and describe how
the improvement in the SNR of our S1 measurement scales with the square root of the number of
detected camera pixels in vitro. Finally, we demonstrate the in vivo application of our inexpensive
camera based detection system by recovering pulsatile flow rates measured in the human forearm.



Research Article Vol. 11, No. 11 / 1 November 2020 / Biomedical Optics Express 6758

2. Theory

DCS is used to infer the mean-square particle displacement, 〈∆r2(τ)〉, of tissue scatterers in
the illuminated region between an optical source and detector through measurement of the
temporal fluctuation of NIR light that has passed through a sample [20,21]. For the case of
deterministic convective motion of scatterers, 〈∆r2(τ)〉 = 〈V2〉τ2, where 〈V2〉 (cm2/s2) is the
second moment of the speed distribution of scattering particles. In the case of diffusive Brownian
motion of scatterers 〈∆r2(τ)〉 = 6Dbτ, where Db (cm2/s) is the effective Brownian diffusion
coefficient of scattering particles [22]. Db can be used as a blood flow index (BFI) parameter in
biological tissues, although it has units of cm2/s, rather than the more commonly encountered
blood perfusion unit of ml/min/100g [23]. Relative change in blood flow (rBF = BFI/BFI0,
where BFI0 is the baseline measurement of BFI) measured by DCS has been shown to agree
with relative changes in absolute blood flow as measured by gold standard techniques, such as
arterial spin labelling magnetic resonance imaging (ASL-MRI) [1]. To determine the pertinent
parameters from the measured data requires fitting to a model which considers the geometry
under consideration. In this section we will review the conventional approach to this problem
(which is performed in the time domain), before developing a Fourier domain approach suitable
for use with the HPSD technique.

2.1. Conventional DCS

Boas and Yodh [24] employed correlation transport theory to derive the correlation diffusion
equation, which describes the propagation of the temporal electric field autocorrelation function
in turbid biological tissue. In a clinically relevant semi-infinite geometry (Fig. 1) [7], the
un-normalised solution for this autocorrelation function for dynamic scatters is given by

G1d(τ) =
S0
4πD

[
exp−K(τ)r1

r1
−

exp−K(τ)r2
r2

]
, (1)

where:

• τ is the delay (or lag) time of the autocorrelation function;

• S0 is the optical source intensity;

• D is the optical diffusion coefficient, 1
3(µa+µ′s)

, µa is the absorption coefficient and µ′s is the
reduced scattering coefficient;

• K(τ) =
√
3µaµ′s + µ

′2
s k20〈∆r2(τ)〉 is the decay constant, k0 is the wavevector magnitude of

the incident CW light field, 2πn/λ, and λ is the wavelength of the CW light field;

• z0 = 1/µ′s is the depth into the medium at which the collimated source is approximated as
a positive isotropic source;

• ρ is the distance between the optical source and detector;

• Reff = −1.440n−2 + 0.710n−1 + 0.668 + 0.0636n is the effective reflection coefficient
and accounts for the reflective index mismatch between air (nout) and tissue (nin), where
n = nin/nout. This is a commonly used series approximation of [2]

Reff =
Rφ + Rj

2 − Rφ + Rj
, (2)

where Rφ and Rj are the isotropic fluence rate and directional flux terms, respectively [25];
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• zb = 2z0
3
(1+Reff )
(1−Reff )

, −zb is the position at which there should be a signal size of zero in order
to fulfil the extrapolated boundary condition [25];

• r1 =
√
z20 + ρ2 is the distance between the detector and an approximated positive isotropic

imaging source;

• r2 =
√
(2zb + z0)2 + ρ2 is the distance between the detector and an approximated negative

isotropic imaging source located at position z = −(z0 + 2zb).

Fig. 1. Semi-infinite geometry reflection mode model and notation used in DCS measure-
ments. Adapted from [20].

The normalised temporal electric field autocorrelation function is then [23]

g1d(τ) =
G1d(τ)

G1d(τ = 0)
. (3)

In practice the normalised intensity temporal autocorrelation function (g2) at the detector is
directly measured, where

g2(τ) ≡
〈I(t)I(t + τ)〉
〈I(t)〉2

, (4)

and where intensity is proportional to the time average of the square of the electric field,
I(t) = |E(t)|2. Assuming a zero mean Gaussian electric field, the Siegert relation can then be
used to extract g1(τ) from g2(τ) [26]

g2(τ) = 1 + β|g1(τ)|2, (5)

where [24]
g1(τ) = α |g1d(τ)| + (1 − α), (6)

and where α ∈ [0, 1] and β ∈ [0, 1] are both unitless factors.
The parameter α is an adaptation to biological tissue and refers to the fraction of scattering

events due to dynamic, rather than stationary, scatterers. This factor is therefore the ratio of
moving scatterers to the total number of scatterers in a sample. The parameter β is inversely
proportional to the number of detected speckles or modes, and is also related to the coherence
length and stability of the laser light source, as well as the number of detected polarisation states
[22,24]; it can be determined from the y-intercept of g2(τ) at τ = 0.
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2.2. Fourier domain DCS

It is well established according to Weiner-Khinchin theorem that the first-order Doppler spectrum,
s1d(ω), and g1d(τ) are a Fourier transform pair [8,19,24,27–29]

s1d(ω) =
∫ +∞

−∞

g1d(τ) exp−iωτ dτ. (7)

The Fourier transform of Eq. (1) is then

S1d(∆ω) =
S0
4πD

[F(∆ω, r1) − F(∆ω, r2)] , (8)

where ∆ω is angular detuning frequency. In the case of Brownian motion and ∆ω>0, we find that

F[Db](∆ω+, r) =
1
∆ω3/2

(
1
4
+

i
4

)
µ′s
√
6C exp

(
−
D(∆ω)

2
−
E(∆ω)

2

)
× . . .(

exp (D(∆ω)) erfc (A−(∆ω)) − i exp (E(∆ω)) erfc (A+(∆ω))
)
,

(9)

where the auxiliary function

A±(∆ω) =
(2 ∓ 2i)∆ω

√
µaµ

′
s

2C + (1 ± i)µ
′2
s r
√
6C

2
√
2µ′s
√
∆ω

, (10)

erfc is the complementary error function,

C = k20Db, (11)

D(∆ω) =
iµa∆ω
µ′sC

, (12)

and

E(∆ω) =
3iµ′2s Cr2

∆ω
. (13)

We note that g1d(τ) is an even and real function, and therefore its Fourier transform is also real.
For convective motion we find that

F[V2](∆ω, r) =
√

3µaµ′s
µ′2s k20V2r2 + ∆ω2

K1
©«
√√√
3µa

(
µ′sr2 +

∆ω2

µ′sk20V2

)ª®¬ , (14)

where K1 is the first modified Bessel function of the second kind.

3. Methods

3.1. Heterodyne parallel speckle detection

In general, interferometry techniques involve the recombination of a reference beam with a
signal beam that has been transmitted through a sample. The source is split into two parts by a
beamsplitter to form a signal beam and a reference beam. In our implementation of an HPSD
interferometry system, the frequency of the signal beam is unshifted, such that ωS = ωL, where
ωS is the optical frequency of the signal beam, and ωL is the optical frequency of the laser source
beam. The reference beam, ωR, is shifted away from ωL using a pair of polarisation-independent
acousto-optic modulators (AOMs) with a centre wavelength of 150 MHz. A pair of AOMs is



Research Article Vol. 11, No. 11 / 1 November 2020 / Biomedical Optics Express 6761

used as the required frequency shift can be very small compared to the centre wavelength of the
AOMs [3], and thus one AOM is used to produce a negative frequency shift (ωAOM1), and the
other AOM a positive frequency shift (ωAOM2) of a slightly different magnitude. This results in
ωR = ωL + ωAOM1 + ωAOM2.
Having passed through the sample, the signal field takes the form ES(t) = ES expiωSt. The

reference field takes the form of ER(t) = ER expiωRt. The sample and reference beams are
recombined in a beamsplitter and are interfered on a camera sensor. This recombination occurs
slightly off-axis with respect to the camera sensor by a small tilt angle [16].
The intensity of the speckle interference pattern that is detected by the camera is then

I(t) = |ES(t) + ER(t)|2, (15)

which expands to [16]

I(t) = |ES |
2 + |ER |

2 + ESE∗R exp−i(ωR−ωS)t + E∗SER exp+i(ωR−ωS)t, (16)

where the first two terms of Eq. (16) correspond to the self-beating homodyne terms, and the
third and fourth terms correspond to the heterodyne signal-reference cross terms. Therefore the
strength of the measured signal (i.e., the two heterodyne terms) depends on both the transmitted
signal beam and the reference beam, according to

G =
|ESER |

|ES |2
� 1, (17)

whereG is heterodyne gain [30]. The use of a large reference beam intensity allows this technique
to reach the shot noise limit, permitting optimum acquisition times [3,9], enabling its use for in
vivo imaging [8].
For a given value of ωR, Nf camera frames are captured using a given camera exposure

time, τe, and camera frame rate, fs. The off-axis recombination allows the spatial separation of
the zero order of diffraction and the two heterodyne gain terms (which are a conjugate pair).
This facilitates the spatial filtering component of HPSD, owing to the separation of the signal,
shot noise, speckle decorrelation noise and technical noise of the reference beam in the spatial
frequency domain of the detected interference pattern (Fig. 3) [8]. As well as this spatial filtering,
temporal filtering is also achieved by two methods. An inherent temporal filter is applied due to
the integration time of the camera. Further temporal filtering is also achieved by constructing
a hologram in the camera plane from two or more consecutive images. For example, using a
DC subtraction temporal filtering method, the camera plane hologram, HC, is constructed as the
difference of two successive images (i.e., Nf = 2)

HC = I1 − I2, (18)

which removes the two homodyne terms, |ES |
2 and |ER |

2 in Eq. (16), from the hologram. The
intensity hologram, HR, is then reconstructed in the object plane by performing a 2D discrete
Fourier transform of the camera plane hologram [31]

HR = |F2D(HC)|
2. (19)

A masking operation can then be performed to sum over the two heterodyne signal terms and
also to sum over a shot noise mask, which is implemented in one of the two ‘quiet’ corners of the
reconstructed hologram (Fig. 3). The average pixel value in each mask is then obtained, which
we denote by S±∆ω for the two heterodyne masks, and N for the shot noise mask. In order to
avoid contamination by the technical noise of the reference beam, none of the three masks should
be placed in the low spatial frequency region of HR [17]. The unnormalised first-order power
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spectral density at a given detuning frequency may then be calculated for each heterodyne term
as [19,32]

S1(±∆ω) =
S±∆ω
N
− 1. (20)

Phase-shifting holography (which is distinct from the DC subtraction temporal filtering method)
involves offsetting one of the AOM detuning frequencies by fs/Nf , so that multiple images of the
interference pattern can be recorded which have slightly different phase offsets between the signal
and reference beams [3]. This has the effect that, following temporal filtering, peak sensitivity to
the first heterodyne gain term of the IRF will be at DC (Fig. 5). For phase-shifting with Nf = 2,
HC is constructed according to Eq. (18), whilst for phase-shifting with Nf = 4, HC is constructed
as [16]

HC = (I1 − I3) + i(I2 − I4). (21)
Four-frame phase-shifting holography allows separation of the two heterodyne gain terms in the
reconstructed hologram; however, this comes at the cost of increased acquisition time, which one
group argues should ideally be less than the speckle decorrelation time of the sample [8]. However,
another group argues that this ‘decorrelation problem’ does not exist, and that optimal sensitivity
can be achieved by using a camera exposure time in the order of the speckle decorrelation time of
the sample [30]. Compared to other more complicated multiple-phase-shifting techniques, it has
been shown that a DC subtraction technique is sufficient to reach the shot noise limit [33]. This
shot noise limited performance was verified for our HPSD system (Fig. 3). The interested reader
is referred to [16] for further information regarding the formation of multiple frame holograms.

The expression for the IRF for the first and second heterodyne terms of an HPSD instrument is
given by [15,28]

B±∆ω =

������sinc
(
∆ω

2π
τe

) k=Nf∑
k=1

exp(−2ikπ/Nf ) exp(∓2ikπ∆ω/ωs)

������
2

, (22)

where ωs is the angular frame rate of the camera and

sinc(t) =
sin(πt)
πt

(23)

is the normalised sinc function.
The total normalised measured response in the Fourier domain is then [28]

s1(∆ω) = αs1d(∆ω) ∗ B±∆ω + (1 − α)B±∆ω , (24)

where ∗ is the convolution product. If the IRF is much narrower than the Doppler broadening
that is being measured, Eq. (24) can be simplified to [15,19]

s1(∆ω) = αs1d(∆ω) + (1 − α)B±∆ω . (25)

If we make the assumption that a sample is composed entirely of dynamic scatterers, then Eq. (25)
becomes

s1(∆ω) = s1d(∆ω). (26)
Likewise, if a sample is composed entirely of static scatterers, then Eq. (25) becomes

s1(∆ω) = B±∆ω . (27)

The naïve approach to recovering flow information from Fourier domain DCS data is simply
to transform the data into the time domain, and use established theory to fit for Db. However,
although the data are fundamentally equivalent, this approach will lead to errors owing to
differences in the sampling of the data in the time and frequency domains, the effects of static
scattering in a Fourier domain DCS system, the nature of the measurement noise, and broadening
by the IRF.
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3.2. System design and integration

We have developed a new Fourier domain implementation of DCS by building an off-axis HPSD
instrument. In our instrument, a pair of AOMs is placed on the reference arm (Gooch & Housego,
Fiber-Q, 150 MHz centre frequency, 785 nm, upshift & downshift). The signal field that has
been scattered by the sample is collected in a reflection mode geometry through the aperture of
a ∅ 5.0 mm core liquid light guide (Thorlabs, LLG5-4Z), which has a numerical aperture of
0.52 (we note that using a multimode detector fibre is an alternative approach which could be
implemented with modified detection optics). Our sCMOS camera (FLIR, BFS-U3-16S2M-CS)
has a sensor size of 1440 × 1080 pixels, which we truncate to 2n × 2n (where n is an integer
between 3 and 10) so as to facilitate holographic reconstruction by the fast Fourier transform
algorithm, and we denote Npix = 2n.
In order to maximise the use of the square camera sensor layout whilst employing a circular

aperture, the maximum achievable diameter of one heterodyne term on the camera sensor can
be shown to be Npix

√
2/(3 +

√
2) pixels, so as not to collect any signal at the zero order DC

term, whilst ensuring that the aperture is fully contained within the reconstructed hologram (i.e.,
without spatial aliasing). This is equivalent to calculating the maximum diameter of four equally
sized circles that are both aligned along the diagonal of a square and fully contained within the
square.
We wish to ensure that each speckle illuminates no less than one camera pixel, in order to

prevent multiple out of phase speckles illuminating a single pixel. Our camera has a pixel size,
∆pix, of 3.45 µm. Therefore we aim to constrain the minimum speckle size, S, according to
[34,35]

S =
(λz)2

Aaperture
≥ ∆2pix, (28)

where z is the observation distance between the plane of the aperture and the plane of the camera
sensor (as depicted in Fig. 2), and Aaperture is the area of the aperture. This yields a minimum
observation distance, zmin, of 19.5 mm. Additionally, by considering the maximum spatial

Fig. 2. Schematic representation of our off-axis HPSD system. A continuous wave (CW)
laser source is split into a reference arm and a sample arm in a fibre-coupled beamsplitter
(BS). The reference arm is frequency shifted by a pair of acousto-optic modulators (AOM1
and AOM2). Light is collected from the sample in a reflectance mode geometry through the
aperture of a liquid light guide. The two arms are recombined off-axis in a cube BS.
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frequency that can be resolved at the detector, it has also been shown that [36]

zmin =

√
2∆pixL
λ

, (29)

where L is the characteristic dimension of the aperture. This expression yields a value of zmin
= 31.1 mm for our system. The experiments reported in this paper use a value of z = 75 - 80
mm, which adheres to both of these constraints, and for which a single speckle occupies the
area of ∼15 - 17 square pixels, respectively. We sample ∼5,200 speckles in each signal mask for
Npix = 1, 024, and ∼1,300 speckles for Npix = 512. Decreasing the value of z from 75 - 80 mm to
31.1 mm would increase the number of detected speckles on the camera sensor, but this would
lead to sampling of the zero order DC term in the centre of the reconstructed hologram and is
therefore avoided.

Fig. 3. (a) Camera plane hologram, HC, formed using DC subtraction temporal filtering.
(b) Arbitrary logarithmic representation of a reconstructed intensity hologram, HR. The two
heterodyne gain terms, S±∆ω , are masked by the dotted circles (which are a conjugate pair),
the shot noise mask, N, is depicted by the dashed circle. (c) The thin grey solid line shows
the value of the diagonal white dashed line that has been superimposed on HR, averaged
over ±5 pixels in ky. The thick dashed black line shows the average shot noise value of all
the pixels in HC for this particular image reconstruction.

Real-time operation of our Fourier domain instrument is enabled by a GPU-accelerated
holographic demodulation system, which currently operates with a throughput of 79.4M pixels per
second for Npix = 512. One of the main challenges for the application of holographic DCS at high
frame rates is fast data acquisition and processing load: calculating an individual S1 measurement
requires frequency shifting, image capture, temporal filtering, 2D fast Fourier transform, spatial
filtering and reduction. We have therefore designed a custom integrated holographic DCS system
with a high throughput, with the aim of achieving real-time demodulation and data acquisition
at fast imaging frame rates, a schematic of which is shown in Fig. 4. The system consists of a
camera, a workstation and a control board. The control board receives instructions from the
workstation via a USB virtual COM port, and carries out the following three functions:

(1) generation of radio frequency (RF) waveforms for the AOMs using direct digital synthesis
(DDS);

(2) control of the laser output;

(3) synchronisation of the overall experiment by generation of camera triggerswhilst performing
sweeps through the required frequency shifts.
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Fig. 4. Integrated system architecture and data streaming via a highly parallel GPU-
accelerated demodulation pathway. The control board synchronises experiments, holograms
are relayed from the camera to the workstation’s system memory, and custom CUDA kernels
implement the holographic demodulation process.

Image data is then relayed from the camera to the workstation via a high bandwidth USB
3.0 connection, and then to the GPU via a 16 lane PCI express interface. Custom CUDA
kernels implement the holographic demodulation pathway (i.e., calculation of S1 values from
raw camera frames, as described in Section 3.1) using the CUDA FFT library. Demodulated data
are passed back to the workstation’s system memory for analysis. The use of this highly parallel
GPU-accelerated demodulation pathway, together with our tightly synchronised instrument with
minimal dead-time between frequency shifts, allows us to rapidly measure the power spectral
density of light scattered by a diffusing sample at a high parameter output rate (i.e., ∼20 Hz [7])
in real-time.

4. Experiments and results

All experiments were performed using a 785 nm CW long coherence length (∼9.5 m) laser
with a linewidth of ∼10 MHz (iBeam Smart S WS, Toptica), with a maximum optical output
power of 120 mW. Conventional DCS experiments used single-mode fibre detection to couple
the sample to a single photon avalanche detector, which has a typical dead time of 45 ns and a
response time of 30 ns (COUNT-50N, Laser Components), giving a typical maximum detection
rate of 13.3 MHz [7]. This is small compared to the 60 MHz system clock speed of our digital
correlator (Flex02-01D/C, Correlator.com), which was used in single channel photon history
recording mode to obtain photon arrival timestamps. These photon arrival timestamps were then
autocorrelated in software using the Laurence algorithm [37]. Our digital correlator was also
used to autocorrelate photon arrival times in hardware using the multi-tau algorithm [20,38],
using a fixed value of 106 delay times per decade by default. However, our implementation of the
Laurence algorithm provides more flexibility as we can define in software both the delay times of
the autocorrelation function and the frame rate of the DCS measurement.
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In order to validate our holographic DCS instrument, as well as Eqs. (22) and (27), a series of
4-phase IRF measurements was collected using a static polyester resin optical phantom for -100
Hz ≤ ∆f ≤ 100 Hz (Fig. 5). In this figure, each IRF model has been normalised by its respective
maximum value. Each measured IRF data set has been normalised according to a least squares fit
to the normalised IRF model (Eq. (22)), allowing for a constant noise offset in each case. The IRF
models in Fig. 5 have been shifted by −fs/Nf , as the peak sensitivity to the first heterodyne gain
term of the IRF is at DC for phase-shifting holography. There is excellent agreement between
measured and modelled data, which serves to validate our instrument’s design.

Fig. 5. 4-phase IRF detection and validation against the IRF model for the first and second
heterodyne terms (τe = 9.6 ms, fs = 29.8 Hz, Nf = 4).

4.1. Mixed model fitting

This section describes the mixed motion model fitting process that was applied to measured
DCS data in this study. Conventional DCS data (g2) were fit to Eq. (1) by minimisation of the
unweighted least squares objective function

arg min
i=k∑
i=1
[g2(τi)measured − g2(τi)model]

2 (30)

over k delay times. This was performed separately for both Brownian and convective motion
models (i.e., paired vectors of [Db, βDb ] and [〈V2〉, β〈V2 〉] were optimised for separately). In a
third and final optimisation step, the contribution of each of these two models to a mixed motion
model could then be determined by optimising for a ‘Brownian factor’ (FBr), which is constrained
to have a value between 0 and 1. This was achieved by minimisation of the unweighted least
squares objective function

arg min
i=k∑
i=1
[g2(τi)measured − [FBr × g2(τi)Brownian + (1 − FBr) × g2(τi)convective]]2 . (31)

The Brownian model fit and the extracted Db value could then be scaled by the Brownian factor.
Likewise, the convective model fit and the extracted 〈V2〉 value could then be scaled by (1 -



Research Article Vol. 11, No. 11 / 1 November 2020 / Biomedical Optics Express 6767

Brownian factor). The mixed motion model fit is then then sum of these two scaled model fits,
and we assume that flow parameters scale linearly with changes in Brownian factor. An example
of this mixed model fit is shown in Fig. 6(a) and Fig. 7(a).

Fig. 6. Application of (a) conventional DCS mixed model fitting and (b) holographic DCS
mixed model fitting to data acquired using an intralipid phantom. Magnified views are
shown in Fig. 7.

Fig. 7. Magnified views of Fig. 6 show that the mixed model fits the data better than either
the Brownian model or the convective model alone, for both (a) conventional DCS and (b)
holographic DCS.
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Similarly, measured S1 data were fit to Eq. (8); however, these data are implicitly un-normalised,
and therefore fitting for a normalisation constant (Cnorm) and noise floor parameter (Nfloor) was
also necessary. Flow parameters (i.e., Db or 〈V2〉), Cnorm and Nfloor were optimised for by
minimisation of the weighted least squares objective function

arg min
i=k∑
i=1

wi[Cnorm(S1d(∆ωi)measured − Nfloor) − s1d(∆ωi)model]
2, (32)

over k detuning frequencies, where wi represents the weights. s1d(∆ω)model is the forward model
normalised by its maximum value (i.e., its value at the smallest measured positive detuning
frequency), and wi is calculated as 1/σ2

i , where σi is the standard deviation of the measured data
at the ith frequency step. Again, in a third and final optimisation step, the contribution of each of
these two models of motion to a mixed motion model could then be determined by optimising
for a Brownian factor (constrained to take a value between 0 and 1). This was achieved by
minimisation of the weighted least squares function

arg min
i=k∑
i=1

wi[Cnorm(S1d(∆ωi)measured − Nfloor) − · · ·

[FBr × s1d(∆ωi)Brownian + (1 − FBr) × s1d(∆ωi)convective]]
2.

(33)

The Brownian factor could then be used to weight the contribution of each of the two model fits
to the mixed motion model, and to scale the values of Db and 〈V2〉 accordingly. An example of
this mixed model fit is shown in Fig. 6(b) and Fig. 7(b).

4.2. Experiment 1 - absolute equivalence at room temperature

For the purposes of demonstrating absolute equivalence between conventional and holographic
DCS techniques, we elected to use a sufficiently long camera exposure time (30 ms) together
with a camera frame rate of 17.5 Hz, such that convolution of the true power spectra with the IRF
could be ignored in the model fit process. This is the same camera exposure time that was used
in [19] to accurately measure known convective flow rates in vitro, which were controlled using a
calibrated syringe pump.
An intralipid optical tissue phantom (Intralipid 20 %, Fresenius Kabi) was prepared which

consisted of 25.62 ml of intralipid made up to 550 ml with deionised water, resulting in optical
properties of µ′s = 7.5 cm−1 (based on former in-house calibration measurements) and µa
= 0.026 cm−1 at 20 oC [39] (assuming that the optical absorption of intralipid is primarily
due to background water absorption, µBKG

a , as water is the main absorbing component of
intralipid [40,41]). A temperature dependent model for the optical properties of combined
intralipid/deionised water phantoms at 785 nm was constructed using the refractive index model
of pure water presented in [42], the optical absorption coefficient model of pure water presented
in [39], and the temperature coefficient for the reduced scattering coefficient of intralipid [40]
(personal communication), having made scaling adjustments to allow for intralipid concentration
differences.
The liquid phantom was contained within a glass beaker, which itself was immersed in a

thermostatically controlled waterbath. It is important to control and account for the temperature
of the phantom during absolute equivalence experiments, as not only does temperature affect
the optical properties of the phantom, but it also affects the value of Db within the phantom,
according to the Stokes-Einstein equation [19,28,43,44]

Db =
kBT
6πηr

, (34)
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where kB is Boltzmann’s constant, T is absolute temperature, η is dynamic viscosity, and r
is the hydrodynamic radius of spherical particles diffusing through a liquid in the limit of a
low Reynolds number. Furthermore, the dynamic viscosity of fluids also has a temperature
dependence, and this was modelled according to the empirical fit

ln
(
η

η0

)
= a + b

(
T0
T

)
+ c

(
T0
T

)2
, (35)

where, for water, T0 = 273.16 K, η0 = 1.792 × 10−3 Kg/(m · s), and suggested coefficient values
are a = -1.94 , b = -4.80 and c = 6.74 [45]. The SDS distance, as measured from the centre of
the source fibre to the centre of the detector, was set to 17.5 mm.
Holographic DCS data were gathered by implementing a logarithmic frequency sweep

consisting of 15 steps between 0.1 Hz and 1 MHz, with 201 camera frames recorded at each
frequency step, resulting in 200 data points at each detuning frequency for a DC subtraction
temporal filtering method. The measured data were then fit directly to Eq. (8) using a Brownian
motion model (as described by Eq. (32)) the results of which are depicted in Fig. 8 and Fig. 9(d).
The former of these two figures shows ±1 standard deviation of the noise floor corrected and
normalised data, together with the model fit to our Fourier domain DCS model of Brownian
motion. The average level of assumed Gaussian noise (as a percentage of mean s1 value) was
calculated at each detuning frequency, the median of which was determined to be 3.8 %. The full
width at half maximum (FWHM) of the measured signal is at least two orders of magnitude larger
than the main lobe of the IRF FWHM, and we therefore neglect the effects of IRF broadening in
this experiment. Our forward modelling simulations show that using these parameters, assuming
3.8 % Gaussian measurement noise averaged over 200 readings, an enforced condition of α = 1
and a DC subtraction temporal filtering method, we expect a final Db estimation error of ∼0.14
%.

Fig. 8. Fitting holographic DCS data to our Fourier domain DCS model (grey error bars
and grey solid line), which is at least two orders of magnitude wider than the IRF (black
dashed line). The black dotted line represents synthetic data produced by forward modelling
in the Fourier domain with the Db value acquired from a conventional DCS setup.
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Fig. 9. Fitting of measured data to native domain decorrelation models, for (a) conventional
DCS collection and (d) holographic DCS collection. Model fitting in the complementary
domain following numerical Fourier transform of measured data, for (b) holographic DCS
collection and (c) conventional DCS collection. Due to noise in the measured data, DCS
model fitting in the native domain is preferable to numerical transform and fitting in the
complementary domain.

Conventional DCS data were gathered by collecting 30 seconds of multi-tau autocorrelated g2
data, which were fit to Eq. (1) assuming α = 1 and a Brownian model of motion, the result of
which is shown in Fig. 9(a). The extracted value of Db was input into our Fourier domain DCS
forward model of Brownian motion, which is shown in Fig. 8 (black dotted line).

The naïve approach to recovering flow information from Fourier domain data is to numerically
Fourier transform the data into the time domain, and to use established theory to fit for Db. This
approach is depicted in Fig. 9(b), and would at first glance be considered acceptable under the
conditions of this experiment: a sufficiently narrow IRF, a sample composed entirely of dynamic
scatterers, and the ability to average out noise over a generously large data set. However, due
to the logarithmic spacing of the measured data, linear resampling prior to numerical Fourier
transform is required (using shape-preserving piece-wise cubic interpolation with a resolution of
0.1 Hz in this case). This two-step process is not immune to the presence of noise in the measured
data, which results in sub-optimal fitting in the complementary domain: the Db value acquired in
Fig. 9(b) is not in keeping with those acquired by fitting in the native domains, which are shown
in Fig. 9(a) and 9(d). This is confirmed by considering the time domain fit to the transformed
Fourier domain native model fit (not shown), which produces a good Db value correspondence
(2.15 × 10−8 cm2/s) to that of Fig. 9(a).

Similarly, conventional DCS data were transformed into the Fourier domain, following linear
resampling with a resolution of 0.5 µs, and were fit to our Fourier domain DCS model of
Brownian motion, the result of which is shown in Fig. 9(c). The value of Db produced by this
model fit is also not in keeping with that acquired by fitting in the native domains; however, this
can be rectified by considering the Fourier domain fit to the transformed time domain native
model fit (not shown), which yields a much closer Db value correspondence (2.13 × 10−8 cm2/s)
to that of Fig. 9(d).
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4.3. Experiment 2 - absolute equivalence over temperature

To show the absolute equivalence of conventional and holographic DCS techniques over a
physiologically relevant temperature range, as well as to demonstrate ground-truth validation
from other measurement techniques, we repeated Experiment 1 at 12 temperature steps during
heating between 17.1 oC and 40.5 oC. According to Eq. (34), and using our temperature dependent
model of the optical properties and dynamic viscosity of intralipid, the Db value of the optical
phantom will increase in a non-linear fashion as its temperature is increased. Intralipid optical
phantoms have previously been demonstrated to have good thermal stability, with scattering
properties varying less than 0.5 % when held at 70 oC for 12 hours, and are therefore considered
to be optically robust and stable when subject to elevated temperatures [46].

A thermostatically controlled waterbath was allowed to stabilise for 30minutes before collecting
each data set [40], and the phantom was manually stirred after each temperature increase in
order to maintain homogeneity. Evaporative losses are to be expected when performing such an
experiment, as such the optical probe was lowered slightly as need be before each measurement,
in order to ensure good optical coupling with the phantom. Loss of water from the phantom
will also alter its optical properties, by way of increasing the concentration of scatterers and
decreasing the water concentration [41]; however, we deemed this effect to be minimal in our
experimental setup due to both the original volume of the phantom and the relatively short span
of time over which data were collected following the lowering of the optical probe.

In addition to the data acquired in Experiment 1, 15 seconds of raw photon counting data were
also collected at each temperature step. These data were autocorrelated using our implementation
of the Laurence algorithm. Autocorrelated g2 data were then fit to our conventional DCS mixed
model, with the distribution of the mixed model fit Db values being displayed in Fig. 10 (this
figure also shows the corresponding multi-tau autocorrelated Db data). The 200 holographic DCS
frequency sweeps were averaged, and the Db values acquired by fitting to our Fourier domain
mixed motion model are shown in Fig. 10.

Fig. 10. The distribution of Db values for both conventional DCS and holographic DCS
over a temperature range in an optical tissue phantom using native domain mixed model
fitting. Model fits to the Stokes-Einstein equation and extracted intralipid particle radii are
also shown for all three data sets.
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Figure 10 also shows the results of fitting the mixed motion model Db values to the Stokes-
Einstein equation, both in terms of the Stokes-Einstein model fits and the extracted intralipid
particle radii, for all three data sets. There is close agreement between the Laurence algorithm,
multi-tau algorithm and holographic DCS data, which yield an intralipid particle radius of 98,
102 and 98 nm, respectively. These values are all within a maximum 4 % deviation of each other.
Furthermore, these values are in close agreement to previous measurements of intralipid by the
same manufacturer using transmission electron microscopy (TEM) in [47], which suggest an
average particle radius of 107 nm. By failing to account for a mixed model fit in this experiment
(i.e., by using a Brownian motion model only, not shown), intralipid particle radii of 90, 94 and
88 nm are extracted for the Laurence algorithm data, multi-tau algorithm data and holographic
DCS data, respectively.

4.4. Experiment 3 - SNR scaling and insensitivity to ambient light

The SNR of a speckle detection system should scale linearly with the square root of the number
of speckles detected [48]. We therefore sought to verify this for the raw S1 values produced by
our instrument, using the same optical phantom as Experiment 1. Camera parameters of fs = 100
Hz and τe = 0.3 ms were chosen for this experiment. Here we define the SNR in S1 to be

SNRS1 =
µ(S1)
σ(S1)

, (36)

with a sample size of N = 500 values in this case. By varying the size of the reconstruction mask
in the holographic demodulation process, we can effectively control the number of speckles that
contribute to each S1 measurement. The resulting SNR values are plotted in Fig. 11, where we
expect to observe a linear fit between SNR and mask radius in all 6 subplots, which correspond to
different ∆f values (the square root number of modes is a linear function of mask radius). Instead,
the SNR of S1 appears to form an asymptote, which suggests another source of noise becomes
limiting. We believe that this effect is in part due to temporal noise in the intensity of the laser
source, S0, which introduces fluctuations into the measured S1 data (according to Eq. (8)).

We also define the SNR of a Db measurement to be the mean Db value over N measurements,
divided by the standard deviation in those measurements

SNRDb =
µ(Db)

σ(Db)
. (37)

To assess the SNRDb benefit conferred by our instrument under optical blackout conditions, we
measured SNRDb (using a Brownian model of motion) over a range of flow parameter output
rates in an intralipid phantom with optical properties similar to that of brain tissue (µa = 0.10
cm−1 and µ′s = 7.5 cm−1 [7]), for an SDS distance of 15 mm and N = 100. This was achieved
by the addition of Indian ink (Windsor & Newton, Liquid Indian Ink, 1010754) to an intralipid
phantom, based on in-house dilution calibration experiments (using a PerkinElmer Lambda 750
S UV/Vis/NIR Spectrophotometer). By varying the number of camera frames taken at each
detuning frequency, we can effectively trade the overall parameter output rate for the number
frames to average, and thus SNRDb in the measurement. For example, with measurement at 6
detuning frequencies, a camera exposure time of 0.3 ms and a camera frame rate of 303 Hz, we
can obtain an overall parameter output rate of 23.8 Hz by capturing 2 camera frames per detuning
frequency. Increasing the number of frames captured per detuning frequency to 11 effectively
decreases the overall parameter output rate to 4.5 Hz.
We then performed equivalent analysis on conventional DCS data (autocorrelated using the

Laurence algorithm) collected under matched conditions by collecting raw photon counting
data and discretising it into N samples (each of length equal to Tframe, the total time required to
acquire a Db frame using our holographic DCS instrument). Using a Brownian motion model fit
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Fig. 11. The relationship between SNRS1 and the radius of the demodulation mask at
various ∆f values for holographic DCS, the linear scaling targets are shown by the dotted
lines.

to this data, we then calculated an SNRDb value for conventional DCS data at matched overall
parameter output rates. For both holographic DCS and conventional DCS data, we observed that
SNRDb scales with

√
Tframe (as is to be expected for a variable exhibiting Gaussian noise).

Our holographic DCS instrument offered an improvement in SNRDb over conventional DCS
by a mean factor of 2.3 over all 10 parameter output rates that were investigated. However,
repeating this experiment under normal ambient lighting conditions increased this SNRDb mean
improvement factor to 5.3, due to degradation of SNRDb associated with the conventional DCS
technique. This confirms the relative insensitivity of the holographic DCS technique to ambient
light. We note that the camera operated with a duty cycle of only 9.1 % during this SNRDb

comparison, and we are therefore motivated to increase this duty cycle in future work in order
to further increase the SNR advantage of our system (this could be achieved using a multiple
camera setup, for example).

4.5. Experiment 4 - in vivo feasibility

The feasibility of making in vivo measurements with our instrument was demonstrated by
acquiring forearm contact measurements. This study was approved by the UCL Research Ethics
Committee, project ID number: 1133/001. Our in vivo probe used an SDS distance of 11.3 mm
and the beam was expanded in order to adhere to patient safety limits [49]. By developing an
understanding of the complex interplay between the parameters of our instrument and the flow
values we expect to encounter in a particular DCS geometry, we are able to determine the most
appropriate camera exposure parameters for any given experiment. For example, when making
forearm measurements we assume optical properties of µa = 0.25 cm−1 and µ′s = 4.27 cm−1.
These are the average of the measurements acquired from the forearm of three healthy volunteers
in [7] at a wavelength of 788 nm. This group used sample optical properties measured at 788 nm
to analyse data from DCS experiments of the same samples, which were undertaken using a 785
nm laser source. We therefore deem the values that we have selected to be appropriate estimates
of the optical properties of our sample in this experiment, which also operates at 785 nm.
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Through the use of a conventional DCS system, these optical properties were used to recover
the range of Db values that we would expect to measure from our sample. This allowed us to
model the power spectra that we would expect during both diastole and systole for Brownian
motion, as shown by the grey and black solid lines in Fig. 12, respectively.

Fig. 12. Simulated data, used in Experiment 4 to aid selection of appropriate detuning
frequencies. The solid lines show the range of power spectra that we expect to encounter
(usingDb values acquired from conventional DCS data collection). The dotted lines simulate
the effects of IRF broadening on the expected power spectra. The measured power spectra
are then sampled where we expect to encounter the greatest measured change over the
cardiac cycle (these sample points are depicted by the circles on each of the measured power
spectra).

Inspection of Fig. 12 shows that, for a camera exposure time of 2 ms and a camera frame
rate of 200 Hz, the FWHM of the expected diastolic power spectrum and the FWHM of the
IRF are equivalent, resulting in significant broadening of the measured diastolic spectrum (grey
dotted line); however, this effect is much less pronounced during systole (black dotted line).
We have chosen to sample at frequencies where the greatest measured change is expected over
the cardiac cycle, and these are indicated by the circles on each of the measured power spectra
in Fig. 12. Additionally, since the camera exposure time is in the order of the expected tissue
decorrelation time (∼1 ms [9]), we expect optimal detection sensitivity [30]. Choosing the 6
frequency points shown, with three camera frames at each point, gives an overall parameter
output rate of 10.8 Hz for these camera exposure parameters, ensuring that we can accurately
recover pulsatile information (which we expect to contain significant frequency content at 1-2 Hz).
This is validated by Fig. 13, which also shows equivalent conventional DCS data (autocorrelated
using the Laurence algorithm). Fourier transforms of these Db time series, which were acquired
using a Brownian model of motion, reveal peak content at 65 beats per minute in both cases.
This was consistent with the resting heart rate of the volunteer in this study.

We note that the mean value of the holographic DCS Db time series in Fig. 13 is 1.13 × 10−8
cm2/s, whereas the mean value of the conventional DCS Db time series in the same figure is 0.58
× 10−8 cm2/s. We attribute this to broadening of the measured signal by the IRF of our system
(Fig. 12), which artificially elevates the lower Db values especially (as confirmed by fitting Db
values to the simulated measured data in Fig. 12).
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Fig. 13. Db time series for contact forearm measurements acquired at 10.8 Hz, using both
holographic DCS and conventional DCS. The dashed horizontal lines represent the mean Db
value for each time series.

5. Discussion and conclusion

The experiments performed in this paper have shown that our holographic DCS system can
measure data that are entirely equivalent to a conventional DCS system, but with a higher optical
throughput, a decreased cost of detector and a robustness to the effects of ambient light. Improved
SNR has been demonstrated in vitro; however, this advantage is yet to be demonstrated in vivo. By
developing and validating a mixed motion DCS frequency domain model, we are able to achieve
accurate interpretation of the data produced by our instrument in its native domain, which is
fundamentally different to conventional DCS data. These differences arise due to the alternative
sampling strategies of data in the time and frequency domains, the effects of static scattering in a
holographic DCS system, the nature of the noise, and broadening by the IRF, especially at high
parameter output rates. These high output rates have been made possible by the design of our
custom instrument with a high throughput and minimal dead-time, which enables highly parallel
GPU-accelerated holographic demodulation and is thus suited to in vivo application.

With reference to Fig. 9, we conclude that, due to the noise in the measured data, DCS model
fitting in the native domain is preferable to numerical transform and fitting in the complementary
domain. Whilst the deviations in Db measurement using complementary domain fitting that are
shown in Fig. 9 are relatively small for the very slow acquisition times used in the exemplar
configuration of Experiment 1, they are significant when we optimise for fast acquisition times
with a broader IRF, especially when imaging samples with a static scattering component. Thus
fitting with a native model appears to be an appropriate technique to achieve accuracy in our flow
parameter measurements.

Our mixed model fitting procedure has been rigorously validated by the results of Experiment 2.
Compared to the Brownian model of motion, the mixed motion model Db values shown in Fig. 10
have an improved fit to the Stokes-Einstein relationship (Eq. (34)), and the extracted intralipid
particle radii values are also in closer agreement with the TEM gold standard measurement [47].
This is because the sample becomes less Brownian and more convective as the temperature of
the waterbath increases, and therefore allowing for this variation is important in revealing the
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underlying absolute Db agreement between the conventional and holographic DCS techniques.
We therefore conclude that in order to show absolute equivalence between conventional DCS
and holographic DCS over a temperature range, the use of a mixed model fit to account for a
Brownian factor variation is essential. However, Experiments 1, 3 and 4 do not make use of
mixed model fitting, as we do not expect the Brownian factor of the sample to vary within the
course of each of these experiments.

Holographic DCS is an inherently heterodyne and multi-speckle detection technique. Conven-
tional DCS has, until recently, been a homodyne single speckle detection technique. However,
due to recent developments in the field [13,14,50], we note that a fuller comparison of our
method (especially with regard to assessing SNR performance and robustness to ambient light)
could be achieved by comparing holographic DCS to both single and multi-speckle conventional
heterodyne DCS techniques (i.e., iDCS), and these comparisons will be addressed in our future
work. However, we note that the reduction in detector cost afforded by holographic DCS, as well
as the scalability of a detection strategy that operates at the shot noise limit, is a compelling
advantage of our technique.

Despite validating and demonstrating the potential advantages of holographic DCS, this paper
does not reflect the full potential of this technique. The short camera exposure times that were
used in Experiment 4, and which are necessary to sample fast enough so as to resolve pulsatile
information, introduce a complication to our measured data. Spectral broadening by a relatively
wide IRF artificially elevates the measured Db values in Fig. 13. Correcting for this, whilst
sampling at only a limited number of detuning frequencies (especially in the presence of static
scattering due to the skull, for example), represents a significant challenge and this will form part
of our future work. Following on from this, the SNR advantage that was demonstrated in vitro
in Experiment 3 was not achieved in vivo in Experiment 4. We suspect that this is in part due
movement artefact (which is a known problem of multimode detection [50]) and sub-optimal
tissue coupling in our system [6]. Therefore experimentation into the effect of various collection
optics and tissue coupling mechanisms, together with minimising other sources of movement and
vibration in our system, is warranted.

Whilst we note that the SDS distances used in this study (1.13 - 1.75 cm) are relatively short
compared to the SDS distances of 2 - 3 cm typically used in human applications [1], this does
not detract from the purpose of this proof of concept study, where our aim is to demonstrate
the quantitative equivalence of measurements made using the holographic DCS method. Our
future work will assess the feasibility of our system to detect signals under the more challenging
conditions provided by larger SDS distances.
Our future work will also involve overcoming the issues encountered with SNR scaling

and duty cycle optimisation that were highlighted by Experiment 3. Validation of an SNR
advantage is a necessary precursor to enhancing the spatial resolution and imaging depth of our
instrument using ultrasound modulation. Our holographic DCS system is currently limited by
the duty cycles available with our camera, especially when using very short camera exposure
parameters. Figure 11 shows that the SNRS1 values at all detuning frequencies scale linearly
with the radius of the demodulation mask up to a certain point, before another source of noise is
encountered that becomes limiting. We have confirmed that the measured speckle patterns do
indeed conform to the negative-exponential probability distribution function expected of a fully
developed speckle pattern [35], and preliminary modelling has shown that realistic values of
RMS intensity noise on the laser source could account for the asymptotic nature of the SNRS1
curves in Fig. 11. Indeed, it has previously been observed that laser instability has a larger
influence on DCS measurements when using heterodyne techniques [50]. Assessment of the
laser temporal intensity spectrum (with stabilisation of the laser amplitude output as necessary)
as well as more sophisticated techniques to remove sources of temporal noise from measured
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holograms (e.g., an eigenvalue decomposition and filtering approach to remove parasitic noise
sources [51]), could be investigated in order to solve this problem.

To the authors’ knowledge, this paper represents the first time that a holographic DCS technique
has been used to recover in vivo flow measurements, at a fast enough sample rate to ensure the
accurate recovery of pulsatile information. Additionally, this technology can readily be applied
to longer wavelengths, which have previously been shown to improve SNR and depth sensitivity,
but which are currently incompatible with existing detector technologies in conventional DCS.
This offers exciting prospects not only for the potential of deeper DCS measurements, but also for
the potential of acquiring spatially resolved DCS measurements using AOT hybrid techniques.
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