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Abstract: 

Objectives: There is an urgent clinical need for identifying blood-based diagnostic biomarkers 

for Dementia with Lewy Bodies (DLB). Transcriptomic studies have reported unique RNA 

changes in post-mortem DLB brains. Small extracellular vesicles (SEV) that transport RNA 

between brain and peripheral circulation enable identifying molecular changes in living human 

brain. Hence, we aimed to identify differentially expressed RNA in serum SEVs from people 

with DLB. 

Methods: We investigated serum SEV total RNA profiles in people with DLB (n=10) and age 

and gender matched comparisons (n=10) using next-generation RNA-sequencing. SEVs were 

separated by ultracentrifugation with density gradient and were characterized by nanoparticle 

analysis and western blotting. We verified identified differentially expressed genes (DEG) 

using high-throughput qPCR. Functional implications of identified DEG were evaluated using 

Ingenuity pathway analyses.  

Results: We identified 846 nominally significant DEG including 30 miRNAs in DLB serum 

SEVs. We identified significant downregulation of pro-inflammatory genes, IL1B, CXCL8 and 

IKBKB. Previously reported post-mortem DLB brain DEGs were significantly enriched 

(χ2=4.99; df=1; p=0.03) among the identified DEGs, and the differential expression of 40 post-

mortem DLB brain DEGs could be detected in serum SEVs of people living with DLB. 

Functional pathway and network analyses highlighted the importance of immunosenescence, 

ubiquitin proteasome system (UPS) dysfunction, DNA repair and RNA post-transcriptional 

modification deficits in DLB pathology. 

Conclusion: Identified DEGs, especially reduced expression levels of inflammation and UPS 

associated RNA, may aid diagnosing DLB, and their biomarker potential warrants further 

investigation in larger clinical cohorts. Our findings corroborate the absence of chronic 

neuroinflammation in DLB. 
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Introduction: 

 Dementia with Lewy bodies (DLB) is the second most common neurodegenerative 

dementia (1) that causes earlier mortality (2), earlier nursing home admissions, higher costs (3) 

and more caregivers’ burden than Alzheimer’s disease (AD). DLB (4) and AD are diagnosed 

by their clinical diagnostic criteria. Currently, the three available indicative diagnostic 

biomarkers (4) for DLB are not routinely used in clinical settings (5), and there is no reliable 

biological fluid based biomarker for aiding DLB diagnosis. Failure to diagnose DLB accurately 

and treating visual hallucinations and challenging behaviors, more frequent in DLB than in 

AD, with any antipsychotic medication can lead to potentially fatal adverse effects including 

neuroleptic malignant syndrome (5). Moreover, early diagnosis of DLB is essential for 

formulating appropriate multidisciplinary management plans. Hence, there is an urgent clinical 

need for identifying reliable blood-based diagnostic biomarkers for DLB, but pertinent research 

remains sparse (6). 

 Better understanding of molecular pathology of DLB is important for identifying 

reliable biomarkers. Two genome-wide association studies (7,8) and at least 73 candidate gene 

association studies have investigated the molecular genetics of DLB so far (9). Genetic 

associations between DLB and variants in APOE, GBA, SNCA and MAPT have been replicated 

by two or more studies. Other reported genetic associations of DLB that need further replication 

include the variants in BCHE-K, BCL7C, CHRFAM7A, CNTN1, GABRB3, mtDNA, NOS2A, 

PSEN1, SCARB2, TREM2, ZFPM1 and UCHL1 (9). Gene expression studies investigating 

RNA levels clarify functional implications of identified genetic associations and their 

dysfunctional molecular networks. RNA changes indicate the effects of gene-environment 

interactions, and the changes in non-coding RNA levels add functional information that cannot 

be provided by studies investigating DNA and proteins. Three next-generation RNA 

sequencing (RNA-Seq) studies (10), and at least 21 quantitative gene expression studies have 
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investigated gene expression changes in people with DLB (11). Most of them have studied 

gene expression changes in post-mortem DLB brains and they have reported 4,842 statistically 

significant differentially expressed genes (DEG) in post-mortem DLB brains (10). We have 

previously reported DEGs, identified by RNA-Seq, and metabolic reprogramming in post-

mortem anterior cingulate and dorsolateral prefrontal cortices of pathology-verified DLB 

(10,11). We identified four genome-wide statistically significant DEGs (CTSG, SELE, GIPR 

and PSPHP1), and have documented significant downregulation of several pro-inflammatory 

genes in post-mortem DLB brains (10). Although prior evidence have confirmed unique RNA 

expression changes in post-mortem DLB brains (11), identifying differentially expressed RNA 

in biological fluids such as blood or cerebrospinal fluid (CSF) of people living with DLB is 

necessary for discovering novel clinically applicable diagnostic biomarkers. Yet, studies 

investigating RNA levels in biological fluids of people with DLB are sparse (11). One study 

has reported significant downregulation of miR-125b in DLB CSF (12) and another two studies 

that investigated peripheral leukocytes (13,14) have reported significant upregulation of SNCA-

126 isoform and significant downregulation of four mitochondrial genes, ATP8, MT-CO2, MT-

CO3 and MT-ND2, in DLB. 

 Each neurodegenerative disorder is hypothesized to have its own unique peripheral 

RNA signature (15). The discovery of small (30-100nm) extracellular vesicles (SEV) that can 

cross the blood-brain barrier and can transport RNA between brain and peripheral circulation  

has opened up an avenue for studying molecular changes in living human brain by investigating 

peripheral blood samples (16). Studies investigating extracellular vesicles (EV) have been 

increasing exponentially since the last decade, and the minimal information for studies of 

extracellular vesicles (MISEV2018) guidelines was published by the International Society of 

Extracellular Vesicles in 2018 (17). The MISEV2018 guidelines discourage using the 

previously popular term “exosomes” that assumed specific biogenesis, and they urge naming 
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EVs based on their physical or biochemical characteristics (17). Nearly 100 EV-based 

diagnostic and prognostic biomarkers have been identified for various malignancies (18). The 

diagnostic biomarker potential of serum or plasma SEVs for neurodegenerative disorders is 

increasingly recognized (19), and several potential diagnostic SEV RNA biomarkers for AD 

have been identified (20). Moreover, CSF derived SEVs from people with DLB can induce α-

synuclein aggregation in-vitro (21). However, only one study has investigated CSF, serum, or 

plasma SEV RNA profiles of people with DLB so far (22). That exploratory study has 

sequenced only microRNA (miRNA) profiles of plasma SEV RNA from seven people with 

DLB, and it could not identify any statistically significant differentially expressed miRNA 

between DLB and comparisons (22). SEV long RNA including messenger RNA (mRNA) 

profiles in DLB have not been investigated so far. Hence, we aimed to conduct a RNA-Seq 

study investigating serum SEV total RNA profiles of people living with DLB. 

 

Methods:  

Serum samples:  

 We obtained serum samples from the biobanks of three Norwegian cohorts (23-25). 

The dementia study of western Norway (DemWest) is a relatively large longitudinal cohort 

study (23) including people with probable DLB (26). The DLB diagnosis was based on a 

standardized set of clinical and biomarker analyses, longitudinal follow-up, and pathological 

confirmation of a subset (27). Serum samples from 10 people living with probable DLB, and 

three gender and age (±3 years) matched comparisons without cognitive impairment or 

Parkinson’s disease (NDC; No-dementia comparison) were obtained from this cohort. Another 

seven gender and age (±3 years) matched NDC serum samples were obtained from two cohorts 

at Akershus University Hospital dementia research centers (24,25). All three cohorts allowed 

30 minutes for coagulation of their blood samples, centrifuged their samples at room 
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temperature and stored them at -80°C until use. There were minor variations in the duration 

and speed of their centrifugation procedures. Supplemental digital content (SDC-1) provides 

age, gender, cohort, and centrifugation details of all 20 samples. The data on the Mini-mental 

status examination total score (28), the Clinical Dementia Rating Scale global score, and the 

number of years of formal education were available only for the DemWest cohort samples, and 

they are presented in the SDC-1. Further details of the cohorts have been published elsewhere 

(23-25). These studies have obtained generic ethical approval for further studies using their 

serum samples.  

Separation of EVs:  

 SEVs were separated using an ultracentrifugation and OptiPrepTM (Sigma-Aldrich, UK) 

density gradient approach based on their buoyant density. In brief, a discontinuous iodixanol 

gradient was prepared by diluting a stock solution of OptiPrepTM (60%w/v) with 0.25M 

sucrose/10 mM Tris (pH 7.5) for generating 40%, 20%, 10% and 5%w/v iodixanol solutions. 

The solutions were sequentially layered (3 ml/layer) in an UltraClear (Beckman Coulter, USA) 

centrifuge tube, and 0.5ml of serum/ sample was overlaid. The tubes were centrifuged at 

100,000g at 4°C for 16 hours. Subsequently, 12 fractions of one ml were collected from the 

top of the gradient. Ninth to 11th fractions were diluted in phosphate buffered saline (PBS) (29). 

They were centrifuged further at 100,000g for one hour at 4°C in an Optima-Max centrifuge 

(Beckman Coulter, USA), and this was repeated once more. After discarding the supernatant, 

the SEV pellet was reconstituted with 200µl PBS.  

Characterization of EVs:  

Size distribution and concentration of separated EVs were verified using the Malvern 

NanoSight LM10 nanoparticle analyzer (Malvern Instruments Ltd., UK) using standard 

manufacturer’s instructions. Separation of SEVs was confirmed by Western blotting using 

antibodies against Flotillin-1 and CD63, which are widely used exosomal markers (17). 
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RNA extraction:  

 Total SEV RNA including all mRNA, miRNA, and other small RNA were purified 

using the Invitrogen total exosome RNA isolation kit (Thermo Fisher Scientific, USA). Quality 

of purified RNA were assessed using the NanoDrop™ One/One microvolume UV-Vis 

spectrophotometer (Thermo Fisher Scientific, USA), and the mean 260/280 absorbance ratio 

of purified RNA was 2.05 (95%CI 1.88-2.22).  

Next-generation RNA-sequencing (RNA-Seq):  

 Purified serum SEV RNA were sequenced at the Wellcome Centre for Human Genetics, 

Oxford, UK, using the Illumina HiSeq-2500 (Illumina, USA).  A NEBNext Ultra-II directional 

cDNA library and another NEBNext small RNA cDNA library (New England Biolabs, USA) 

were prepared for each sample. The cDNA libraries underwent single-end sequencing (50 base 

pairs/read), and we obtained a minimum of 10 million reads/sample. 

RNA-Seq data analyses:  

 Quality control of RNA-Seq reads removed the reads that included an ambiguous base, 

and the reads that had less than 90% of bases with less than 1% sequencing error. Remaining 

reads were aligned to the human genome (Homo_sapiens.GRCh38) with corresponding gene 

model annotation (Homo_sapiens.GRCh38.88.gtf) using the HISAT2 (30). Gene-wise counting 

of aligned reads was completed using the featureCounts tool (31). DEGs in DLB serum SEVs 

were identified by a previously experimentally validated (32) edgeR 3.18.1 algorithm 

employing generalized linear models with tag-wise dispersion (33), and Benjamini-Hochberg 

transcriptome-wide false discovery rate (FDR) correction (5%). The edgeR p-values were 

derived by employing exact tests (no df) after fitting gene-specific quasi-negative binominal 

models and estimating dispersion using the quantile adjusted conditional maximum likelihood 

method (33). 
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Verification of identified DEGs:  

 Differential expression levels of 48 identified DEGs (SDC-2) in serum SEVs of people 

living with DLB were evaluated using high-throughput quantitative polymerase chain reactions 

(qPCR). Total SEV RNA were purified using the Invitrogen total SEV RNA isolation kit 

(Thermo Fisher Scientific, USA) from 0.5ml aliquots of serum samples that had been 

sequenced (N=20). 100ng of SEV RNA/sample were reverse transcribed using the miScript®-

II RT Kit and its 5X miScript HiFlex buffer (Qiagen, UK). After 19 cycles of specific target 

amplification with the PreAmp master-mix (Fluidigm, USA), high-throughput qPCR was 

performed using the BioMark HD, GE 96.96 dynamic arrays (Fluidigm, USA), and SsoFast 

EvaGreen low ROX kit (Bio-Rad, USA). SDC-3 provides further details of the qPCR 

verification. A DEG would be verified if it met the following criteria (34): (i) Both RNA-Seq 

and qPCR showed same direction of differential expression, and (ii) differential expression 

fold change, estimated by qPCR, was either above 1.25 or below 0.80 (logarithmic fold change 

(L2FC) cut-off ±0.3219). 

Functional analyses of identified DEGs: 

 Functional implications of identified DEGs (edgeR p<0.05; no df) were analyzed by 

Ingenuity Pathway Analysis (IPA) using the Ingenuity knowledge base (Ingenuity, USA). The 

IPA is a powerful functional analysis tool that helps identifying potential biomarkers within 

the context of biological systems. Our IPA analysis settings included stringent filters with only 

experimentally observed relationships, and they helped identifying disrupted functional 

pathways and dysfunctional molecular networks in serum SEVs of people with DLB. The IPA 

p-values were calculated by estimating the ratio of the number of DEGs that map to a canonical 

pathway to the total number of molecules that map to that canonical pathway, and then by using 

Fisher’s exact test (no df) for determining the probability that the association between the 

DEGs and the canonical pathway is explained by chance alone (35). 
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Results: 

Serum SEV RNA profile: 

 The Malvern NanoSight LM10 nanoparticle analysis revealed that 94.47% (95%CI 

92.13-96.81%) of the separated EVs were between 30 and 100nm in size. Mean amount of total 

purified SEV RNA/ sample, estimated by the NanoDrop™ One/One microvolume UV-Vis 

spectrophotometer (Thermo Fisher Scientific, USA), was 227.80 (95%CI 149.39-306.21) ng. 

All RNA-Seq data files are available in the NCBI BioProject database under accession number 

PRJNA530121 (https://www.ncbi.nlm.nih.gov/sra/PRJNA530121). RNA, expressed from 429 

miRNA genes and 8,863 other genes, were found in the investigated serum SEVs. Only 244 

(56.9%) miRNA genes and 3,314 (37.4%) other genes were expressed in both DLB and NDC 

serum SEVs. RNA, expressed from 28 mitochondrial genes, were found in both DLB and NDC 

serum SEVs. 112 (26.1%) miRNA genes and 2,173 (24.5%) other genes were expressed only 

in DLB serum SEVs.  

Serum SEV DEGs in DLB:  

 We identified 846 statistically significant (edgeR p<0.05; no df) DEGs in serum SEVs 

of people with DLB, compared to NDC serum SEVs (SDC-4). There were 737 downregulated 

and 109 upregulated DEGs. They included 30 differentially expressed miRNA and one 

mitochondrial gene, MT-TS2, encoded RNA. None of the DEGs reached transcriptome-wide 

statistical significance (edgeR q<0.05; no df) after Benjamini-Hochberg FDR correction. 

However, differential expression levels of 77.1% (37/48; 95%CI 65.2-89.0%) of the nominally 

significant DEGs (edgeR p<0.05; no df) could be verified (34) by high-throughput qPCR, and 

Table-1 presents those 37 qPCR verified DEGs. RNA expression levels of pro-inflammatory 

genes, IL1B, CXCL8 and IKBKB were significantly (edgeR p<0.05; no df) downregulated in 

DLB serum SEVs, and their differential expression were also verified by qPCR. Other 

statistically significant (edgeR p<0.05; no df) downregulated DEGs in DLB, verified by qPCR, 

https://www.ncbi.nlm.nih.gov/sra/PRJNA530121
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included pro-apoptotic BID and TNFRSF1A, ubiquitin proteasome system (UPS) associated 

UBE3A, USP47, and PSMD4, as well as PSEN1 regulating β-amyloid synthesis. Moreover, 

qPCR-verified significantly (edgeR p<0.05; no df) upregulated DEGs in DLB serum SEVs 

included PTPRF, MIR556, and SMG9 that plays a critical role in the nonsense-mediated mRNA 

decay (NMD). PTPRF encodes a protein tyrosine phosphatase that contributes to the regulation 

of cell growth, differentiation, mitotic cycle, insulin resistance and oncogenesis (36). MIR556 

has been reported to be associated with the proliferation and migration of various malignancies 

(37). SDC-5 presents the z-scores of edgeR normalized expression levels of the 37 qPCR 

verified DEGs. z-scores above two in at least one of the following three genes, SMG9, PTPRF, 

and MIR556, could classify the people with DLB with 60% sensitivity, 100% specificity, 100% 

positive predictive value, and 71.43% negative predictive value. 

Comparing with DEGs in post-mortem DLB brains: 

 We cross-linked our post-mortem cortical transcriptomic data that have been reported 

elsewhere (10) with the DLB serum SEV RNA profiles, and found statistically significant 

(χ2=4.99; df=1; p=0.03) enrichment of post-mortem DLB brain DEGs (edgeR p<0.05; no df) 

among the DEGs (edgeR p<0.05; no df) identified in this study. Table-2 presents the 40 DEGs 

that were differentially expressed in both post-mortem DLB brains and serum SEVs of people 

living with DLB. Expression levels of pro-inflammatory genes, IL1B, CXCL8 and IFI44L were 

significantly (edgeR p<0.05; no df) downregulated in both post-mortem DLB brains and DLB 

serum SEVs. In addition, ABCA13, involved in active transmembrane transport of lipid species, 

PARVB, involved in GTPase activation and integrin signaling, and a transcriptional activator 

LBH were significantly (edgeR p<0.05; no df) downregulated in both datasets. Moreover, 

JUND that antagonizes apoptosis and slows down cell growth as well as AVP encoding 

vasopressin, neurophysin 2 and copeptin were significantly (edgeR p<0.05; no df) upregulated 

in both post-mortem DLB brains and DLB serum SEVs. 
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Functional analyses of identified DEGs: 

 We investigated the functional implications of the 846 identified DEGs (edgeR p<0.05; 

no df) using  IPA. SDC-6 presents the molecular pathways that were significantly enriched 

among the serum SEV DEGs in people with DLB. Huntington's disease signaling (Fisher’s 

exact p=3.05X10-5; no df), regulation of eIF4 and p70S6K signaling (Fisher’s exact 

p=4.21X10-5; no df), and glucocorticoid receptor signaling (Fisher’s exact p=5.96X10-5; no df) 

associated genes were significantly enriched among the identified DEGs. Pro-inflammatory 

pathways such as role of PKR in interferon induction and antiviral response (Fisher’s exact 

p=1.89X10-4; no df), TNFR1 signaling (Fisher’s exact p=6.65X10-4; no df), IL-6 signaling 

(Fisher’s exact p=6.88X10-4; no df), IL-8 signaling (Fisher’s exact p=0.001; no df), interferon 

signaling (Fisher’s exact p=0.004; no df) and T-cell receptor signaling (Fisher’s exact p=0.01; 

no df) were significantly downregulated in DLB serum SEVs. Integrin signaling (Fisher’s exact 

p=3.44X10-4; no df) and Integrin linked kinase signaling (Fisher’s exact p=3.27X10-4; no df) 

pathways were significantly enriched among the identified DEGs, and the overlapping DEGs 

were predominantly downregulated in DLB serum SEVs. Moreover, protein ubiquitination 

pathway was significantly (Fisher’s exact p=0.007; no df) enriched among the identified DEGs, 

and 15 identified significantly (edgeR p<0.05; no df) downregulated DEGs overlapped with 

this pathway. Furthermore, IPA upstream and causal network analyses indicated that 

downregulation of transcription regulators, TP53 (Fisher’s exact p=1.38X10-7; no df), NUPR1 

(Fisher’s exact p=2.72X10-4; no df) and WT1 (Fisher’s exact p=4.32X10-4; no df) and of 

TYROBP (Fisher’s exact p=5.65X10-4; no df) encoding a transmembrane receptor were 

probable upstream causes that may explain the identified DEGs in DLB serum SEVs.  

The network analyses showed that the direct and indirect interactions of several 

identified DEGs converge on the following three downregulated DEGs that interact among 

themselves, (i) IL1B encoding Interleukin-1β, (ii) pro-apoptotic CASP3, and (iii) PSEN1 that 
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is essential for γ-secretase complex cleaving β-amyloid from amyloid precursor protein (APP) 

(Figure-1A). This dysfunctional molecular network can explain how the interactions between 

the DEGs may impact neuronal survival, organismal injury, and apoptosis in DLB. Moreover, 

several identified DEGs and their interactions can influence transcriptional regulation of many 

downstream genes, RNA post-transcriptional modification, and DNA replication and repair 

(Figure-1B).  

 

Discussion: 

 This is the first study that systematically investigated serum SEV total RNA profiles of 

people living with DLB and their overlap with post-mortem DLB cortical transcriptomic data. 

The study has confirmed the feasibility of measuring gene expression changes in serum SEVs 

of people living with DLB like measuring such changes in post-mortem DLB brains. It has 

identified differentially expressed mRNA and miRNA, and their dysfunctional molecular 

networks in serum SEVs from people with DLB. We have observed that previously reported 

post-mortem DLB brain DEGs (10) were significantly enriched among the DEGs identified by 

this study, and that the statistically significant differential expression of 40 post-mortem DLB 

brain DEGs (10) could be detected in serum SEVs of people living with DLB. Our findings 

have highlighted the importance of immunosenescence, UPS dysfunction, and the deficits in 

DNA repair, RNA post-transcriptional modification, and APP processing in DLB pathology.  

 Chronic microglial activation and neuroinflammation contribute to AD pathology (38). 

However, prior evidence supporting chronic neuroinflammation in DLB have been 

inconsistent, and several immunohistochemical, transcriptomic and proteomic studies have 

documented notable absence of chronic neuroinflammation in post-mortem DLB brains 

(9,11,39). Transcriptomic studies using gene expression microarray and RNA-Seq 

methodologies have reported statistically significant downregulation of several pro-
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inflammatory genes including IL1B, IL2, IL6, CXCL2, CXCL3, CXCL8, CXCL10, and CXCL11 

in post-mortem DLB brains (10,40). Another transcriptomic and proteomic study corroborated 

the absence of chronic neuroinflammation in post-mortem pulvinar region of DLB brains (41). 

Moreover, immunohistochemical staining with IBA1 and CD68 antibodies revealed reduced 

microglial density and more microglial dystrophy in post-mortem DLB brains (42). In this 

study, we have observed statistically significant reduced expression of pro-inflammatory 

genes, IL1B, CXCL8, IFI44L and IKBKB, and statistically significant downregulation of 

several inflammatory pathways, such as TNFR1, IL-6, IL-8, interferon and T-cell receptor 

signaling pathways in DLB serum SEVs. Neuronal survival and synaptic plasticity require 

optimal microglial activation (43), and immunosenescence leading to impaired neuronal 

survival may contribute more to DLB pathology than chronic neuroinflammation (10,11). 

Hence, reduced expression levels of the identified pro-inflammatory DEGs in serum SEVs may 

aid diagnosing DLB early and may help distinguishing DLB from AD. Their diagnostic and 

prognostic biomarker potential needs to be investigated in larger clinical cohorts. 

 The UPS is an important intracellular degradation system for clearing pathologically 

misfolded proteins, and its dysfunction substantially contributes to the progression of α-

synucleinopathies (44). Our findings revealed significantly reduced levels of UPS associated 

genes, UBE3A, USP47, and PSMD4, and significant downregulation of the protein 

ubiquitination pathway in DLB serum SEVs. An earlier study that investigated RNA profiles 

of substantia nigra dopaminergic neurons of people with Parkinson’s disease has reported 

statistically significant downregulation of USP47 and PSMD4 (45). The UPS closely interacts 

with the autophagy lysosomal pathway, and its dysfunction has been demonstrated to be 

sufficient for inducing Lewy body-like inclusions in mice models (46). Downregulation of the 

protein ubiquitination pathway aggravates α-synuclein aggregation and cytoplasmic 

accumulation of other misfolded proteins that can set off a vicious cycle by inhibiting the 
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neuronal autophagy lysosomal pathway. However, systematic research investigating the 

diagnostic biomarker and therapeutic potential of the UPS molecules in DLB remain sparse. 

Significant downregulation of UBE3A, USP47, and PSMD4 in serum SEVs in people with 

DLB could be detected by both RNA-Seq and qPCR, and their diagnostic biomarker potential 

warrants further research. 

 α- synuclein is a DNA binding protein and it regulates DNA damage response and DNA 

repair (47). DNA repair deficits and consequent increased levels of DNA double strand breaks 

are associated with Lewy body pathology and neurodegeneration in mice models and post-

mortem human DLB brains (47). Moreover, transcriptional RNA processing such as RNA 

splicing contributes to α-synuclein aggregation (48). We have presented a dysfunctional 

molecular network involving several identified DEGs that can affect DNA repair and RNA 

post-transcriptional modification. Downregulation of RPA1 that plays an important role in 

DNA replication, and downregulation of CUL4A, an ubiquitin ligase protein that regulates 

DNA repair, can impair neuronal survival by affecting DNA damage response in DLB. CUL4A, 

and RNMT that catalyzes mRNA cap methylation interact with RNA polymerase II (49) and 

their downregulation may lead to reduced expression of many downstream genes that are 

essential for neuronal survival in DLB. As SEVs deliver RNA to recipient cells and modify 

DNA damage response in recipient cells (50), this dysfunctional molecular network may 

contribute to the progression of DLB pathology.  

Downregulation of PSEN1 can increase α-synuclein aggregation independent of its γ-

secretase activity, and it may explain varying degrees of comorbid AD pathology in DLB (51). 

Besides, significantly reduced expression levels of pro-apoptotic CASP3 and BID in DLB 

serum SEVs are intriguing. Apoptosis and mitosis maintain tissue homeostasis, and decreased 

apoptosis may pathologically prolong survival of dysfunctional cells (52). The cell cycle two-

hit hypothesis that involves non-dividing neurons re-entering into steady state G1 phase, and 
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then losing their ability to undergo apoptosis because of chronic oxidative stress has been 

studied extensively in AD (53). Although α- synuclein is known to alter cell cycle progression 

(54), the contributions of cell cycle re-entry and decreased apoptosis towards DLB pathology 

have not been investigated. Molecular mechanisms underlying reduced expression of CASP3 

in DLB serum SEVs and its impact on autophagy lysosomal pathway in recipient cells (55) 

warrant further investigation. Moreover, ATP-binding cassette family genes, ABCA7 and 

ABCA13, were significantly downregulated in DLB serum SEVs. Rare variants in ABCA13 

have been associated with various neuropsychiatric disorders (56), and common variants in 

ABCA7 have been associated with AD (57). Future studies may consider investigating their 

contributions towards the molecular pathology of DLB. 

We acknowledge the limitations of this study including its small sample size and 

investigating the total serum SEV population that was not enriched for neuronal origin. Further 

studies should compare DLB SEV RNA profiles with those of people with AD for 

disentangling disease-specific effects. However, circulating SEV RNA have opened a new 

avenue for identifying blood-based diagnostic biomarkers for DLB, and diagnostic biomarker 

potential of identified DEGs warrant further evaluation in large replication cohorts. 

Multiplexing biomarkers improves their diagnostic accuracy and predictive values, and 

potential RNA biomarkers can be investigated together by developing a multiplex RNA 

biomarker assay (58). The diagnostic accuracy including sensitivity and specificity of such 

biomarker assay will need further investigation. Moreover, gene expression changes are 

dynamic, and they differ with disease progression. Measuring the expression levels of 

identified DEGs at various clinical stages of DLB may help diagnosing DLB early, identifying 

novel prognostic biomarkers, and advancing our understanding of molecular pathology of 

rapidly progressive DLB (59). Furthermore, investigating SEVs that are enriched for neuronal 

origin by L1CAM immunoprecipitation can enhance study power and biomarker discovery 
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(19). However, the caveat is that only 5-10% of circulating SEVs are considered to be of 

neuronal origin (19), and limited starting volumes of clinical blood samples make the 

investigation of neuronally enriched serum or plasma SEV RNA profiles methodologically 

challenging. Several methodological challenges have been identified in separation, enrichment, 

quantification, characterization, and functional analysis of EVs, and the MISEV2018 

guidelines have made specific recommendations for improving methodologies of further 

research in this important area (17). Optimizing the immunoprecipitation and RNA-Seq library 

preparation methods for investigating very low input neuronally enriched SEV RNA will aid 

identifying reliable blood-based diagnostic biomarkers and novel therapeutic targets for DLB.  
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Figure-legends: 

Figure-1: Functional network analyses of identified differentially expressed genes in serum 

small extracellular vesicles of people living with dementia with Lewy bodies. 

A: A network of 32 identified DEGs that may impact cell death and survival, and organismal 

injury and abnormalities; B: Another network of identified DEGs that can influence gene 

expression, RNA post-transcriptional modifications, DNA replication, recombination, and 

repair; (A-B) Green represents downregulated genes, and red represents upregulated genes. 

Solid lines represent direct interactions and dotted lines represent indirect interactions. 
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Supplemental Digital Content (SDC): 

Note: Supplementary information are available in the online version of the paper. 

1. SDC-1 presents the sample characteristics (.docx file). 

2. SDC-2 presents forward and reverse primer sequences that have been used for high-

throughput qPCR verification of 48 identified differentially expressed genes (DEG) (first 

worksheet) and eight reference (second worksheet) genes (.xlsx file).  

3. SDC-3 presents an overview of separation of small extracellular vesicles, RNA extraction, 

cDNA synthesis, specific target amplification and high-throughput qPCR verification 

procedures (.docx file). 

4. SDC-4 presents differential expression analyses of RNA-Seq data from serum small 

extracellular vesicles of people living with dementia with Lewy bodies (n=10) and of age 

and gender matched comparisons without cognitive impairment or Parkinson’s disease 

(n=10) (.xlsx file). 

5. SDC-5 presents the Z-scores of edgeR normalized expression levels of the 37 qPCR 

verified DEGs 

6. SDC-6 presents the results of Ingenuity pathway analyses that identified the canonical 

pathways, which were statistically significantly enriched among the identified DEG in 

serum small extracellular vesicles from people living with DLB (.xlsx file). 
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